metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetyl­acetonato-κ2O,O′)carbon­yl[tris­­(4-chloro­phen­yl)phosphane-κP]rhodium(I)

aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 23 February 2012; accepted 22 March 2012; online 31 March 2012)

The title compound, [Rh(C5H7O2)(C18H12Cl3P)(CO)], contains the bidentate acetyl­acetonate ligand coordinated to the RhI atom, forming a chelate ring [Rh—O = 2.0327 (15) and 2.0613 (14) Å]. The RhI atom is additionally coordinated by one P [Rh—P = 2.2281 (6) Å] and one carbonyl C [Rh—C = 1.812 (2) Å] atom, resulting in a slightly distorted square-planar geometry. The mol­ecules are packed to minimize steric hindrance with the phosphanes positioned above and below the slightly distorted square geometrical plane.

Related literature

For background literature on the catalytic activity of rhodium–phosphane compounds, see: Carraz et al. (2000[Carraz, C. A., Ditzel, E. J., Orpen, A. G., Ellis, D. D., Pringle, P. G. & Sunley, G. J. (2000). Chem. Commun. pp. 1277-1278.]); Moloy & Wegman (1989[Moloy, K. G. & Wegman, R. W. (1989). Organometallics, 8, 2883-2892.]); Bonati & Wilkinson (1964[Bonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156-3160.]). For related rhodium compounds, see: Brink et al. (2007[Brink, A., Roodt, A. & Visser, H. G. (2007). Acta Cryst. E63, m48-m50.]); Erasmus & Conradie (2011[Erasmus, J. J. C. & Conradie, J. (2011). Inorg. Chim. Acta, 375, 128-134.]); Leipoldt et al. (1978[Leipoldt, J. G., Basson, S. S., Bok, L. D. C. & Gerber, T. I. A. (1978). Inorg. Chim. Acta, 26, L35-L37.]); Steynberg et al. (1987[Steynberg, E. C., Lamprecht, G. J. & Leipoldt, J. G. (1987). Inorg. Chim. Acta, 133, 33-37.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C5H7O2)(C18H12Cl3P)(CO)]

  • Mr = 595.62

  • Triclinic, [P \overline 1]

  • a = 9.6528 (17) Å

  • b = 11.535 (2) Å

  • c = 12.875 (2) Å

  • α = 65.211 (3)°

  • β = 72.095 (4)°

  • γ = 72.757 (4)°

  • V = 1214.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 100 K

  • 0.18 × 0.13 × 0.12 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.826, Tmax = 0.877

  • 19382 measured reflections

  • 6083 independent reflections

  • 5395 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.063

  • S = 1.01

  • 6083 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Acetylacetonate has two O-donor atoms with equivalent σ-electron donor capabilities. The high symmetry of dicarbonyl(acetylacetonate)rhodium(I) complexes promotes easy carbonyl displacement of either carbonyl group with a variety of phosphanes, phosphites and arsines (Bonati and Wilkinson, 1964). These dicarbonyl(acetylacetonate)rhodium(I) compounds are typically used in methyl iodide oxidative addition studies (Erasmus and Conradie, 2011). This study is part of ongoing research into induced effects of various phosphanes coordinated to Rh(I) centers. Previous work illustrating the catalytic importance of the rhodium(I) square-planar moieties has been conducted on rhodium mono- and di-phosphane complexes containing the symmetrical bidentate ligand, acac (acac = acetylacetonate) (Moloy and Wegman, 1989). Symmetrical di-phosphane ligands result in the production of acetaldehyde, whereas unsymmetrical di-phosphane ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000). In the title compound, [Rh(acac)(CO){P(4—Cl—C6H4)3}] (acac = acetylacetonate), the coordination around the Rh atom shows a slightly distorted square-planar arrangement, illustrated by C24—Rh1—P1 and O1—Rh1—O2 angles of 88.08 (7)° and 89.37 (6)°, respectively and a distance of 0.0015 (2) Å for Rh1 from the mean coordination plane. The Rh—C and Rh—P bond lengths are 1.812 (2) Å and 2.2280 (6) Å respectively. A larger trans influence of the phosphane ligand with respect to the carbonyl ligand is indicated by the longer Rh—O2 (2.0613 (14) Å) bond compared to Rh—O1 (2.0327 (15) Å) bond which is trans to the carbonyl ligand. The molecular geometries are similar to those observed from the closely related compounds known from Steynberg et al.(1987) and Leipoldt et al.(1978). These compounds show similar spectroscopic properties to those as discussed by Brink et al.(2007).

Related literature top

For background literature on the catalytic activity of rhodium–phosphane compounds, see Carraz et al. (2000); Moloy & Wegman (1989); Bonati & Wilkinson (1964). For related rhodium compounds, see: Brink et al. (2007); Erasmus & Conradie (2011); Leipoldt et al. (1978); Steynberg et al. (1987).

Experimental top

A solution of [PCy2(4-Me2NC6H4)] (63.6 mg, 0.174 mmol) in acetone (3 cm3) was slowly added to a solution of [Rh(acac)(CO)2] (44.5 mg, 0.172 mmol) in acetone (4 cm3). The solvent was removed and recrystallized from dichloromethane. Slow evaporation of the solvent afforded the title compound as yellow crystals (yield: 85.5 mg, 83%). Spectroscopic data: 31P{H} NMR (CDCl3, 161.98 MHz, p.p.m.): 47.55 p.p.m. [1J(Rh—P) = 176 Hz]; IR (solid) ν(CO): 1976 cm-1. IR (dichloromethane) ν(CO): 1981 cm-1

Refinement top

Hydrogen atom positions were calculated and refined using a riding model (C—H = 0.95–0.98 Å) with Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and a riding model allowing the torsion angle to be refined from the electron density with Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

Acetylacetonate has two O-donor atoms with equivalent σ-electron donor capabilities. The high symmetry of dicarbonyl(acetylacetonate)rhodium(I) complexes promotes easy carbonyl displacement of either carbonyl group with a variety of phosphanes, phosphites and arsines (Bonati and Wilkinson, 1964). These dicarbonyl(acetylacetonate)rhodium(I) compounds are typically used in methyl iodide oxidative addition studies (Erasmus and Conradie, 2011). This study is part of ongoing research into induced effects of various phosphanes coordinated to Rh(I) centers. Previous work illustrating the catalytic importance of the rhodium(I) square-planar moieties has been conducted on rhodium mono- and di-phosphane complexes containing the symmetrical bidentate ligand, acac (acac = acetylacetonate) (Moloy and Wegman, 1989). Symmetrical di-phosphane ligands result in the production of acetaldehyde, whereas unsymmetrical di-phosphane ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000). In the title compound, [Rh(acac)(CO){P(4—Cl—C6H4)3}] (acac = acetylacetonate), the coordination around the Rh atom shows a slightly distorted square-planar arrangement, illustrated by C24—Rh1—P1 and O1—Rh1—O2 angles of 88.08 (7)° and 89.37 (6)°, respectively and a distance of 0.0015 (2) Å for Rh1 from the mean coordination plane. The Rh—C and Rh—P bond lengths are 1.812 (2) Å and 2.2280 (6) Å respectively. A larger trans influence of the phosphane ligand with respect to the carbonyl ligand is indicated by the longer Rh—O2 (2.0613 (14) Å) bond compared to Rh—O1 (2.0327 (15) Å) bond which is trans to the carbonyl ligand. The molecular geometries are similar to those observed from the closely related compounds known from Steynberg et al.(1987) and Leipoldt et al.(1978). These compounds show similar spectroscopic properties to those as discussed by Brink et al.(2007).

For background literature on the catalytic activity of rhodium–phosphane compounds, see Carraz et al. (2000); Moloy & Wegman (1989); Bonati & Wilkinson (1964). For related rhodium compounds, see: Brink et al. (2007); Erasmus & Conradie (2011); Leipoldt et al. (1978); Steynberg et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
(Acetylacetonato-κ2O,O')carbonyl[tris(4- chlorophenyl)phosphane-κP]rhodium(I) top
Crystal data top
[Rh(C5H7O2)(C18H12Cl3P)(CO)]Z = 2
Mr = 595.62F(000) = 596
Triclinic, P1Dx = 1.628 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6528 (17) ÅCell parameters from 8738 reflections
b = 11.535 (2) Åθ = 2.7–28.4°
c = 12.875 (2) ŵ = 1.12 mm1
α = 65.211 (3)°T = 100 K
β = 72.095 (4)°Block, yellow
γ = 72.757 (4)°0.18 × 0.13 × 0.12 mm
V = 1214.9 (4) Å3
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
6083 independent reflections
Radiation source: sealed tube5395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.4 pixels mm-1θmax = 28.7°, θmin = 1.8°
φ and ω scansh = 1113
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1515
Tmin = 0.826, Tmax = 0.877l = 1717
19382 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0242P)2 + 0.9592P]
where P = (Fo2 + 2Fc2)/3
6083 reflections(Δ/σ)max = 0.005
291 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Rh(C5H7O2)(C18H12Cl3P)(CO)]γ = 72.757 (4)°
Mr = 595.62V = 1214.9 (4) Å3
Triclinic, P1Z = 2
a = 9.6528 (17) ÅMo Kα radiation
b = 11.535 (2) ŵ = 1.12 mm1
c = 12.875 (2) ÅT = 100 K
α = 65.211 (3)°0.18 × 0.13 × 0.12 mm
β = 72.095 (4)°
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
6083 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5395 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.877Rint = 0.029
19382 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.01Δρmax = 0.50 e Å3
6083 reflectionsΔρmin = 0.48 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh11.052699 (17)0.359470 (15)0.333583 (13)0.01682 (5)
Cl10.39474 (6)0.72923 (6)0.04828 (5)0.03653 (14)
Cl21.24276 (7)0.04921 (6)0.10196 (5)0.03470 (14)
Cl30.52995 (6)0.10417 (5)0.72212 (5)0.02947 (12)
P10.89407 (5)0.28944 (5)0.28971 (4)0.01573 (10)
O10.96017 (16)0.28916 (14)0.50713 (12)0.0221 (3)
O21.20480 (15)0.42067 (14)0.37193 (13)0.0230 (3)
O31.18810 (19)0.46211 (18)0.08083 (14)0.0365 (4)
C11.0041 (2)0.2905 (2)0.59045 (19)0.0245 (4)
C20.9110 (3)0.2347 (3)0.7102 (2)0.0373 (6)
H2A0.8630.30360.74260.056*
H2B0.97420.16580.76150.056*
H2C0.83490.19840.70450.056*
C31.1259 (2)0.3395 (2)0.57878 (19)0.0259 (5)
H31.14920.32960.6490.031*
C41.2168 (2)0.4018 (2)0.4741 (2)0.0235 (4)
C51.3406 (3)0.4541 (2)0.4762 (2)0.0325 (5)
H5A1.43620.40590.44680.049*
H5B1.33550.44410.55670.049*
H5C1.3310.54650.42650.049*
C60.7434 (2)0.41545 (19)0.22884 (17)0.0184 (4)
C70.7514 (2)0.5465 (2)0.18792 (18)0.0229 (4)
H70.83270.570.19620.027*
C80.6419 (3)0.6428 (2)0.13528 (19)0.0275 (5)
H80.6470.7320.10860.033*
C90.5257 (2)0.6074 (2)0.12224 (18)0.0247 (4)
C100.5121 (2)0.4789 (2)0.1645 (2)0.0275 (5)
H100.43010.45630.15630.033*
C110.6208 (2)0.3830 (2)0.2192 (2)0.0247 (4)
H110.61150.29440.25050.03*
C120.9830 (2)0.21278 (19)0.18053 (17)0.0175 (4)
C131.1223 (2)0.1333 (2)0.18776 (19)0.0266 (5)
H131.16430.11550.25180.032*
C141.2014 (3)0.0792 (2)0.10336 (19)0.0278 (5)
H141.29580.02390.10990.033*
C151.1402 (2)0.1073 (2)0.00991 (18)0.0240 (4)
C161.0022 (3)0.1842 (3)0.0012 (2)0.0335 (5)
H160.96060.20130.06290.04*
C170.9235 (2)0.2369 (2)0.0866 (2)0.0285 (5)
H170.82790.29010.08050.034*
C180.7931 (2)0.17036 (19)0.41102 (17)0.0177 (4)
C190.8076 (2)0.0432 (2)0.41969 (18)0.0224 (4)
H190.87420.0140.35990.027*
C200.7263 (2)0.0419 (2)0.51444 (19)0.0246 (4)
H200.73690.12860.51970.03*
C210.6299 (2)0.0015 (2)0.60070 (18)0.0206 (4)
C220.6129 (2)0.1278 (2)0.59502 (19)0.0257 (5)
H220.54590.15650.65490.031*
C230.6956 (2)0.2108 (2)0.50032 (19)0.0245 (4)
H230.68590.2970.4960.029*
C241.1342 (2)0.4217 (2)0.17864 (19)0.0232 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01580 (8)0.02264 (8)0.01419 (8)0.00561 (6)0.00310 (6)0.00747 (6)
Cl10.0251 (3)0.0402 (3)0.0282 (3)0.0055 (2)0.0093 (2)0.0025 (2)
Cl20.0464 (3)0.0316 (3)0.0238 (3)0.0026 (3)0.0002 (2)0.0161 (2)
Cl30.0293 (3)0.0268 (3)0.0266 (3)0.0137 (2)0.0029 (2)0.0049 (2)
P10.0154 (2)0.0184 (2)0.0137 (2)0.00436 (19)0.00333 (18)0.00522 (19)
O10.0227 (7)0.0290 (8)0.0157 (7)0.0058 (6)0.0035 (6)0.0088 (6)
O20.0185 (7)0.0307 (8)0.0263 (8)0.0054 (6)0.0052 (6)0.0156 (7)
O30.0359 (9)0.0545 (11)0.0200 (9)0.0231 (8)0.0014 (7)0.0096 (8)
C10.0264 (11)0.0272 (11)0.0195 (10)0.0001 (9)0.0068 (9)0.0101 (9)
C20.0447 (15)0.0505 (15)0.0177 (11)0.0151 (12)0.0054 (10)0.0099 (11)
C30.0277 (11)0.0337 (12)0.0236 (11)0.0010 (9)0.0128 (9)0.0167 (9)
C40.0204 (10)0.0243 (10)0.0328 (12)0.0041 (8)0.0119 (9)0.0183 (9)
C50.0254 (12)0.0406 (13)0.0466 (15)0.0015 (10)0.0138 (11)0.0289 (12)
C60.0170 (9)0.0226 (9)0.0160 (9)0.0037 (8)0.0040 (7)0.0072 (8)
C70.0238 (10)0.0229 (10)0.0236 (11)0.0087 (8)0.0066 (8)0.0060 (9)
C80.0304 (12)0.0213 (10)0.0242 (11)0.0043 (9)0.0065 (9)0.0020 (9)
C90.0188 (10)0.0299 (11)0.0166 (10)0.0012 (8)0.0039 (8)0.0040 (9)
C100.0164 (10)0.0349 (12)0.0303 (12)0.0069 (9)0.0065 (9)0.0085 (10)
C110.0193 (10)0.0240 (10)0.0298 (12)0.0069 (8)0.0061 (9)0.0063 (9)
C120.0186 (9)0.0198 (9)0.0145 (9)0.0073 (7)0.0014 (7)0.0055 (8)
C130.0288 (11)0.0299 (11)0.0198 (11)0.0006 (9)0.0087 (9)0.0086 (9)
C140.0277 (11)0.0267 (11)0.0229 (11)0.0017 (9)0.0043 (9)0.0088 (9)
C150.0315 (11)0.0218 (10)0.0176 (10)0.0075 (9)0.0017 (9)0.0092 (8)
C160.0346 (13)0.0486 (14)0.0254 (12)0.0020 (11)0.0114 (10)0.0215 (11)
C170.0232 (11)0.0396 (13)0.0289 (12)0.0001 (9)0.0092 (9)0.0199 (10)
C180.0170 (9)0.0204 (9)0.0156 (9)0.0055 (7)0.0053 (7)0.0039 (8)
C190.0239 (10)0.0224 (10)0.0204 (10)0.0037 (8)0.0026 (8)0.0093 (8)
C200.0283 (11)0.0185 (9)0.0255 (11)0.0060 (8)0.0034 (9)0.0071 (9)
C210.0183 (10)0.0228 (10)0.0190 (10)0.0075 (8)0.0040 (8)0.0035 (8)
C220.0241 (11)0.0271 (11)0.0243 (11)0.0074 (9)0.0031 (9)0.0119 (9)
C230.0264 (11)0.0216 (10)0.0257 (11)0.0072 (8)0.0006 (9)0.0104 (9)
C240.0204 (10)0.0307 (11)0.0235 (11)0.0096 (9)0.0053 (8)0.0110 (9)
Geometric parameters (Å, º) top
Rh1—C241.812 (2)C7—H70.95
Rh1—O12.0324 (14)C8—C91.378 (3)
Rh1—O22.0616 (14)C8—H80.95
Rh1—P12.2280 (6)C9—C101.381 (3)
Cl1—C91.745 (2)C10—C111.390 (3)
Cl2—C151.744 (2)C10—H100.95
Cl3—C211.741 (2)C11—H110.95
P1—C61.826 (2)C12—C171.386 (3)
P1—C181.826 (2)C12—C131.390 (3)
P1—C121.829 (2)C13—C141.389 (3)
O1—C11.276 (2)C13—H130.95
O2—C41.277 (2)C14—C151.378 (3)
O3—C241.150 (3)C14—H140.95
C1—C31.392 (3)C15—C161.372 (3)
C1—C21.502 (3)C16—C171.388 (3)
C2—H2A0.98C16—H160.95
C2—H2B0.98C17—H170.95
C2—H2C0.98C18—C191.391 (3)
C3—C41.391 (3)C18—C231.396 (3)
C3—H30.95C19—C201.390 (3)
C4—C51.502 (3)C19—H190.95
C5—H5A0.98C20—C211.380 (3)
C5—H5B0.98C20—H200.95
C5—H5C0.98C21—C221.390 (3)
C6—C71.394 (3)C22—C231.385 (3)
C6—C111.395 (3)C22—H220.95
C7—C81.387 (3)C23—H230.95
C24—Rh1—O1179.59 (8)C8—C9—Cl1118.52 (17)
C24—Rh1—O291.04 (8)C10—C9—Cl1119.74 (17)
O1—Rh1—O289.37 (6)C9—C10—C11118.7 (2)
C24—Rh1—P188.08 (7)C9—C10—H10120.6
O1—Rh1—P191.50 (4)C11—C10—H10120.6
O2—Rh1—P1178.23 (4)C10—C11—C6120.8 (2)
C6—P1—C18101.96 (9)C10—C11—H11119.6
C6—P1—C12104.31 (9)C6—C11—H11119.6
C18—P1—C12104.69 (9)C17—C12—C13118.31 (18)
C6—P1—Rh1115.10 (7)C17—C12—P1123.42 (15)
C18—P1—Rh1116.37 (6)C13—C12—P1118.10 (15)
C12—P1—Rh1112.95 (7)C14—C13—C12121.5 (2)
C1—O1—Rh1126.58 (14)C14—C13—H13119.3
C4—O2—Rh1126.09 (14)C12—C13—H13119.3
O1—C1—C3126.0 (2)C15—C14—C13118.7 (2)
O1—C1—C2114.7 (2)C15—C14—H14120.6
C3—C1—C2119.3 (2)C13—C14—H14120.6
C1—C2—H2A109.5C16—C15—C14121.06 (19)
C1—C2—H2B109.5C16—C15—Cl2119.43 (17)
H2A—C2—H2B109.5C14—C15—Cl2119.46 (17)
C1—C2—H2C109.5C15—C16—C17119.8 (2)
H2A—C2—H2C109.5C15—C16—H16120.1
H2B—C2—H2C109.5C17—C16—H16120.1
C4—C3—C1126.21 (19)C12—C17—C16120.7 (2)
C4—C3—H3116.9C12—C17—H17119.7
C1—C3—H3116.9C16—C17—H17119.7
O2—C4—C3125.59 (19)C19—C18—C23118.53 (19)
O2—C4—C5114.7 (2)C19—C18—P1124.22 (15)
C3—C4—C5119.7 (2)C23—C18—P1117.25 (15)
C4—C5—H5A109.5C20—C19—C18120.98 (19)
C4—C5—H5B109.5C20—C19—H19119.5
H5A—C5—H5B109.5C18—C19—H19119.5
C4—C5—H5C109.5C21—C20—C19119.05 (19)
H5A—C5—H5C109.5C21—C20—H20120.5
H5B—C5—H5C109.5C19—C20—H20120.5
C7—C6—C11118.78 (18)C20—C21—C22121.51 (19)
C7—C6—P1120.16 (15)C20—C21—Cl3120.00 (16)
C11—C6—P1121.04 (15)C22—C21—Cl3118.47 (16)
C8—C7—C6120.7 (2)C23—C22—C21118.60 (19)
C8—C7—H7119.6C23—C22—H22120.7
C6—C7—H7119.6C21—C22—H22120.7
C9—C8—C7119.1 (2)C22—C23—C18121.32 (19)
C9—C8—H8120.5C22—C23—H23119.3
C7—C8—H8120.5C18—C23—H23119.3
C8—C9—C10121.73 (19)O3—C24—Rh1178.57 (19)

Experimental details

Crystal data
Chemical formula[Rh(C5H7O2)(C18H12Cl3P)(CO)]
Mr595.62
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.6528 (17), 11.535 (2), 12.875 (2)
α, β, γ (°)65.211 (3), 72.095 (4), 72.757 (4)
V3)1214.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.18 × 0.13 × 0.12
Data collection
DiffractometerBruker APEX DUO 4K CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.826, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
19382, 6083, 5395
Rint0.029
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.063, 1.01
No. of reflections6083
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.48

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

 

Acknowledgements

The National Research Foundation (NRF) and the University of Johannesburg are acknowledged for funding. H. Ogutu is acknowledged for the data collection.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156–3160.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Roodt, A. & Visser, H. G. (2007). Acta Cryst. E63, m48–m50.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarraz, C. A., Ditzel, E. J., Orpen, A. G., Ellis, D. D., Pringle, P. G. & Sunley, G. J. (2000). Chem. Commun. pp. 1277–1278.  Web of Science CSD CrossRef Google Scholar
First citationErasmus, J. J. C. & Conradie, J. (2011). Inorg. Chim. Acta, 375, 128–134.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLeipoldt, J. G., Basson, S. S., Bok, L. D. C. & Gerber, T. I. A. (1978). Inorg. Chim. Acta, 26, L35–L37.  CSD CrossRef CAS Web of Science Google Scholar
First citationMoloy, K. G. & Wegman, R. W. (1989). Organometallics, 8, 2883–2892.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteynberg, E. C., Lamprecht, G. J. & Leipoldt, J. G. (1987). Inorg. Chim. Acta, 133, 33–37.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds