organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Meth­­oxy­benzyl­­idene)chroman-4-one

aSchool of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, and bSchool of Engineering, University of KwaZulu-Natal, Howard College Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: owaga@ukzn.ac.za

(Received 1 March 2012; accepted 4 March 2012; online 10 March 2012)

In the title compound, C17H14O3, the dihedral angle between the meth­oxy­benzene unit and the benzene ring of the chromanone system is 64.12 (3)°. The crystal structure is stabilized by weak C—H⋯O inter­actions.

Related literature

For the preparation, see: Shaikh et al. (2011[Shaikh, M., Petzold, K., Kruger, H. & du Toit, K. (2011). Struct. Chem. 22, 161-166.]). For related structures, see: Kirkiacharian et al. (1984[Kirkiacharian, B. S., Gomis, M., Tongo, H. G., Mahuteau, J. & Brion, J. D. (1984). Org. Magn. Reson. 22, 106-108.]); Marx et al. (2008[Marx, A., Manivannan, V., Suresh, R., Kanagam, C. C. & Sridhar, B. (2008). Acta Cryst. E64, o328.]); Suresh et al. (2007[Suresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4387.]); Chantrapromma et al. (2006[Chantrapromma, S., Boonsri, S., Fun, H.-K., Anjum, S. & Kanjana-opas, A. (2006). Acta Cryst. E62, o1254-o1256.]); Augustine et al. (2008[Augustine, T., Vithiya, S. M., Ramkumar, V. & Kanakam, C. C. (2008). Acta Cryst. E64, o2080.]). For the biological activity of this class of compound, see: du Toit et al. (2010[du Toit, K., Drewes, S. E. & Bodenstein, J. (2010). Nat. Prod. Res. 24, 457-490.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14O3

  • Mr = 266.28

  • Monoclinic, P 21 /c

  • a = 12.4143 (9) Å

  • b = 6.7141 (5) Å

  • c = 16.0031 (10) Å

  • β = 98.658 (4)°

  • V = 1318.67 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 446 K

  • 0.28 × 0.21 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 4414 measured reflections

  • 2315 independent reflections

  • 1662 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.00

  • 2315 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.97 2.54 3.3808 (19) 145
C18—H18B⋯O3ii 0.96 2.50 3.4227 (19) 161
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, 3-(3-Methoxybenzylidene)-chroman-4-one, belongs to a class of compounds called homoisoflavonoids, which are C-16, α,β unsaturated carbonyl compounds containing two aromatic rings. They are a group of naturally occurring molecules that are structurally related to isoflavonoids but differ by containing one more carbon atom (Kirkiacharian et al., 1984). Homoisoflavonoids may be categorized into four groups depending on the type of structural backbone present. The four groups are 3-benzylidene-4-chromanones, of which the title compound belongs to as well as the 3-benzyl-4-chromanones, 3-benzyl-3-hydroxy-4-chromanones and scillascillins (du Toit et al., 2010).

This compound may undergo chemical conversion into the (E)- and (Z)-isomers (Kirkiacharian et al., 1984). The 3-benzylidene-4-chromanones have been shown to display a wide range of biological activities (du Toit et al., 2010). The most commonly used procedure for the synthesis of homoisoflavoinoids involves the condensation of chroman-4-one with an aromatic aldehyde in the presence of an acidic or basic catalyst (Shaikh et al., 2011).

In the molecular structure, the dihedral angle between the methoxybenzene moeity and the benzene ring of the chromanone moiety is 64.12 (3) °.The Chromanone moiety is fused with a phenyl ring and adopts a half chair conformation (Fig 1). The molecule of (I) is stablized by two weak C—H···O intramolecular interactions (Table 1).

Related literature top

For the preparation, see: Shaikh et al. (2011). For related structures, see: Kirkiacharian et al. (1984); Marx et al. (2008); Suresh et al. (2007); Chantrapromma et al. (2006); Augustine et al. (2008). For the biological activity of this class of compound, see: du Toit et al. (2010).

Experimental top

A mixture of chroman-4-one (1 g, 6.749 mmol), 3-methoxybenzaldehyde (1.103 g, 8.099 mmol) and 10–15 drops of piperidine was heated at 80°C for 20 hrs. The reaction mixture was monitored for completion by thin layer chromatography. Upon completion, the reaction mixture was cooled, diluted with water and neutralized using 10% HCl. The reaction mixture was extracted with ethyl acetate (3 × 30 mL). The ethyl acetate layers were combined, washed with brine (20 ml), water (2 × 10 mL) and dried over anhydrous magnesium sulfate. The solvent was reduced and the compound purified by column chromatography using silica gel (Merck 9385, 40–63 µm particle size) with a mobile phase of 2% ethyl acetate in hexane to yield the title compound with a m.p. of 85–86°C.

1H NMR: δ (ppm): 3.83 (3H, s, OCH3), 5.36 (2H, d, J = 1.72 Hz, 2H-2), 6.82 (1H, s, H-2'), 6.87 (1H, d, J = 7.60 Hz, H-6'), 6.93 (2H, m, H-8, H-4'), 7.05 (1H, t, J = 7.52 Hz, H-6), 7.34 (1H, t, J = 7.92 Hz, H-5'), 7.47 (1H, t, J = 8.52 Hz, H-7), 7.82 (1H, s, H-9), 8.00 (1H, dd, J = 7.82, 1.46 Hz, H-5). 13C NMR: δ (ppm): 55.36 (OCH3), 67.66 (C-2), 115.06 (C-4'), 115.42 (C-2'), 117.93 (C-8), 121.92 (C-6), 122.02 (C-4a), 122.28 (C-6'), 127.96 (C-5), 129.76 (C-5'), 131.15 (C-3), 135.69 (C-1'), 135.90 (C-7), 137.40 (C-9), 159.69 (C-3'), 161.18 (C-8a), 182.23(C-4).

Structure description top

The title compound, 3-(3-Methoxybenzylidene)-chroman-4-one, belongs to a class of compounds called homoisoflavonoids, which are C-16, α,β unsaturated carbonyl compounds containing two aromatic rings. They are a group of naturally occurring molecules that are structurally related to isoflavonoids but differ by containing one more carbon atom (Kirkiacharian et al., 1984). Homoisoflavonoids may be categorized into four groups depending on the type of structural backbone present. The four groups are 3-benzylidene-4-chromanones, of which the title compound belongs to as well as the 3-benzyl-4-chromanones, 3-benzyl-3-hydroxy-4-chromanones and scillascillins (du Toit et al., 2010).

This compound may undergo chemical conversion into the (E)- and (Z)-isomers (Kirkiacharian et al., 1984). The 3-benzylidene-4-chromanones have been shown to display a wide range of biological activities (du Toit et al., 2010). The most commonly used procedure for the synthesis of homoisoflavoinoids involves the condensation of chroman-4-one with an aromatic aldehyde in the presence of an acidic or basic catalyst (Shaikh et al., 2011).

In the molecular structure, the dihedral angle between the methoxybenzene moeity and the benzene ring of the chromanone moiety is 64.12 (3) °.The Chromanone moiety is fused with a phenyl ring and adopts a half chair conformation (Fig 1). The molecule of (I) is stablized by two weak C—H···O intramolecular interactions (Table 1).

For the preparation, see: Shaikh et al. (2011). For related structures, see: Kirkiacharian et al. (1984); Marx et al. (2008); Suresh et al. (2007); Chantrapromma et al. (2006); Augustine et al. (2008). For the biological activity of this class of compound, see: du Toit et al. (2010).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.
3-(3-Methoxybenzylidene)chroman-4-one top
Crystal data top
C17H14O3F(000) = 560
Mr = 266.28Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5379 reflections
a = 12.4143 (9) Åθ = 2.6–25°
b = 6.7141 (5) ŵ = 0.09 mm1
c = 16.0031 (10) ÅT = 446 K
β = 98.658 (4)°Block, colourless
V = 1318.67 (16) Å30.28 × 0.21 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.023
Graphite monochromatorθmax = 25°, θmin = 2.6°
φ and ω scansh = 1414
4414 measured reflectionsk = 77
2315 independent reflectionsl = 1918
1662 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0753P)2]
where P = (Fo2 + 2Fc2)/3
2315 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C17H14O3V = 1318.67 (16) Å3
Mr = 266.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4143 (9) ŵ = 0.09 mm1
b = 6.7141 (5) ÅT = 446 K
c = 16.0031 (10) Å0.28 × 0.21 × 0.05 mm
β = 98.658 (4)°
Data collection top
Nonius KappaCCD
diffractometer
1662 reflections with I > 2σ(I)
4414 measured reflectionsRint = 0.023
2315 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
2315 reflectionsΔρmin = 0.20 e Å3
182 parameters
Special details top

Experimental. Carbon-bound H-atoms were placed in calculated positions [C—H = 0.96 Å for Me H atoms, 0.97 Å for Methylene H atoms and 0.93 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C) (1.5 for Me groups)] and were included in the refinement in the riding model approximation.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ···.. 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 3 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF ···. 3 PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 46 Perc. Noted

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67104 (13)0.0244 (2)0.41235 (9)0.0308 (4)
C20.48754 (13)0.0872 (2)0.36955 (9)0.0345 (4)
H2A0.42090.09840.39410.041*
H2B0.470.01970.31560.041*
C30.52909 (12)0.2927 (2)0.35484 (8)0.0311 (4)
C40.64423 (13)0.3033 (2)0.33980 (9)0.0334 (4)
C50.71355 (12)0.1319 (2)0.36945 (9)0.0309 (4)
C60.82476 (13)0.1305 (2)0.36328 (9)0.0384 (4)
H60.85370.23180.33380.046*
C70.89190 (15)0.0181 (2)0.40005 (10)0.0431 (4)
H70.96590.01660.39630.052*
C80.84792 (14)0.1708 (2)0.44296 (10)0.0425 (4)
H80.89330.27120.46810.051*
C90.73865 (13)0.1761 (2)0.44890 (9)0.0368 (4)
H90.71020.28010.47710.044*
C100.47198 (13)0.4614 (2)0.35582 (8)0.0332 (4)
H100.50960.5780.34790.04*
C110.35772 (13)0.4872 (2)0.36769 (9)0.0319 (4)
C120.27627 (12)0.3537 (2)0.33279 (8)0.0302 (4)
H120.29370.24660.30050.036*
C130.16990 (12)0.3818 (2)0.34652 (8)0.0307 (4)
C140.14246 (14)0.5448 (2)0.39277 (9)0.0360 (4)
H140.07070.56380.40120.043*
C150.22209 (14)0.6782 (2)0.42606 (9)0.0387 (4)
H150.20380.7870.4570.046*
C160.32907 (14)0.6509 (2)0.41361 (9)0.0364 (4)
H160.38220.74190.43590.044*
C180.11018 (14)0.0863 (2)0.27058 (10)0.0392 (4)
H18A0.13730.12810.22030.059*
H18B0.04550.0080.25540.059*
H18C0.16450.00780.30480.059*
O10.68030 (9)0.45005 (16)0.30738 (7)0.0461 (3)
O20.56502 (9)0.03170 (14)0.42472 (6)0.0357 (3)
O30.08530 (8)0.25717 (14)0.31708 (6)0.0377 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0339 (10)0.0333 (8)0.0255 (7)0.0017 (7)0.0053 (7)0.0052 (6)
C20.0318 (9)0.0358 (9)0.0349 (8)0.0019 (7)0.0023 (7)0.0042 (7)
C30.0340 (10)0.0331 (8)0.0250 (7)0.0038 (7)0.0010 (7)0.0028 (6)
C40.0364 (10)0.0350 (8)0.0284 (8)0.0060 (7)0.0033 (7)0.0012 (7)
C50.0338 (10)0.0342 (8)0.0246 (7)0.0045 (7)0.0043 (6)0.0018 (6)
C60.0393 (11)0.0442 (9)0.0328 (8)0.0033 (8)0.0095 (7)0.0036 (7)
C70.0347 (10)0.0541 (10)0.0421 (9)0.0034 (8)0.0115 (8)0.0024 (8)
C80.0436 (12)0.0450 (10)0.0395 (9)0.0096 (8)0.0082 (8)0.0036 (7)
C90.0440 (11)0.0340 (8)0.0331 (8)0.0016 (8)0.0086 (7)0.0027 (7)
C100.0371 (10)0.0318 (8)0.0295 (8)0.0079 (7)0.0014 (7)0.0039 (6)
C110.0369 (10)0.0295 (8)0.0285 (7)0.0001 (7)0.0031 (7)0.0063 (6)
C120.0357 (10)0.0273 (8)0.0272 (7)0.0025 (7)0.0033 (7)0.0006 (6)
C130.0327 (10)0.0304 (8)0.0279 (7)0.0003 (7)0.0012 (7)0.0029 (7)
C140.0376 (10)0.0369 (9)0.0337 (8)0.0075 (7)0.0058 (7)0.0005 (7)
C150.0505 (12)0.0320 (8)0.0328 (8)0.0067 (8)0.0036 (8)0.0029 (7)
C160.0459 (11)0.0281 (8)0.0331 (8)0.0049 (7)0.0006 (7)0.0016 (7)
C180.0399 (10)0.0356 (9)0.0414 (9)0.0022 (7)0.0035 (8)0.0060 (7)
O10.0398 (7)0.0450 (7)0.0544 (7)0.0050 (5)0.0104 (6)0.0163 (6)
O20.0322 (7)0.0353 (6)0.0399 (6)0.0008 (5)0.0064 (5)0.0092 (5)
O30.0320 (7)0.0366 (6)0.0442 (6)0.0002 (5)0.0051 (5)0.0072 (5)
Geometric parameters (Å, º) top
C1—O21.3610 (18)C9—H90.93
C1—C91.391 (2)C10—C111.469 (2)
C1—C51.400 (2)C10—H100.93
C2—O21.4443 (18)C11—C161.397 (2)
C2—C31.504 (2)C11—C121.403 (2)
C2—H2A0.97C12—C131.384 (2)
C2—H2B0.97C12—H120.93
C3—C101.337 (2)C13—O31.3697 (18)
C3—C41.487 (2)C13—C141.392 (2)
C4—O11.2290 (16)C14—C151.380 (2)
C4—C51.472 (2)C14—H140.93
C5—C61.399 (2)C15—C161.384 (2)
C6—C71.375 (2)C15—H150.93
C6—H60.93C16—H160.93
C7—C81.391 (2)C18—O31.4264 (16)
C7—H70.93C18—H18A0.96
C8—C91.374 (2)C18—H18B0.96
C8—H80.93C18—H18C0.96
O2—C1—C9116.60 (12)C3—C10—C11128.70 (13)
O2—C1—C5122.87 (13)C3—C10—H10115.6
C9—C1—C5120.44 (14)C11—C10—H10115.6
O2—C2—C3112.97 (13)C16—C11—C12119.11 (14)
O2—C2—H2A109C16—C11—C10119.20 (14)
C3—C2—H2A109C12—C11—C10121.68 (13)
O2—C2—H2B109C13—C12—C11119.85 (13)
C3—C2—H2B109C13—C12—H12120.1
H2A—C2—H2B107.8C11—C12—H12120.1
C10—C3—C4119.08 (13)O3—C13—C12124.26 (13)
C10—C3—C2125.45 (14)O3—C13—C14115.26 (13)
C4—C3—C2115.46 (13)C12—C13—C14120.48 (14)
O1—C4—C5122.03 (14)C15—C14—C13119.80 (15)
O1—C4—C3121.80 (13)C15—C14—H14120.1
C5—C4—C3116.12 (12)C13—C14—H14120.1
C6—C5—C1118.60 (14)C14—C15—C16120.36 (14)
C6—C5—C4121.17 (13)C14—C15—H15119.8
C1—C5—C4119.92 (13)C16—C15—H15119.8
C7—C6—C5121.05 (14)C15—C16—C11120.37 (15)
C7—C6—H6119.5C15—C16—H16119.8
C5—C6—H6119.5C11—C16—H16119.8
C6—C7—C8119.27 (15)O3—C18—H18A109.5
C6—C7—H7120.4O3—C18—H18B109.5
C8—C7—H7120.4H18A—C18—H18B109.5
C9—C8—C7121.20 (15)O3—C18—H18C109.5
C9—C8—H8119.4H18A—C18—H18C109.5
C7—C8—H8119.4H18B—C18—H18C109.5
C8—C9—C1119.43 (14)C1—O2—C2117.43 (10)
C8—C9—H9120.3C13—O3—C18117.11 (11)
C1—C9—H9120.3
O2—C2—C3—C10136.04 (14)C5—C1—C9—C80.3 (2)
O2—C2—C3—C442.74 (17)C4—C3—C10—C11178.71 (13)
C10—C3—C4—O119.0 (2)C2—C3—C10—C112.6 (2)
C2—C3—C4—O1162.15 (13)C3—C10—C11—C16143.03 (15)
C10—C3—C4—C5158.36 (13)C3—C10—C11—C1238.1 (2)
C2—C3—C4—C520.50 (18)C16—C11—C12—C132.14 (19)
O2—C1—C5—C6177.14 (12)C10—C11—C12—C13179.04 (12)
C9—C1—C5—C60.8 (2)C11—C12—C13—O3178.24 (12)
O2—C1—C5—C43.5 (2)C11—C12—C13—C141.8 (2)
C9—C1—C5—C4172.79 (13)O3—C13—C14—C15179.26 (12)
O1—C4—C5—C61.2 (2)C12—C13—C14—C150.8 (2)
C3—C4—C5—C6176.16 (12)C13—C14—C15—C160.1 (2)
O1—C4—C5—C1174.63 (13)C14—C15—C16—C110.4 (2)
C3—C4—C5—C12.72 (19)C12—C11—C16—C151.5 (2)
C1—C5—C6—C71.5 (2)C10—C11—C16—C15179.69 (13)
C4—C5—C6—C7172.06 (14)C9—C1—O2—C2163.08 (12)
C5—C6—C7—C80.9 (2)C5—C1—O2—C220.46 (18)
C6—C7—C8—C90.3 (2)C3—C2—O2—C143.00 (16)
C7—C8—C9—C10.9 (2)C12—C13—O3—C181.11 (19)
O2—C1—C9—C8176.20 (13)C14—C13—O3—C18178.95 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.972.543.3808 (19)145
C18—H18B···O3ii0.962.503.4227 (19)161
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H14O3
Mr266.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)446
a, b, c (Å)12.4143 (9), 6.7141 (5), 16.0031 (10)
β (°) 98.658 (4)
V3)1318.67 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.21 × 0.05
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4414, 2315, 1662
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.00
No. of reflections2315
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.972.543.3808 (19)145
C18—H18B···O3ii0.962.503.4227 (19)161
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2.
 

Acknowledgements

We thank the University of KwaZulu-Natal, the National Research Foundation (NRF) and the South African Research Chairs initiative of the Department of Science and Technology for financial support and Ms Hong Su for the data collection.

References

First citationAugustine, T., Vithiya, S. M., Ramkumar, V. & Kanakam, C. C. (2008). Acta Cryst. E64, o2080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Boonsri, S., Fun, H.-K., Anjum, S. & Kanjana-opas, A. (2006). Acta Cryst. E62, o1254–o1256.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationdu Toit, K., Drewes, S. E. & Bodenstein, J. (2010). Nat. Prod. Res. 24, 457–490.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKirkiacharian, B. S., Gomis, M., Tongo, H. G., Mahuteau, J. & Brion, J. D. (1984). Org. Magn. Reson. 22, 106–108.  CrossRef CAS Web of Science Google Scholar
First citationMarx, A., Manivannan, V., Suresh, R., Kanagam, C. C. & Sridhar, B. (2008). Acta Cryst. E64, o328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShaikh, M., Petzold, K., Kruger, H. & du Toit, K. (2011). Struct. Chem. 22, 161–166.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4387.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds