organic compounds
3-(3-Methoxybenzylidene)chroman-4-one
aSchool of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, and bSchool of Engineering, University of KwaZulu-Natal, Howard College Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: owaga@ukzn.ac.za
In the title compound, C17H14O3, the dihedral angle between the methoxybenzene unit and the benzene ring of the chromanone system is 64.12 (3)°. The is stabilized by weak C—H⋯O interactions.
Related literature
For the preparation, see: Shaikh et al. (2011). For related structures, see: Kirkiacharian et al. (1984); Marx et al. (2008); Suresh et al. (2007); Chantrapromma et al. (2006); Augustine et al. (2008). For the biological activity of this class of compound, see: du Toit et al. (2010).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S160053681200949X/fj2528sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681200949X/fj2528Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681200949X/fj2528Isup3.cml
A mixture of chroman-4-one (1 g, 6.749 mmol), 3-methoxybenzaldehyde (1.103 g, 8.099 mmol) and 10–15 drops of piperidine was heated at 80°C for 20 hrs. The reaction mixture was monitored for completion by thin layer
Upon completion, the reaction mixture was cooled, diluted with water and neutralized using 10% HCl. The reaction mixture was extracted with ethyl acetate (3 × 30 mL). The ethyl acetate layers were combined, washed with brine (20 ml), water (2 × 10 mL) and dried over anhydrous magnesium sulfate. The solvent was reduced and the compound purified by using silica gel (Merck 9385, 40–63 µm particle size) with a mobile phase of 2% ethyl acetate in hexane to yield the title compound with a m.p. of 85–86°C.1H NMR: δ (ppm): 3.83 (3H, s, OCH3), 5.36 (2H, d, J = 1.72 Hz, 2H-2), 6.82 (1H, s, H-2'), 6.87 (1H, d, J = 7.60 Hz, H-6'), 6.93 (2H, m, H-8, H-4'), 7.05 (1H, t, J = 7.52 Hz, H-6), 7.34 (1H, t, J = 7.92 Hz, H-5'), 7.47 (1H, t, J = 8.52 Hz, H-7), 7.82 (1H, s, H-9), 8.00 (1H, dd, J = 7.82, 1.46 Hz, H-5). 13C NMR: δ (ppm): 55.36 (OCH3), 67.66 (C-2), 115.06 (C-4'), 115.42 (C-2'), 117.93 (C-8), 121.92 (C-6), 122.02 (C-4a), 122.28 (C-6'), 127.96 (C-5), 129.76 (C-5'), 131.15 (C-3), 135.69 (C-1'), 135.90 (C-7), 137.40 (C-9), 159.69 (C-3'), 161.18 (C-8a), 182.23(C-4).
The title compound, 3-(3-Methoxybenzylidene)-chroman-4-one, belongs to a class of compounds called homoisoflavonoids, which are C-16, α,β unsaturated containing two aromatic rings. They are a group of naturally occurring molecules that are structurally related to but differ by containing one more carbon atom (Kirkiacharian et al., 1984). Homoisoflavonoids may be categorized into four groups depending on the type of structural backbone present. The four groups are 3-benzylidene-4-chromanones, of which the title compound belongs to as well as the 3-benzyl-4-chromanones, 3-benzyl-3-hydroxy-4-chromanones and scillascillins (du Toit et al., 2010).
This compound may undergo chemical conversion into the (E)- and (Z)-isomers (Kirkiacharian et al., 1984). The 3-benzylidene-4-chromanones have been shown to display a wide range of biological activities (du Toit et al., 2010). The most commonly used procedure for the synthesis of homoisoflavoinoids involves the condensation of chroman-4-one with an aromatic aldehyde in the presence of an acidic or basic catalyst (Shaikh et al., 2011).
In the molecular structure, the dihedral angle between the methoxybenzene moeity and the benzene ring of the chromanone moiety is 64.12 (3) °.The Chromanone moiety is fused with a phenyl ring and adopts a half chair conformation (Fig 1). The molecule of (I) is stablized by two weak C—H···O intramolecular interactions (Table 1).
For the preparation, see: Shaikh et al. (2011). For related structures, see: Kirkiacharian et al. (1984); Marx et al. (2008); Suresh et al. (2007); Chantrapromma et al. (2006); Augustine et al. (2008). For the biological activity of this class of compound, see: du Toit et al. (2010).
Data collection: COLLECT (Nonius, 1998); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. |
C17H14O3 | F(000) = 560 |
Mr = 266.28 | Dx = 1.341 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5379 reflections |
a = 12.4143 (9) Å | θ = 2.6–25° |
b = 6.7141 (5) Å | µ = 0.09 mm−1 |
c = 16.0031 (10) Å | T = 446 K |
β = 98.658 (4)° | Block, colourless |
V = 1318.67 (16) Å3 | 0.28 × 0.21 × 0.05 mm |
Z = 4 |
Nonius KappaCCD diffractometer | Rint = 0.023 |
Graphite monochromator | θmax = 25°, θmin = 2.6° |
φ and ω scans | h = −14→14 |
4414 measured reflections | k = −7→7 |
2315 independent reflections | l = −19→18 |
1662 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0753P)2] where P = (Fo2 + 2Fc2)/3 |
2315 reflections | (Δ/σ)max < 0.001 |
182 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C17H14O3 | V = 1318.67 (16) Å3 |
Mr = 266.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.4143 (9) Å | µ = 0.09 mm−1 |
b = 6.7141 (5) Å | T = 446 K |
c = 16.0031 (10) Å | 0.28 × 0.21 × 0.05 mm |
β = 98.658 (4)° |
Nonius KappaCCD diffractometer | 1662 reflections with I > 2σ(I) |
4414 measured reflections | Rint = 0.023 |
2315 independent reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.21 e Å−3 |
2315 reflections | Δρmin = −0.20 e Å−3 |
182 parameters |
Experimental. Carbon-bound H-atoms were placed in calculated positions [C—H = 0.96 Å for Me H atoms, 0.97 Å for Methylene H atoms and 0.93 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C) (1.5 for Me groups)] and were included in the refinement in the riding model approximation. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ···.. 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 3 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF ···. 3 PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 46 Perc. Noted |
x | y | z | Uiso*/Ueq | ||
C1 | 0.67104 (13) | −0.0244 (2) | 0.41235 (9) | 0.0308 (4) | |
C2 | 0.48754 (13) | 0.0872 (2) | 0.36955 (9) | 0.0345 (4) | |
H2A | 0.4209 | 0.0984 | 0.3941 | 0.041* | |
H2B | 0.47 | 0.0197 | 0.3156 | 0.041* | |
C3 | 0.52909 (12) | 0.2927 (2) | 0.35484 (8) | 0.0311 (4) | |
C4 | 0.64423 (13) | 0.3033 (2) | 0.33980 (9) | 0.0334 (4) | |
C5 | 0.71355 (12) | 0.1319 (2) | 0.36945 (9) | 0.0309 (4) | |
C6 | 0.82476 (13) | 0.1305 (2) | 0.36328 (9) | 0.0384 (4) | |
H6 | 0.8537 | 0.2318 | 0.3338 | 0.046* | |
C7 | 0.89190 (15) | −0.0181 (2) | 0.40005 (10) | 0.0431 (4) | |
H7 | 0.9659 | −0.0166 | 0.3963 | 0.052* | |
C8 | 0.84792 (14) | −0.1708 (2) | 0.44296 (10) | 0.0425 (4) | |
H8 | 0.8933 | −0.2712 | 0.4681 | 0.051* | |
C9 | 0.73865 (13) | −0.1761 (2) | 0.44890 (9) | 0.0368 (4) | |
H9 | 0.7102 | −0.2801 | 0.4771 | 0.044* | |
C10 | 0.47198 (13) | 0.4614 (2) | 0.35582 (8) | 0.0332 (4) | |
H10 | 0.5096 | 0.578 | 0.3479 | 0.04* | |
C11 | 0.35772 (13) | 0.4872 (2) | 0.36769 (9) | 0.0319 (4) | |
C12 | 0.27627 (12) | 0.3537 (2) | 0.33279 (8) | 0.0302 (4) | |
H12 | 0.2937 | 0.2466 | 0.3005 | 0.036* | |
C13 | 0.16990 (12) | 0.3818 (2) | 0.34652 (8) | 0.0307 (4) | |
C14 | 0.14246 (14) | 0.5448 (2) | 0.39277 (9) | 0.0360 (4) | |
H14 | 0.0707 | 0.5638 | 0.4012 | 0.043* | |
C15 | 0.22209 (14) | 0.6782 (2) | 0.42606 (9) | 0.0387 (4) | |
H15 | 0.2038 | 0.787 | 0.457 | 0.046* | |
C16 | 0.32907 (14) | 0.6509 (2) | 0.41361 (9) | 0.0364 (4) | |
H16 | 0.3822 | 0.7419 | 0.4359 | 0.044* | |
C18 | 0.11018 (14) | 0.0863 (2) | 0.27058 (10) | 0.0392 (4) | |
H18A | 0.1373 | 0.1281 | 0.2203 | 0.059* | |
H18B | 0.0455 | 0.008 | 0.2554 | 0.059* | |
H18C | 0.1645 | 0.0078 | 0.3048 | 0.059* | |
O1 | 0.68030 (9) | 0.45005 (16) | 0.30738 (7) | 0.0461 (3) | |
O2 | 0.56502 (9) | −0.03170 (14) | 0.42472 (6) | 0.0357 (3) | |
O3 | 0.08530 (8) | 0.25717 (14) | 0.31708 (6) | 0.0377 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0339 (10) | 0.0333 (8) | 0.0255 (7) | −0.0017 (7) | 0.0053 (7) | −0.0052 (6) |
C2 | 0.0318 (9) | 0.0358 (9) | 0.0349 (8) | −0.0019 (7) | 0.0023 (7) | 0.0042 (7) |
C3 | 0.0340 (10) | 0.0331 (8) | 0.0250 (7) | −0.0038 (7) | 0.0010 (7) | 0.0028 (6) |
C4 | 0.0364 (10) | 0.0350 (8) | 0.0284 (8) | −0.0060 (7) | 0.0033 (7) | 0.0012 (7) |
C5 | 0.0338 (10) | 0.0342 (8) | 0.0246 (7) | −0.0045 (7) | 0.0043 (6) | −0.0018 (6) |
C6 | 0.0393 (11) | 0.0442 (9) | 0.0328 (8) | −0.0033 (8) | 0.0095 (7) | 0.0036 (7) |
C7 | 0.0347 (10) | 0.0541 (10) | 0.0421 (9) | 0.0034 (8) | 0.0115 (8) | 0.0024 (8) |
C8 | 0.0436 (12) | 0.0450 (10) | 0.0395 (9) | 0.0096 (8) | 0.0082 (8) | 0.0036 (7) |
C9 | 0.0440 (11) | 0.0340 (8) | 0.0331 (8) | 0.0016 (8) | 0.0086 (7) | 0.0027 (7) |
C10 | 0.0371 (10) | 0.0318 (8) | 0.0295 (8) | −0.0079 (7) | 0.0014 (7) | 0.0039 (6) |
C11 | 0.0369 (10) | 0.0295 (8) | 0.0285 (7) | −0.0001 (7) | 0.0031 (7) | 0.0063 (6) |
C12 | 0.0357 (10) | 0.0273 (8) | 0.0272 (7) | 0.0025 (7) | 0.0033 (7) | 0.0006 (6) |
C13 | 0.0327 (10) | 0.0304 (8) | 0.0279 (7) | −0.0003 (7) | 0.0012 (7) | 0.0029 (7) |
C14 | 0.0376 (10) | 0.0369 (9) | 0.0337 (8) | 0.0075 (7) | 0.0058 (7) | −0.0005 (7) |
C15 | 0.0505 (12) | 0.0320 (8) | 0.0328 (8) | 0.0067 (8) | 0.0036 (8) | −0.0029 (7) |
C16 | 0.0459 (11) | 0.0281 (8) | 0.0331 (8) | −0.0049 (7) | −0.0006 (7) | 0.0016 (7) |
C18 | 0.0399 (10) | 0.0356 (9) | 0.0414 (9) | −0.0022 (7) | 0.0035 (8) | −0.0060 (7) |
O1 | 0.0398 (7) | 0.0450 (7) | 0.0544 (7) | −0.0050 (5) | 0.0104 (6) | 0.0163 (6) |
O2 | 0.0322 (7) | 0.0353 (6) | 0.0399 (6) | −0.0008 (5) | 0.0064 (5) | 0.0092 (5) |
O3 | 0.0320 (7) | 0.0366 (6) | 0.0442 (6) | 0.0002 (5) | 0.0051 (5) | −0.0072 (5) |
C1—O2 | 1.3610 (18) | C9—H9 | 0.93 |
C1—C9 | 1.391 (2) | C10—C11 | 1.469 (2) |
C1—C5 | 1.400 (2) | C10—H10 | 0.93 |
C2—O2 | 1.4443 (18) | C11—C16 | 1.397 (2) |
C2—C3 | 1.504 (2) | C11—C12 | 1.403 (2) |
C2—H2A | 0.97 | C12—C13 | 1.384 (2) |
C2—H2B | 0.97 | C12—H12 | 0.93 |
C3—C10 | 1.337 (2) | C13—O3 | 1.3697 (18) |
C3—C4 | 1.487 (2) | C13—C14 | 1.392 (2) |
C4—O1 | 1.2290 (16) | C14—C15 | 1.380 (2) |
C4—C5 | 1.472 (2) | C14—H14 | 0.93 |
C5—C6 | 1.399 (2) | C15—C16 | 1.384 (2) |
C6—C7 | 1.375 (2) | C15—H15 | 0.93 |
C6—H6 | 0.93 | C16—H16 | 0.93 |
C7—C8 | 1.391 (2) | C18—O3 | 1.4264 (16) |
C7—H7 | 0.93 | C18—H18A | 0.96 |
C8—C9 | 1.374 (2) | C18—H18B | 0.96 |
C8—H8 | 0.93 | C18—H18C | 0.96 |
O2—C1—C9 | 116.60 (12) | C3—C10—C11 | 128.70 (13) |
O2—C1—C5 | 122.87 (13) | C3—C10—H10 | 115.6 |
C9—C1—C5 | 120.44 (14) | C11—C10—H10 | 115.6 |
O2—C2—C3 | 112.97 (13) | C16—C11—C12 | 119.11 (14) |
O2—C2—H2A | 109 | C16—C11—C10 | 119.20 (14) |
C3—C2—H2A | 109 | C12—C11—C10 | 121.68 (13) |
O2—C2—H2B | 109 | C13—C12—C11 | 119.85 (13) |
C3—C2—H2B | 109 | C13—C12—H12 | 120.1 |
H2A—C2—H2B | 107.8 | C11—C12—H12 | 120.1 |
C10—C3—C4 | 119.08 (13) | O3—C13—C12 | 124.26 (13) |
C10—C3—C2 | 125.45 (14) | O3—C13—C14 | 115.26 (13) |
C4—C3—C2 | 115.46 (13) | C12—C13—C14 | 120.48 (14) |
O1—C4—C5 | 122.03 (14) | C15—C14—C13 | 119.80 (15) |
O1—C4—C3 | 121.80 (13) | C15—C14—H14 | 120.1 |
C5—C4—C3 | 116.12 (12) | C13—C14—H14 | 120.1 |
C6—C5—C1 | 118.60 (14) | C14—C15—C16 | 120.36 (14) |
C6—C5—C4 | 121.17 (13) | C14—C15—H15 | 119.8 |
C1—C5—C4 | 119.92 (13) | C16—C15—H15 | 119.8 |
C7—C6—C5 | 121.05 (14) | C15—C16—C11 | 120.37 (15) |
C7—C6—H6 | 119.5 | C15—C16—H16 | 119.8 |
C5—C6—H6 | 119.5 | C11—C16—H16 | 119.8 |
C6—C7—C8 | 119.27 (15) | O3—C18—H18A | 109.5 |
C6—C7—H7 | 120.4 | O3—C18—H18B | 109.5 |
C8—C7—H7 | 120.4 | H18A—C18—H18B | 109.5 |
C9—C8—C7 | 121.20 (15) | O3—C18—H18C | 109.5 |
C9—C8—H8 | 119.4 | H18A—C18—H18C | 109.5 |
C7—C8—H8 | 119.4 | H18B—C18—H18C | 109.5 |
C8—C9—C1 | 119.43 (14) | C1—O2—C2 | 117.43 (10) |
C8—C9—H9 | 120.3 | C13—O3—C18 | 117.11 (11) |
C1—C9—H9 | 120.3 | ||
O2—C2—C3—C10 | −136.04 (14) | C5—C1—C9—C8 | 0.3 (2) |
O2—C2—C3—C4 | 42.74 (17) | C4—C3—C10—C11 | 178.71 (13) |
C10—C3—C4—O1 | −19.0 (2) | C2—C3—C10—C11 | −2.6 (2) |
C2—C3—C4—O1 | 162.15 (13) | C3—C10—C11—C16 | 143.03 (15) |
C10—C3—C4—C5 | 158.36 (13) | C3—C10—C11—C12 | −38.1 (2) |
C2—C3—C4—C5 | −20.50 (18) | C16—C11—C12—C13 | −2.14 (19) |
O2—C1—C5—C6 | 177.14 (12) | C10—C11—C12—C13 | 179.04 (12) |
C9—C1—C5—C6 | 0.8 (2) | C11—C12—C13—O3 | −178.24 (12) |
O2—C1—C5—C4 | 3.5 (2) | C11—C12—C13—C14 | 1.8 (2) |
C9—C1—C5—C4 | −172.79 (13) | O3—C13—C14—C15 | 179.26 (12) |
O1—C4—C5—C6 | 1.2 (2) | C12—C13—C14—C15 | −0.8 (2) |
C3—C4—C5—C6 | −176.16 (12) | C13—C14—C15—C16 | 0.1 (2) |
O1—C4—C5—C1 | 174.63 (13) | C14—C15—C16—C11 | −0.4 (2) |
C3—C4—C5—C1 | −2.72 (19) | C12—C11—C16—C15 | 1.5 (2) |
C1—C5—C6—C7 | −1.5 (2) | C10—C11—C16—C15 | −179.69 (13) |
C4—C5—C6—C7 | 172.06 (14) | C9—C1—O2—C2 | −163.08 (12) |
C5—C6—C7—C8 | 0.9 (2) | C5—C1—O2—C2 | 20.46 (18) |
C6—C7—C8—C9 | 0.3 (2) | C3—C2—O2—C1 | −43.00 (16) |
C7—C8—C9—C1 | −0.9 (2) | C12—C13—O3—C18 | 1.11 (19) |
O2—C1—C9—C8 | −176.20 (13) | C14—C13—O3—C18 | −178.95 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2B···O1i | 0.97 | 2.54 | 3.3808 (19) | 145 |
C18—H18B···O3ii | 0.96 | 2.50 | 3.4227 (19) | 161 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C17H14O3 |
Mr | 266.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 446 |
a, b, c (Å) | 12.4143 (9), 6.7141 (5), 16.0031 (10) |
β (°) | 98.658 (4) |
V (Å3) | 1318.67 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.28 × 0.21 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4414, 2315, 1662 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.112, 1.00 |
No. of reflections | 2315 |
No. of parameters | 182 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.20 |
Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2B···O1i | 0.97 | 2.54 | 3.3808 (19) | 145 |
C18—H18B···O3ii | 0.96 | 2.50 | 3.4227 (19) | 161 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2. |
Acknowledgements
We thank the University of KwaZulu-Natal, the National Research Foundation (NRF) and the South African Research Chairs initiative of the Department of Science and Technology for financial support and Ms Hong Su for the data collection.
References
Augustine, T., Vithiya, S. M., Ramkumar, V. & Kanakam, C. C. (2008). Acta Cryst. E64, o2080. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chantrapromma, S., Boonsri, S., Fun, H.-K., Anjum, S. & Kanjana-opas, A. (2006). Acta Cryst. E62, o1254–o1256. Web of Science CSD CrossRef IUCr Journals Google Scholar
du Toit, K., Drewes, S. E. & Bodenstein, J. (2010). Nat. Prod. Res. 24, 457–490. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kirkiacharian, B. S., Gomis, M., Tongo, H. G., Mahuteau, J. & Brion, J. D. (1984). Org. Magn. Reson. 22, 106–108. CrossRef CAS Web of Science Google Scholar
Marx, A., Manivannan, V., Suresh, R., Kanagam, C. C. & Sridhar, B. (2008). Acta Cryst. E64, o328. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Shaikh, M., Petzold, K., Kruger, H. & du Toit, K. (2011). Struct. Chem. 22, 161–166. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4387. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, 3-(3-Methoxybenzylidene)-chroman-4-one, belongs to a class of compounds called homoisoflavonoids, which are C-16, α,β unsaturated carbonyl compounds containing two aromatic rings. They are a group of naturally occurring molecules that are structurally related to isoflavonoids but differ by containing one more carbon atom (Kirkiacharian et al., 1984). Homoisoflavonoids may be categorized into four groups depending on the type of structural backbone present. The four groups are 3-benzylidene-4-chromanones, of which the title compound belongs to as well as the 3-benzyl-4-chromanones, 3-benzyl-3-hydroxy-4-chromanones and scillascillins (du Toit et al., 2010).
This compound may undergo chemical conversion into the (E)- and (Z)-isomers (Kirkiacharian et al., 1984). The 3-benzylidene-4-chromanones have been shown to display a wide range of biological activities (du Toit et al., 2010). The most commonly used procedure for the synthesis of homoisoflavoinoids involves the condensation of chroman-4-one with an aromatic aldehyde in the presence of an acidic or basic catalyst (Shaikh et al., 2011).
In the molecular structure, the dihedral angle between the methoxybenzene moeity and the benzene ring of the chromanone moiety is 64.12 (3) °.The Chromanone moiety is fused with a phenyl ring and adopts a half chair conformation (Fig 1). The molecule of (I) is stablized by two weak C—H···O intramolecular interactions (Table 1).