organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-Cyclo­do­decyl­­idene­pyridine-4-carbohydrazide

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa, bFaculty of Science, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates, and cInstitute of Mineralogy and Petrography, University of Innsbruck, Innsbruck 6020, Austria
*Correspondence e-mail: andreas.lemmerer@wits.ac.za

(Received 7 March 2012; accepted 19 March 2012; online 28 March 2012)

The title compound, C18H27N3O, is a derivative of the anti­tuberculosis drug isoniazid (systematic name: pyridine-4-carbohydrazidei). The crystal structure consists of repeating C(4) chains along the b axis, formed by N—H⋯O hydrogen bonds with adjacent amide functional groups that are related by a b-glide plane. The cyclo­dodecyl ring has the same approximately `square' conformation, as seen in the parent hydro­carbon cyclo­dodecane.

Related literature

For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For cyclo­alkane ring conformations, see: Dale (1966[Dale, J. (1966). Angew. Chem. Int. Ed. Engl. 5, 1000-1021.]).

[Scheme 1]

Experimental

Crystal data
  • C18H27N3O

  • Mr = 301.43

  • Orthorhombic, P b c a

  • a = 14.8450 (6) Å

  • b = 8.0980 (4) Å

  • c = 27.3910 (11) Å

  • V = 3292.8 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 100 K

  • 0.44 × 0.34 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.779, Tmax = 0.890

  • 23848 measured reflections

  • 2931 independent reflections

  • 2535 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.08

  • 2931 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 (2) 2.15 (2) 3.0122 (15) 164.7 (16)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Fig. 1 shows the atomic numbering scheme of the title compound. The amide functional groups form a torsion angle of 38.54 (17)° with the pyridine ring. Fig. 2 shows the C(4) (Bernstein et al., 1995) hydrogen bonded ring formed with adjacent amide functional groups, leading to a chain along the b-axis. The cyclododecyl ring has a square conformation, as seen in the related cycloalkane C12H24 ring (Dale, 1966).

Related literature top

For hydrogen-bonding motifs, see: Bernstein et al. (1995). For cycloalkane ring conformations, see: Dale (1966).

Experimental top

A stoichiometric amount in the ratio of 1:1 of isonicotinic acid hydrazide to cyclododecanone was dissolved in 5 ml of methanol. The solution was refluxed for a few hours, and left to cool to room temperature. Colourless, block-like crystals were harvested after slow evaporation over a few days at ambient conditions.

Refinement top

The C-bound H atoms were geometrically placed (C—H bond lengths of 0.95 (aromatic CH) and 0.99 (methylene CH2) Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in the difference map and coordinates refined freely together with their isotropic thermal parameters.

Structure description top

Fig. 1 shows the atomic numbering scheme of the title compound. The amide functional groups form a torsion angle of 38.54 (17)° with the pyridine ring. Fig. 2 shows the C(4) (Bernstein et al., 1995) hydrogen bonded ring formed with adjacent amide functional groups, leading to a chain along the b-axis. The cyclododecyl ring has a square conformation, as seen in the related cycloalkane C12H24 ring (Dale, 1966).

For hydrogen-bonding motifs, see: Bernstein et al. (1995). For cycloalkane ring conformations, see: Dale (1966).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding chain showing the C(4) hydrogen bonded chains. Intermolecular N—H···O hydrogen bonds are shown as dashed red lines.
N'-Cyclododecylidenepyridine-4-carbohydrazide top
Crystal data top
C18H27N3OF(000) = 1312
Mr = 301.43Dx = 1.216 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ac 2abCell parameters from 9464 reflections
a = 14.8450 (6) Åθ = 3.0–67.5°
b = 8.0980 (4) ŵ = 0.60 mm1
c = 27.3910 (11) ÅT = 100 K
V = 3292.8 (2) Å3Block, colourless
Z = 80.44 × 0.34 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini ultra
diffractometer
2535 reflections with I > 2σ(I)
ω scansRint = 0.048
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
θmax = 67.0°, θmin = 3.2°
Tmin = 0.779, Tmax = 0.890h = 1716
23848 measured reflectionsk = 99
2931 independent reflectionsl = 3232
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.6785P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.17 e Å3
2931 reflectionsΔρmin = 0.20 e Å3
203 parameters
Crystal data top
C18H27N3OV = 3292.8 (2) Å3
Mr = 301.43Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 14.8450 (6) ŵ = 0.60 mm1
b = 8.0980 (4) ÅT = 100 K
c = 27.3910 (11) Å0.44 × 0.34 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini ultra
diffractometer
2931 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
2535 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.890Rint = 0.048
23848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.17 e Å3
2931 reflectionsΔρmin = 0.20 e Å3
203 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm in CrysAlisPro.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.83538 (9)0.67344 (15)0.71252 (5)0.0140 (3)
C20.77610 (9)0.76355 (16)0.74142 (5)0.0151 (3)
H20.7130.74470.73970.018*
C30.81105 (9)0.88164 (16)0.77286 (5)0.0171 (3)
H30.77010.94170.79270.02*
C40.95549 (9)0.82425 (17)0.74991 (5)0.0185 (3)
H41.01830.84470.75270.022*
C50.92753 (9)0.70136 (16)0.71813 (5)0.0157 (3)
H50.97020.63740.70050.019*
C60.80631 (9)0.54546 (16)0.67606 (4)0.0131 (3)
C70.65632 (8)0.52936 (16)0.57794 (5)0.0144 (3)
C80.61244 (9)0.69684 (16)0.57370 (5)0.0160 (3)
H8A0.62510.74360.5410.019*
H8B0.63860.77210.59840.019*
C90.50972 (9)0.68614 (17)0.58126 (5)0.0179 (3)
H9A0.48280.79570.57460.022*
H9B0.48430.6070.55740.022*
C100.48338 (9)0.63169 (18)0.63275 (5)0.0208 (3)
H10A0.50260.71770.65620.025*
H10B0.51630.52890.64080.025*
C110.38197 (9)0.60107 (18)0.63905 (5)0.0221 (3)
H11A0.36910.58560.67420.027*
H11B0.3490.70080.62810.027*
C120.34546 (9)0.45158 (17)0.61105 (5)0.0202 (3)
H12A0.27880.45390.61230.024*
H12B0.36360.46130.57640.024*
C130.37813 (10)0.28492 (17)0.63069 (5)0.0219 (3)
H13A0.43640.30160.64750.026*
H13B0.33430.24470.65520.026*
C140.39013 (10)0.15214 (17)0.59157 (6)0.0224 (3)
H14A0.33360.14320.57260.027*
H14B0.40040.04460.60780.027*
C150.46814 (9)0.18511 (17)0.55621 (5)0.0190 (3)
H15A0.46530.10340.52940.023*
H15B0.46010.29610.54170.023*
C160.56119 (9)0.17631 (16)0.57975 (5)0.0178 (3)
H16A0.57220.06150.59060.021*
H16B0.56150.24760.60910.021*
C170.63832 (9)0.22928 (17)0.54617 (5)0.0178 (3)
H17A0.69620.19790.56150.021*
H17B0.63330.16830.5150.021*
C180.63976 (9)0.41420 (17)0.53531 (5)0.0168 (3)
H18A0.6870.43490.51050.02*
H18B0.58130.44430.52040.02*
N10.73263 (7)0.58502 (14)0.64919 (4)0.0148 (3)
H10.7106 (12)0.686 (2)0.6498 (6)0.024 (4)*
N20.89901 (8)0.91633 (14)0.77697 (4)0.0191 (3)
N30.70898 (7)0.47642 (14)0.61174 (4)0.0148 (3)
O10.84951 (6)0.41677 (11)0.67137 (3)0.0159 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0179 (6)0.0130 (6)0.0113 (6)0.0000 (5)0.0025 (5)0.0028 (5)
C20.0164 (6)0.0153 (6)0.0136 (6)0.0009 (5)0.0012 (5)0.0028 (5)
C30.0202 (7)0.0163 (6)0.0147 (6)0.0022 (5)0.0002 (5)0.0004 (5)
C40.0180 (6)0.0203 (7)0.0171 (6)0.0029 (5)0.0012 (5)0.0013 (5)
C50.0174 (7)0.0160 (6)0.0136 (6)0.0001 (5)0.0007 (5)0.0018 (5)
C60.0146 (6)0.0135 (6)0.0113 (6)0.0011 (5)0.0014 (5)0.0015 (5)
C70.0128 (6)0.0164 (7)0.0141 (6)0.0024 (5)0.0012 (5)0.0004 (5)
C80.0169 (7)0.0164 (6)0.0146 (6)0.0010 (5)0.0031 (5)0.0005 (5)
C90.0166 (7)0.0182 (7)0.0190 (7)0.0013 (5)0.0023 (5)0.0009 (5)
C100.0189 (7)0.0257 (7)0.0178 (7)0.0006 (6)0.0011 (5)0.0046 (6)
C110.0189 (7)0.0247 (7)0.0227 (7)0.0018 (6)0.0041 (6)0.0035 (6)
C120.0160 (6)0.0228 (7)0.0220 (7)0.0016 (5)0.0001 (5)0.0004 (6)
C130.0215 (7)0.0240 (7)0.0201 (7)0.0010 (6)0.0031 (6)0.0033 (6)
C140.0208 (7)0.0186 (7)0.0278 (8)0.0017 (5)0.0007 (6)0.0002 (6)
C150.0200 (7)0.0179 (7)0.0192 (7)0.0008 (5)0.0015 (5)0.0034 (5)
C160.0203 (7)0.0141 (6)0.0192 (7)0.0007 (5)0.0027 (5)0.0002 (5)
C170.0174 (6)0.0182 (7)0.0177 (7)0.0016 (5)0.0028 (5)0.0048 (5)
C180.0172 (6)0.0197 (7)0.0134 (6)0.0012 (5)0.0008 (5)0.0018 (5)
N10.0168 (5)0.0131 (6)0.0145 (5)0.0014 (4)0.0039 (4)0.0029 (4)
N20.0234 (6)0.0178 (6)0.0161 (6)0.0027 (5)0.0025 (5)0.0003 (4)
N30.0159 (5)0.0157 (5)0.0127 (5)0.0020 (4)0.0007 (4)0.0027 (4)
O10.0165 (5)0.0145 (5)0.0166 (5)0.0011 (3)0.0001 (4)0.0001 (4)
Geometric parameters (Å, º) top
C1—C21.3905 (19)C11—C121.532 (2)
C1—C51.3950 (18)C11—H11A0.99
C1—C61.5026 (17)C11—H11B0.99
C2—C31.3875 (19)C12—C131.5317 (19)
C2—H20.95C12—H12A0.99
C3—N21.3404 (18)C12—H12B0.99
C3—H30.95C13—C141.529 (2)
C4—N21.3447 (19)C13—H13A0.99
C4—C51.3857 (19)C13—H13B0.99
C4—H40.95C14—C151.533 (2)
C5—H50.95C14—H14A0.99
C6—O11.2304 (16)C14—H14B0.99
C6—N11.3567 (17)C15—C161.5262 (18)
C7—N31.2853 (17)C15—H15A0.99
C7—C81.5091 (18)C15—H15B0.99
C7—C181.5144 (18)C16—C171.5301 (19)
C8—C91.5414 (18)C16—H16A0.99
C8—H8A0.99C16—H16B0.99
C8—H8B0.99C17—C181.5268 (19)
C9—C101.5286 (19)C17—H17A0.99
C9—H9A0.99C17—H17B0.99
C9—H9B0.99C18—H18A0.99
C10—C111.5354 (19)C18—H18B0.99
C10—H10A0.99N1—N31.3961 (15)
C10—H10B0.99N1—H10.88 (2)
C2—C1—C5118.21 (12)C13—C12—H12A108.7
C2—C1—C6123.96 (12)C11—C12—H12A108.7
C5—C1—C6117.82 (12)C13—C12—H12B108.7
C3—C2—C1118.59 (12)C11—C12—H12B108.7
C3—C2—H2120.7H12A—C12—H12B107.6
C1—C2—H2120.7C14—C13—C12114.23 (12)
N2—C3—C2124.11 (12)C14—C13—H13A108.7
N2—C3—H3117.9C12—C13—H13A108.7
C2—C3—H3117.9C14—C13—H13B108.7
N2—C4—C5123.89 (13)C12—C13—H13B108.7
N2—C4—H4118.1H13A—C13—H13B107.6
C5—C4—H4118.1C13—C14—C15114.11 (11)
C4—C5—C1118.65 (12)C13—C14—H14A108.7
C4—C5—H5120.7C15—C14—H14A108.7
C1—C5—H5120.7C13—C14—H14B108.7
O1—C6—N1124.31 (12)C15—C14—H14B108.7
O1—C6—C1120.26 (11)H14A—C14—H14B107.6
N1—C6—C1115.42 (11)C16—C15—C14114.11 (12)
N3—C7—C8128.15 (12)C16—C15—H15A108.7
N3—C7—C18116.66 (12)C14—C15—H15A108.7
C8—C7—C18115.09 (11)C16—C15—H15B108.7
C7—C8—C9111.48 (11)C14—C15—H15B108.7
C7—C8—H8A109.3H15A—C15—H15B107.6
C9—C8—H8A109.3C15—C16—C17114.22 (11)
C7—C8—H8B109.3C15—C16—H16A108.7
C9—C8—H8B109.3C17—C16—H16A108.7
H8A—C8—H8B108C15—C16—H16B108.7
C10—C9—C8113.16 (11)C17—C16—H16B108.7
C10—C9—H9A108.9H16A—C16—H16B107.6
C8—C9—H9A108.9C18—C17—C16113.74 (11)
C10—C9—H9B108.9C18—C17—H17A108.8
C8—C9—H9B108.9C16—C17—H17A108.8
H9A—C9—H9B107.8C18—C17—H17B108.8
C9—C10—C11113.64 (12)C16—C17—H17B108.8
C9—C10—H10A108.8H17A—C17—H17B107.7
C11—C10—H10A108.8C7—C18—C17117.13 (11)
C9—C10—H10B108.8C7—C18—H18A108
C11—C10—H10B108.8C17—C18—H18A108
H10A—C10—H10B107.7C7—C18—H18B108
C12—C11—C10114.72 (11)C17—C18—H18B108
C12—C11—H11A108.6H18A—C18—H18B107.3
C10—C11—H11A108.6C6—N1—N3116.91 (11)
C12—C11—H11B108.6C6—N1—H1120.5 (12)
C10—C11—H11B108.6N3—N1—H1120.4 (12)
H11A—C11—H11B107.6C3—N2—C4116.42 (12)
C13—C12—C11114.10 (12)C7—N3—N1118.17 (11)
C5—C1—C2—C32.74 (18)C11—C12—C13—C14146.98 (12)
C6—C1—C2—C3178.29 (12)C12—C13—C14—C1568.58 (16)
C1—C2—C3—N20.7 (2)C13—C14—C15—C1667.05 (16)
N2—C4—C5—C11.9 (2)C14—C15—C16—C17173.04 (11)
C2—C1—C5—C43.94 (18)C15—C16—C17—C1870.36 (15)
C6—C1—C5—C4177.03 (11)N3—C7—C18—C1733.46 (17)
C2—C1—C6—O1140.43 (13)C8—C7—C18—C17149.87 (11)
C5—C1—C6—O138.54 (17)C16—C17—C18—C764.33 (15)
C2—C1—C6—N141.05 (17)O1—C6—N1—N34.55 (19)
C5—C1—C6—N1139.98 (12)C1—C6—N1—N3173.91 (10)
N3—C7—C8—C9110.81 (15)C2—C3—N2—C42.77 (19)
C18—C7—C8—C972.97 (14)C5—C4—N2—C31.44 (19)
C7—C8—C9—C1064.83 (15)C8—C7—N3—N12.22 (19)
C8—C9—C10—C11173.28 (11)C18—C7—N3—N1173.95 (11)
C9—C10—C11—C1268.04 (16)C6—N1—N3—C7161.67 (12)
C10—C11—C12—C1368.83 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (2)2.15 (2)3.0122 (15)164.7 (16)
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC18H27N3O
Mr301.43
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)14.8450 (6), 8.0980 (4), 27.3910 (11)
V3)3292.8 (2)
Z8
Radiation typeCu Kα
µ (mm1)0.60
Crystal size (mm)0.44 × 0.34 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.779, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
23848, 2931, 2535
Rint0.048
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.08
No. of reflections2931
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (2)2.15 (2)3.0122 (15)164.7 (16)
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

This work was supported in part by grant No. 2004118 from the United States–Israel Binational Science Foundation (Jerusalem). AL thanks the South African National Research Foundation for a postdoctoral scholarship (SFP2007070400002) and the Oppenheimer Memorial Trust for financial support, and the Mol­ecular Sciences Institute for infrastucture support.

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDale, J. (1966). Angew. Chem. Int. Ed. Engl. 5, 1000–1021.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds