organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diiso­propyl {[(R)-2-(2-amino-6-chloro-9H-purin-9-yl)-1-methyl­eth­­oxy]meth­yl}­phospho­nate

aBeijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
*Correspondence e-mail: hexinhua01@126.com

(Received 26 January 2012; accepted 15 February 2012; online 3 March 2012)

In the title compound, C15H25ClN5O4P, the r.m.s. deviation for the purine ring system is 0.0165 Å. The coordination about the P atom is a distorted tetrahedron [O=P—O angles = 116.70 (6) and 109.87 (6)°]. In the crystal, molecules are linked by N—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For details of the synthesis, see: Yu et al. (1992[Yu, K.-L., Bronson, J. J., Yang, H., Patick, A., Alam, M., Brankovan, V., Datema, R., Hitchcock, M. J. M. & Martin, J. C. (1992). J. Med. Chem. 35, 2958-2969.]). For the bioactivity of nucleoside analogues, see: Martin (1989[Martin, J. C. (1989). Editor. Nucleotide Analogs as Antiviral Agents. Washington, DC: American Chemical Society.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Baszczyňski et al. (2011[Baszczyňski, O., Jansa, P., Dračínsky, M., Klepetářová, B., Holya, A., Votruba, I., de Clercq, E., Balzarini, J. & Janeba, Z. (2011). Bioorg. Med. Chem. 19, 2114-2124.]).

[Scheme 1]

Experimental

Crystal data
  • C15H25ClN5O4P

  • Mr = 405.82

  • Orthorhombic, P 21 21 21

  • a = 7.7991 (12) Å

  • b = 13.950 (2) Å

  • c = 18.053 (3) Å

  • V = 1964.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 113 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.936, Tmax = 0.947

  • 24716 measured reflections

  • 4669 independent reflections

  • 4468 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.066

  • S = 1.05

  • 4669 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2007 Friedel pairs

  • Flack parameter: 0.02 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O2i 0.89 2.13 3.0185 (16) 174
N5—H5B⋯O2ii 0.89 2.21 3.0920 (16) 172
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Nucleoside analogues are in the lead in research and application of the anti-HBV drugs. In our recent work, the title compound (I), Fig. 1, was synthetized according to Kuo-Long Yu et al. (1992). As known, the molecular conformation in single-crystal is low energy conformation, and is helpful to quantitative structure-activity relationship (QSAR) study, therefore this structure determination was undertaken. Though the molecular structure of OSOWUP (Baszczyňski et al., 2011) is similar to the title molecule, the molecular conformation is different (comparison is shown in Fig 3).

In (I), all bonds lengths and angles are normal (Allen et al., 1987). Molecules are stacked along the a axis, and linked into a zigzag sheet propagating along the c axis by intermolecular N—H···O hydrogen bonds (Figure 2 and Table 2).

Related literature top

For details of the synthesis, see: Kuo-Long Yu et al. (1992). For the biocativity of nucleoside analogues, see: Martin (1989). For bond geometries, see: Allen et al. (1987). For a related structure, see: Baszczyňski et al. (2011).

Experimental top

The title compound was synthesized according to the procedure of Kuo-Long Yu et al. (1992). Colourless single crystals (m.p. 404–406 K) were obtained by slow evaporation of a solution in absolute ethanol.

Refinement top

The H atoms linked to the C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98Å (ethyl), 0.99 Å (methylene) with Uiso(H) =1.2–1.5Ueq(C). H atoms of the amino group were located in a difference Fourier map and also refined riding with N-H = 0.89 Å.

Structure description top

Nucleoside analogues are in the lead in research and application of the anti-HBV drugs. In our recent work, the title compound (I), Fig. 1, was synthetized according to Kuo-Long Yu et al. (1992). As known, the molecular conformation in single-crystal is low energy conformation, and is helpful to quantitative structure-activity relationship (QSAR) study, therefore this structure determination was undertaken. Though the molecular structure of OSOWUP (Baszczyňski et al., 2011) is similar to the title molecule, the molecular conformation is different (comparison is shown in Fig 3).

In (I), all bonds lengths and angles are normal (Allen et al., 1987). Molecules are stacked along the a axis, and linked into a zigzag sheet propagating along the c axis by intermolecular N—H···O hydrogen bonds (Figure 2 and Table 2).

For details of the synthesis, see: Kuo-Long Yu et al. (1992). For the biocativity of nucleoside analogues, see: Martin (1989). For bond geometries, see: Allen et al. (1987). For a related structure, see: Baszczyňski et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2005).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of (I) with hydrogen bonds drawn as dashed lines.
[Figure 3] Fig. 3. Superposition of the molecular conformations of the title compound (red) and its F-substituent (blue, Baszczyňski et al., 2011).
Diisopropyl {[(R)-2-(2-Amino-6-chloro-9H-purin-9-yl)- 1-methylethoxy]methyl}phosphonate top
Crystal data top
C15H25ClN5O4PDx = 1.372 Mg m3
Mr = 405.82Melting point: 404 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ac 2abCell parameters from 7255 reflections
a = 7.7991 (12) Åθ = 1.8–27.9°
b = 13.950 (2) ŵ = 0.31 mm1
c = 18.053 (3) ÅT = 113 K
V = 1964.0 (6) Å3Block, colourless
Z = 40.22 × 0.20 × 0.18 mm
F(000) = 856
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4669 independent reflections
Radiation source: rotating anode4468 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.039
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.8°
ω and φ scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1818
Tmin = 0.936, Tmax = 0.947l = 2123
24716 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.0557P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4669 reflectionsΔρmax = 0.21 e Å3
240 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 2007 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
C15H25ClN5O4PV = 1964.0 (6) Å3
Mr = 405.82Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7991 (12) ŵ = 0.31 mm1
b = 13.950 (2) ÅT = 113 K
c = 18.053 (3) Å0.22 × 0.20 × 0.18 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4669 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4468 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.947Rint = 0.039
24716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.21 e Å3
S = 1.05Δρmin = 0.31 e Å3
4669 reflectionsAbsolute structure: Flack (1983), 2007 Friedel pairs
240 parametersAbsolute structure parameter: 0.02 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.70932 (5)0.28859 (3)0.167353 (19)0.02209 (9)
P10.06920 (4)0.07232 (3)0.118252 (19)0.01452 (8)
O10.02385 (12)0.01978 (7)0.24534 (5)0.0159 (2)
O20.01664 (13)0.15893 (7)0.07748 (5)0.0181 (2)
O30.27016 (12)0.06894 (7)0.12487 (6)0.0235 (2)
O40.00844 (13)0.02658 (7)0.08574 (5)0.0196 (2)
N10.18098 (14)0.18007 (8)0.28806 (6)0.0161 (2)
N20.30287 (16)0.23315 (8)0.18180 (6)0.0194 (3)
N30.42068 (14)0.19898 (8)0.37275 (6)0.0160 (2)
N40.67530 (15)0.25616 (9)0.30921 (6)0.0175 (2)
N50.67325 (16)0.23154 (9)0.43524 (6)0.0239 (3)
H5A0.62500.21490.47800.029*
H5B0.77700.25810.43410.029*
C10.16466 (18)0.19896 (10)0.21332 (8)0.0192 (3)
H10.06120.18800.18680.023*
C20.41989 (18)0.23658 (9)0.23985 (7)0.0162 (3)
C30.34601 (17)0.20501 (9)0.30642 (7)0.0152 (3)
C40.58455 (17)0.22921 (10)0.37114 (7)0.0168 (3)
C50.59151 (18)0.25824 (9)0.24618 (7)0.0167 (3)
C60.05519 (17)0.13378 (10)0.33578 (8)0.0175 (3)
H6A0.05820.16410.32820.021*
H6B0.08820.14330.38820.021*
C70.04188 (18)0.02758 (10)0.31995 (7)0.0176 (3)
H70.15820.00230.32270.021*
C80.0777 (2)0.02117 (12)0.37504 (8)0.0301 (4)
H8B0.18860.01190.37530.045*
H8C0.02700.01850.42470.045*
H8A0.09440.08820.36060.045*
C90.02123 (19)0.06768 (11)0.20997 (7)0.0187 (3)
H9B0.02180.12240.23960.022*
H9A0.14760.07300.20690.022*
C100.36850 (19)0.01452 (11)0.15103 (8)0.0212 (3)
H100.28990.07050.15780.025*
C110.4980 (3)0.03695 (17)0.09230 (11)0.0483 (6)
H11A0.43880.05480.04640.072*
H11C0.57040.09030.10870.072*
H11B0.56960.01960.08330.072*
C120.4493 (2)0.01170 (11)0.22435 (9)0.0287 (4)
H12B0.52990.06480.21710.043*
H12C0.51070.04390.24430.043*
H12A0.35960.03120.25930.043*
C130.0413 (2)0.05138 (11)0.00761 (8)0.0237 (3)
H130.14520.01610.01010.028*
C140.1104 (2)0.02249 (12)0.03813 (9)0.0306 (4)
H14C0.21190.05790.02150.046*
H14B0.08810.03720.09030.046*
H14A0.13050.04650.03250.046*
C150.0760 (3)0.15761 (14)0.00579 (10)0.0476 (6)
H15C0.17920.17170.03480.071*
H15A0.09330.17820.04560.071*
H15B0.02200.19200.02700.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02487 (18)0.02488 (17)0.01653 (16)0.00578 (14)0.00178 (13)0.00367 (14)
P10.01522 (16)0.01520 (16)0.01314 (16)0.00033 (13)0.00102 (14)0.00204 (13)
O10.0198 (5)0.0169 (5)0.0112 (4)0.0001 (4)0.0030 (4)0.0028 (4)
O20.0199 (5)0.0185 (5)0.0160 (5)0.0024 (4)0.0008 (4)0.0038 (4)
O30.0156 (5)0.0207 (5)0.0341 (6)0.0004 (4)0.0005 (4)0.0124 (5)
O40.0278 (5)0.0184 (5)0.0126 (5)0.0008 (4)0.0008 (4)0.0019 (4)
N10.0153 (6)0.0163 (5)0.0165 (6)0.0005 (5)0.0027 (5)0.0019 (4)
N20.0219 (6)0.0180 (6)0.0183 (6)0.0012 (5)0.0055 (5)0.0011 (4)
N30.0155 (5)0.0169 (6)0.0155 (6)0.0012 (5)0.0009 (5)0.0006 (4)
N40.0168 (6)0.0190 (6)0.0168 (5)0.0013 (5)0.0003 (5)0.0033 (5)
N50.0177 (6)0.0374 (7)0.0166 (6)0.0083 (5)0.0022 (5)0.0061 (5)
C10.0197 (7)0.0174 (7)0.0204 (7)0.0005 (6)0.0063 (6)0.0020 (5)
C20.0197 (7)0.0139 (6)0.0151 (6)0.0001 (5)0.0020 (6)0.0003 (5)
C30.0166 (6)0.0110 (6)0.0182 (6)0.0009 (5)0.0011 (5)0.0012 (5)
C40.0171 (7)0.0185 (7)0.0148 (6)0.0006 (5)0.0002 (6)0.0004 (5)
C50.0218 (7)0.0120 (6)0.0162 (6)0.0002 (5)0.0013 (6)0.0021 (5)
C60.0141 (6)0.0228 (7)0.0157 (6)0.0016 (5)0.0003 (6)0.0043 (5)
C70.0186 (7)0.0226 (7)0.0116 (6)0.0020 (6)0.0030 (5)0.0016 (5)
C80.0366 (9)0.0367 (9)0.0168 (7)0.0163 (8)0.0018 (7)0.0008 (7)
C90.0255 (7)0.0153 (7)0.0154 (7)0.0006 (6)0.0012 (5)0.0000 (6)
C100.0180 (7)0.0207 (7)0.0250 (8)0.0058 (6)0.0001 (6)0.0067 (6)
C110.0364 (10)0.0772 (16)0.0314 (10)0.0307 (10)0.0098 (8)0.0162 (10)
C120.0283 (8)0.0192 (8)0.0385 (9)0.0006 (6)0.0108 (7)0.0004 (7)
C130.0300 (8)0.0298 (8)0.0114 (7)0.0036 (6)0.0026 (6)0.0024 (6)
C140.0405 (10)0.0264 (8)0.0250 (8)0.0026 (7)0.0116 (7)0.0028 (7)
C150.0765 (15)0.0412 (11)0.0250 (9)0.0284 (11)0.0135 (10)0.0143 (8)
Geometric parameters (Å, º) top
Cl1—C51.7460 (14)C6—H6B0.9900
P1—O21.4729 (10)C7—C81.523 (2)
P1—O41.5724 (11)C7—H71.0000
P1—O31.5726 (10)C8—H8B0.9800
P1—C91.8009 (14)C8—H8C0.9800
O1—C91.4213 (17)C8—H8A0.9800
O1—C71.4453 (16)C9—H9B0.9900
O3—C101.4720 (16)C9—H9A0.9900
O4—C131.4748 (17)C10—C111.498 (2)
N1—C31.3738 (17)C10—C121.511 (2)
N1—C11.3806 (18)C10—H101.0000
N1—C61.4566 (18)C11—H11A0.9800
N2—C11.3088 (19)C11—H11C0.9800
N2—C21.3904 (17)C11—H11B0.9800
N3—C31.3341 (17)C12—H12B0.9800
N3—C41.3462 (17)C12—H12C0.9800
N4—C51.3124 (17)C12—H12A0.9800
N4—C41.3756 (17)C13—C141.498 (2)
N5—C41.3486 (17)C13—C151.507 (2)
N5—H5A0.8900C13—H131.0000
N5—H5B0.8901C14—H14C0.9800
C1—H10.9500C14—H14B0.9800
C2—C51.377 (2)C14—H14A0.9800
C2—C31.4038 (19)C15—H15C0.9800
C6—C71.5123 (19)C15—H15A0.9800
C6—H6A0.9900C15—H15B0.9800
O2—P1—O4116.70 (6)H8B—C8—H8C109.5
O2—P1—O3109.87 (6)C7—C8—H8A109.5
O4—P1—O3107.60 (6)H8B—C8—H8A109.5
O2—P1—C9112.33 (6)H8C—C8—H8A109.5
O4—P1—C9101.17 (6)O1—C9—P1110.30 (9)
O3—P1—C9108.63 (6)O1—C9—H9B109.6
C9—O1—C7113.30 (10)P1—C9—H9B109.6
C10—O3—P1124.57 (9)O1—C9—H9A109.6
C13—O4—P1120.69 (9)P1—C9—H9A109.6
C3—N1—C1105.90 (11)H9B—C9—H9A108.1
C3—N1—C6126.91 (12)O3—C10—C11106.83 (12)
C1—N1—C6126.91 (11)O3—C10—C12107.87 (12)
C1—N2—C2103.04 (11)C11—C10—C12112.93 (15)
C3—N3—C4112.04 (11)O3—C10—H10109.7
C5—N4—C4117.03 (12)C11—C10—H10109.7
C4—N5—H5A121.4C12—C10—H10109.7
C4—N5—H5B117.2C10—C11—H11A109.5
H5A—N5—H5B120.9C10—C11—H11C109.5
N2—C1—N1114.73 (12)H11A—C11—H11C109.5
N2—C1—H1122.6C10—C11—H11B109.5
N1—C1—H1122.6H11A—C11—H11B109.5
C5—C2—N2135.10 (12)H11C—C11—H11B109.5
C5—C2—C3113.37 (12)C10—C12—H12B109.5
N2—C2—C3111.41 (12)C10—C12—H12C109.5
N3—C3—N1127.56 (13)H12B—C12—H12C109.5
N3—C3—C2127.52 (13)C10—C12—H12A109.5
N1—C3—C2104.91 (12)H12B—C12—H12A109.5
N3—C4—N5118.43 (12)H12C—C12—H12A109.5
N3—C4—N4126.27 (12)O4—C13—C14109.06 (12)
N5—C4—N4115.27 (12)O4—C13—C15106.42 (13)
N4—C5—C2123.45 (12)C14—C13—C15113.22 (14)
N4—C5—Cl1116.74 (10)O4—C13—H13109.4
C2—C5—Cl1119.80 (10)C14—C13—H13109.4
N1—C6—C7111.64 (11)C15—C13—H13109.4
N1—C6—H6A109.3C13—C14—H14C109.5
C7—C6—H6A109.3C13—C14—H14B109.5
N1—C6—H6B109.3H14C—C14—H14B109.5
C7—C6—H6B109.3C13—C14—H14A109.5
H6A—C6—H6B108.0H14C—C14—H14A109.5
O1—C7—C6105.91 (11)H14B—C14—H14A109.5
O1—C7—C8110.96 (11)C13—C15—H15C109.5
C6—C7—C8110.85 (12)C13—C15—H15A109.5
O1—C7—H7109.7H15C—C15—H15A109.5
C6—C7—H7109.7C13—C15—H15B109.5
C8—C7—H7109.7H15C—C15—H15B109.5
C7—C8—H8B109.5H15A—C15—H15B109.5
C7—C8—H8C109.5
O2—P1—O3—C10169.42 (10)C5—N4—C4—N34.4 (2)
O4—P1—O3—C1041.40 (12)C5—N4—C4—N5177.53 (13)
C9—P1—O3—C1067.35 (12)C4—N4—C5—C21.1 (2)
O2—P1—O4—C1352.62 (12)C4—N4—C5—Cl1177.90 (10)
O3—P1—O4—C1371.35 (11)N2—C2—C5—N4179.99 (14)
C9—P1—O4—C13174.81 (10)C3—C2—C5—N44.5 (2)
C2—N2—C1—N10.42 (16)N2—C2—C5—Cl11.0 (2)
C3—N1—C1—N20.27 (16)C3—C2—C5—Cl1174.40 (10)
C6—N1—C1—N2173.85 (13)C3—N1—C6—C7100.58 (15)
C1—N2—C2—C5174.56 (15)C1—N1—C6—C772.34 (17)
C1—N2—C2—C30.96 (15)C9—O1—C7—C6154.99 (11)
C4—N3—C3—N1179.73 (13)C9—O1—C7—C884.65 (15)
C4—N3—C3—C21.00 (19)N1—C6—C7—O164.84 (14)
C1—N1—C3—N3179.77 (13)N1—C6—C7—C8174.73 (12)
C6—N1—C3—N35.7 (2)C7—O1—C9—P1178.87 (9)
C1—N1—C3—C20.82 (14)O2—P1—C9—O1176.25 (9)
C6—N1—C3—C2173.30 (12)O4—P1—C9—O151.07 (10)
C5—C2—C3—N33.5 (2)O3—P1—C9—O162.00 (11)
N2—C2—C3—N3179.91 (13)P1—O3—C10—C11125.75 (14)
C5—C2—C3—N1175.42 (11)P1—O3—C10—C12112.57 (13)
N2—C2—C3—N11.13 (15)P1—O4—C13—C1492.90 (14)
C3—N3—C4—N5176.77 (12)P1—O4—C13—C15144.64 (13)
C3—N3—C4—N45.24 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O2i0.892.133.0185 (16)174
N5—H5B···O2ii0.892.213.0920 (16)172
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H25ClN5O4P
Mr405.82
Crystal system, space groupOrthorhombic, P212121
Temperature (K)113
a, b, c (Å)7.7991 (12), 13.950 (2), 18.053 (3)
V3)1964.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.936, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
24716, 4669, 4468
Rint0.039
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.066, 1.05
No. of reflections4669
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.31
Absolute structureFlack (1983), 2007 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O2i0.892.133.0185 (16)173.6
N5—H5B···O2ii0.892.213.0920 (16)171.7
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBaszczyňski, O., Jansa, P., Dračínsky, M., Klepetářová, B., Holya, A., Votruba, I., de Clercq, E., Balzarini, J. & Janeba, Z. (2011). Bioorg. Med. Chem. 19, 2114–2124.  Web of Science PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMartin, J. C. (1989). Editor. Nucleotide Analogs as Antiviral Agents. Washington, DC: American Chemical Society.  Google Scholar
First citationRigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, K.-L., Bronson, J. J., Yang, H., Patick, A., Alam, M., Brankovan, V., Datema, R., Hitchcock, M. J. M. & Martin, J. C. (1992). J. Med. Chem. 35, 2958–2969.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds