metal-organic compounds
(Acetylacetonato-κ2O,O′)carbonyl[tris(4-chlorophenyl)phosphane-κP]rhodium(I)
aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za
The title compound, [Rh(C5H7O2)(C18H12Cl3P)(CO)], contains the bidentate acetylacetonate ligand coordinated to the RhI atom, forming a chelate ring [Rh—O = 2.0327 (15) and 2.0613 (14) Å]. The RhI atom is additionally coordinated by one P [Rh—P = 2.2281 (6) Å] and one carbonyl C [Rh—C = 1.812 (2) Å] atom, resulting in a slightly distorted square-planar geometry. The molecules are packed to minimize with the positioned above and below the slightly distorted square geometrical plane.
Related literature
For background literature on the et al. (2000); Moloy & Wegman (1989); Bonati & Wilkinson (1964). For related rhodium compounds, see: Brink et al. (2007); Erasmus & Conradie (2011); Leipoldt et al. (1978); Steynberg et al. (1987).
of rhodium–phosphane compounds, see: CarrazExperimental
Crystal data
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812012536/fk2054sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812012536/fk2054Isup2.hkl
A solution of [PCy2(4-Me2NC6H4)] (63.6 mg, 0.174 mmol) in acetone (3 cm3) was slowly added to a solution of [Rh(acac)(CO)2] (44.5 mg, 0.172 mmol) in acetone (4 cm3). The solvent was removed and recrystallized from dichloromethane. Slow evaporation of the solvent afforded the title compound as yellow crystals (yield: 85.5 mg, 83%). Spectroscopic data: 31P{H} NMR (CDCl3, 161.98 MHz, p.p.m.): 47.55 p.p.m. [1J(Rh—P) = 176 Hz]; IR (solid) ν(CO): 1976 cm-1. IR (dichloromethane) ν(CO): 1981 cm-1
Hydrogen atom positions were calculated and refined using a riding model (C—H = 0.95–0.98 Å) with Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and a riding model allowing the torsion angle to be refined from the electron density with Uiso(H) = 1.5Ueq(C) for methyl H atoms.
Acetylacetonate has two O-donor atoms with equivalent σ-electron donor capabilities. The high symmetry of dicarbonyl(acetylacetonate)rhodium(I) complexes promotes easy carbonyl displacement of either carbonyl group with a variety of phosphites and (Bonati and Wilkinson, 1964). These dicarbonyl(acetylacetonate)rhodium(I) compounds are typically used in methyl iodide studies (Erasmus and Conradie, 2011). This study is part of ongoing research into induced effects of various coordinated to Rh(I) centers. Previous work illustrating the catalytic importance of the rhodium(I) square-planar moieties has been conducted on rhodium mono- and di-phosphane complexes containing the symmetrical bidentate ligand, acac (acac = acetylacetonate) (Moloy and Wegman, 1989). Symmetrical di-phosphane ligands result in the production of acetaldehyde, whereas unsymmetrical di-phosphane ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000). In the title compound, [Rh(acac)(CO){P(4—Cl—C6H4)3}] (acac = acetylacetonate), the coordination around the Rh atom shows a slightly distorted square-planar arrangement, illustrated by C24—Rh1—P1 and O1—Rh1—O2 angles of 88.08 (7)° and 89.37 (6)°, respectively and a distance of 0.0015 (2) Å for Rh1 from the mean coordination plane. The Rh—C and Rh—P bond lengths are 1.812 (2) Å and 2.2280 (6) Å respectively. A larger trans influence of the phosphane ligand with respect to the carbonyl ligand is indicated by the longer Rh—O2 (2.0613 (14) Å) bond compared to Rh—O1 (2.0327 (15) Å) bond which is trans to the carbonyl ligand. The molecular geometries are similar to those observed from the closely related compounds known from Steynberg et al.(1987) and Leipoldt et al.(1978). These compounds show similar spectroscopic properties to those as discussed by Brink et al.(2007).
For background literature on the
of rhodium–phosphane compounds, see Carraz et al. (2000); Moloy & Wegman (1989); Bonati & Wilkinson (1964). For related rhodium compounds, see: Brink et al. (2007); Erasmus & Conradie (2011); Leipoldt et al. (1978); Steynberg et al. (1987).Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. |
[Rh(C5H7O2)(C18H12Cl3P)(CO)] | Z = 2 |
Mr = 595.62 | F(000) = 596 |
Triclinic, P1 | Dx = 1.628 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6528 (17) Å | Cell parameters from 8738 reflections |
b = 11.535 (2) Å | θ = 2.7–28.4° |
c = 12.875 (2) Å | µ = 1.12 mm−1 |
α = 65.211 (3)° | T = 100 K |
β = 72.095 (4)° | Block, yellow |
γ = 72.757 (4)° | 0.18 × 0.13 × 0.12 mm |
V = 1214.9 (4) Å3 |
Bruker APEX DUO 4K CCD diffractometer | 6083 independent reflections |
Radiation source: sealed tube | 5395 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 8.4 pixels mm-1 | θmax = 28.7°, θmin = 1.8° |
φ and ω scans | h = −11→13 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −15→15 |
Tmin = 0.826, Tmax = 0.877 | l = −17→17 |
19382 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0242P)2 + 0.9592P] where P = (Fo2 + 2Fc2)/3 |
6083 reflections | (Δ/σ)max = 0.005 |
291 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
[Rh(C5H7O2)(C18H12Cl3P)(CO)] | γ = 72.757 (4)° |
Mr = 595.62 | V = 1214.9 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.6528 (17) Å | Mo Kα radiation |
b = 11.535 (2) Å | µ = 1.12 mm−1 |
c = 12.875 (2) Å | T = 100 K |
α = 65.211 (3)° | 0.18 × 0.13 × 0.12 mm |
β = 72.095 (4)° |
Bruker APEX DUO 4K CCD diffractometer | 6083 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 5395 reflections with I > 2σ(I) |
Tmin = 0.826, Tmax = 0.877 | Rint = 0.029 |
19382 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.50 e Å−3 |
6083 reflections | Δρmin = −0.48 e Å−3 |
291 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Rh1 | 1.052699 (17) | 0.359470 (15) | 0.333583 (13) | 0.01682 (5) | |
Cl1 | 0.39474 (6) | 0.72923 (6) | 0.04828 (5) | 0.03653 (14) | |
Cl2 | 1.24276 (7) | 0.04921 (6) | −0.10196 (5) | 0.03470 (14) | |
Cl3 | 0.52995 (6) | −0.10417 (5) | 0.72212 (5) | 0.02947 (12) | |
P1 | 0.89407 (5) | 0.28944 (5) | 0.28971 (4) | 0.01573 (10) | |
O1 | 0.96017 (16) | 0.28916 (14) | 0.50713 (12) | 0.0221 (3) | |
O2 | 1.20480 (15) | 0.42067 (14) | 0.37193 (13) | 0.0230 (3) | |
O3 | 1.18810 (19) | 0.46211 (18) | 0.08083 (14) | 0.0365 (4) | |
C1 | 1.0041 (2) | 0.2905 (2) | 0.59045 (19) | 0.0245 (4) | |
C2 | 0.9110 (3) | 0.2347 (3) | 0.7102 (2) | 0.0373 (6) | |
H2A | 0.863 | 0.3036 | 0.7426 | 0.056* | |
H2B | 0.9742 | 0.1658 | 0.7615 | 0.056* | |
H2C | 0.8349 | 0.1984 | 0.7045 | 0.056* | |
C3 | 1.1259 (2) | 0.3395 (2) | 0.57878 (19) | 0.0259 (5) | |
H3 | 1.1492 | 0.3296 | 0.649 | 0.031* | |
C4 | 1.2168 (2) | 0.4018 (2) | 0.4741 (2) | 0.0235 (4) | |
C5 | 1.3406 (3) | 0.4541 (2) | 0.4762 (2) | 0.0325 (5) | |
H5A | 1.4362 | 0.4059 | 0.4468 | 0.049* | |
H5B | 1.3355 | 0.4441 | 0.5567 | 0.049* | |
H5C | 1.331 | 0.5465 | 0.4265 | 0.049* | |
C6 | 0.7434 (2) | 0.41545 (19) | 0.22884 (17) | 0.0184 (4) | |
C7 | 0.7514 (2) | 0.5465 (2) | 0.18792 (18) | 0.0229 (4) | |
H7 | 0.8327 | 0.57 | 0.1962 | 0.027* | |
C8 | 0.6419 (3) | 0.6428 (2) | 0.13528 (19) | 0.0275 (5) | |
H8 | 0.647 | 0.732 | 0.1086 | 0.033* | |
C9 | 0.5257 (2) | 0.6074 (2) | 0.12224 (18) | 0.0247 (4) | |
C10 | 0.5121 (2) | 0.4789 (2) | 0.1645 (2) | 0.0275 (5) | |
H10 | 0.4301 | 0.4563 | 0.1563 | 0.033* | |
C11 | 0.6208 (2) | 0.3830 (2) | 0.2192 (2) | 0.0247 (4) | |
H11 | 0.6115 | 0.2944 | 0.2505 | 0.03* | |
C12 | 0.9830 (2) | 0.21278 (19) | 0.18053 (17) | 0.0175 (4) | |
C13 | 1.1223 (2) | 0.1333 (2) | 0.18776 (19) | 0.0266 (5) | |
H13 | 1.1643 | 0.1155 | 0.2518 | 0.032* | |
C14 | 1.2014 (3) | 0.0792 (2) | 0.10336 (19) | 0.0278 (5) | |
H14 | 1.2958 | 0.0239 | 0.1099 | 0.033* | |
C15 | 1.1402 (2) | 0.1073 (2) | 0.00991 (18) | 0.0240 (4) | |
C16 | 1.0022 (3) | 0.1842 (3) | 0.0012 (2) | 0.0335 (5) | |
H16 | 0.9606 | 0.2013 | −0.0629 | 0.04* | |
C17 | 0.9235 (2) | 0.2369 (2) | 0.0866 (2) | 0.0285 (5) | |
H17 | 0.8279 | 0.2901 | 0.0805 | 0.034* | |
C18 | 0.7931 (2) | 0.17036 (19) | 0.41102 (17) | 0.0177 (4) | |
C19 | 0.8076 (2) | 0.0432 (2) | 0.41969 (18) | 0.0224 (4) | |
H19 | 0.8742 | 0.014 | 0.3599 | 0.027* | |
C20 | 0.7263 (2) | −0.0419 (2) | 0.51444 (19) | 0.0246 (4) | |
H20 | 0.7369 | −0.1286 | 0.5197 | 0.03* | |
C21 | 0.6299 (2) | 0.0015 (2) | 0.60070 (18) | 0.0206 (4) | |
C22 | 0.6129 (2) | 0.1278 (2) | 0.59502 (19) | 0.0257 (5) | |
H22 | 0.5459 | 0.1565 | 0.6549 | 0.031* | |
C23 | 0.6956 (2) | 0.2108 (2) | 0.50032 (19) | 0.0245 (4) | |
H23 | 0.6859 | 0.297 | 0.496 | 0.029* | |
C24 | 1.1342 (2) | 0.4217 (2) | 0.17864 (19) | 0.0232 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1 | 0.01580 (8) | 0.02264 (8) | 0.01419 (8) | −0.00561 (6) | −0.00310 (6) | −0.00747 (6) |
Cl1 | 0.0251 (3) | 0.0402 (3) | 0.0282 (3) | 0.0055 (2) | −0.0093 (2) | −0.0025 (2) |
Cl2 | 0.0464 (3) | 0.0316 (3) | 0.0238 (3) | −0.0026 (3) | −0.0002 (2) | −0.0161 (2) |
Cl3 | 0.0293 (3) | 0.0268 (3) | 0.0266 (3) | −0.0137 (2) | 0.0029 (2) | −0.0049 (2) |
P1 | 0.0154 (2) | 0.0184 (2) | 0.0137 (2) | −0.00436 (19) | −0.00333 (18) | −0.00522 (19) |
O1 | 0.0227 (7) | 0.0290 (8) | 0.0157 (7) | −0.0058 (6) | −0.0035 (6) | −0.0088 (6) |
O2 | 0.0185 (7) | 0.0307 (8) | 0.0263 (8) | −0.0054 (6) | −0.0052 (6) | −0.0156 (7) |
O3 | 0.0359 (9) | 0.0545 (11) | 0.0200 (9) | −0.0231 (8) | 0.0014 (7) | −0.0096 (8) |
C1 | 0.0264 (11) | 0.0272 (11) | 0.0195 (10) | 0.0001 (9) | −0.0068 (9) | −0.0101 (9) |
C2 | 0.0447 (15) | 0.0505 (15) | 0.0177 (11) | −0.0151 (12) | −0.0054 (10) | −0.0099 (11) |
C3 | 0.0277 (11) | 0.0337 (12) | 0.0236 (11) | 0.0010 (9) | −0.0128 (9) | −0.0167 (9) |
C4 | 0.0204 (10) | 0.0243 (10) | 0.0328 (12) | 0.0041 (8) | −0.0119 (9) | −0.0183 (9) |
C5 | 0.0254 (12) | 0.0406 (13) | 0.0466 (15) | −0.0015 (10) | −0.0138 (11) | −0.0289 (12) |
C6 | 0.0170 (9) | 0.0226 (9) | 0.0160 (9) | −0.0037 (8) | −0.0040 (7) | −0.0072 (8) |
C7 | 0.0238 (10) | 0.0229 (10) | 0.0236 (11) | −0.0087 (8) | −0.0066 (8) | −0.0060 (9) |
C8 | 0.0304 (12) | 0.0213 (10) | 0.0242 (11) | −0.0043 (9) | −0.0065 (9) | −0.0020 (9) |
C9 | 0.0188 (10) | 0.0299 (11) | 0.0166 (10) | 0.0012 (8) | −0.0039 (8) | −0.0040 (9) |
C10 | 0.0164 (10) | 0.0349 (12) | 0.0303 (12) | −0.0069 (9) | −0.0065 (9) | −0.0085 (10) |
C11 | 0.0193 (10) | 0.0240 (10) | 0.0298 (12) | −0.0069 (8) | −0.0061 (9) | −0.0063 (9) |
C12 | 0.0186 (9) | 0.0198 (9) | 0.0145 (9) | −0.0073 (7) | −0.0014 (7) | −0.0055 (8) |
C13 | 0.0288 (11) | 0.0299 (11) | 0.0198 (11) | −0.0006 (9) | −0.0087 (9) | −0.0086 (9) |
C14 | 0.0277 (11) | 0.0267 (11) | 0.0229 (11) | 0.0017 (9) | −0.0043 (9) | −0.0088 (9) |
C15 | 0.0315 (11) | 0.0218 (10) | 0.0176 (10) | −0.0075 (9) | 0.0017 (9) | −0.0092 (8) |
C16 | 0.0346 (13) | 0.0486 (14) | 0.0254 (12) | −0.0020 (11) | −0.0114 (10) | −0.0215 (11) |
C17 | 0.0232 (11) | 0.0396 (13) | 0.0289 (12) | 0.0001 (9) | −0.0092 (9) | −0.0199 (10) |
C18 | 0.0170 (9) | 0.0204 (9) | 0.0156 (9) | −0.0055 (7) | −0.0053 (7) | −0.0039 (8) |
C19 | 0.0239 (10) | 0.0224 (10) | 0.0204 (10) | −0.0037 (8) | −0.0026 (8) | −0.0093 (8) |
C20 | 0.0283 (11) | 0.0185 (9) | 0.0255 (11) | −0.0060 (8) | −0.0034 (9) | −0.0071 (9) |
C21 | 0.0183 (10) | 0.0228 (10) | 0.0190 (10) | −0.0075 (8) | −0.0040 (8) | −0.0035 (8) |
C22 | 0.0241 (11) | 0.0271 (11) | 0.0243 (11) | −0.0074 (9) | 0.0031 (9) | −0.0119 (9) |
C23 | 0.0264 (11) | 0.0216 (10) | 0.0257 (11) | −0.0072 (8) | −0.0006 (9) | −0.0104 (9) |
C24 | 0.0204 (10) | 0.0307 (11) | 0.0235 (11) | −0.0096 (9) | −0.0053 (8) | −0.0110 (9) |
Rh1—C24 | 1.812 (2) | C7—H7 | 0.95 |
Rh1—O1 | 2.0324 (14) | C8—C9 | 1.378 (3) |
Rh1—O2 | 2.0616 (14) | C8—H8 | 0.95 |
Rh1—P1 | 2.2280 (6) | C9—C10 | 1.381 (3) |
Cl1—C9 | 1.745 (2) | C10—C11 | 1.390 (3) |
Cl2—C15 | 1.744 (2) | C10—H10 | 0.95 |
Cl3—C21 | 1.741 (2) | C11—H11 | 0.95 |
P1—C6 | 1.826 (2) | C12—C17 | 1.386 (3) |
P1—C18 | 1.826 (2) | C12—C13 | 1.390 (3) |
P1—C12 | 1.829 (2) | C13—C14 | 1.389 (3) |
O1—C1 | 1.276 (2) | C13—H13 | 0.95 |
O2—C4 | 1.277 (2) | C14—C15 | 1.378 (3) |
O3—C24 | 1.150 (3) | C14—H14 | 0.95 |
C1—C3 | 1.392 (3) | C15—C16 | 1.372 (3) |
C1—C2 | 1.502 (3) | C16—C17 | 1.388 (3) |
C2—H2A | 0.98 | C16—H16 | 0.95 |
C2—H2B | 0.98 | C17—H17 | 0.95 |
C2—H2C | 0.98 | C18—C19 | 1.391 (3) |
C3—C4 | 1.391 (3) | C18—C23 | 1.396 (3) |
C3—H3 | 0.95 | C19—C20 | 1.390 (3) |
C4—C5 | 1.502 (3) | C19—H19 | 0.95 |
C5—H5A | 0.98 | C20—C21 | 1.380 (3) |
C5—H5B | 0.98 | C20—H20 | 0.95 |
C5—H5C | 0.98 | C21—C22 | 1.390 (3) |
C6—C7 | 1.394 (3) | C22—C23 | 1.385 (3) |
C6—C11 | 1.395 (3) | C22—H22 | 0.95 |
C7—C8 | 1.387 (3) | C23—H23 | 0.95 |
C24—Rh1—O1 | 179.59 (8) | C8—C9—Cl1 | 118.52 (17) |
C24—Rh1—O2 | 91.04 (8) | C10—C9—Cl1 | 119.74 (17) |
O1—Rh1—O2 | 89.37 (6) | C9—C10—C11 | 118.7 (2) |
C24—Rh1—P1 | 88.08 (7) | C9—C10—H10 | 120.6 |
O1—Rh1—P1 | 91.50 (4) | C11—C10—H10 | 120.6 |
O2—Rh1—P1 | 178.23 (4) | C10—C11—C6 | 120.8 (2) |
C6—P1—C18 | 101.96 (9) | C10—C11—H11 | 119.6 |
C6—P1—C12 | 104.31 (9) | C6—C11—H11 | 119.6 |
C18—P1—C12 | 104.69 (9) | C17—C12—C13 | 118.31 (18) |
C6—P1—Rh1 | 115.10 (7) | C17—C12—P1 | 123.42 (15) |
C18—P1—Rh1 | 116.37 (6) | C13—C12—P1 | 118.10 (15) |
C12—P1—Rh1 | 112.95 (7) | C14—C13—C12 | 121.5 (2) |
C1—O1—Rh1 | 126.58 (14) | C14—C13—H13 | 119.3 |
C4—O2—Rh1 | 126.09 (14) | C12—C13—H13 | 119.3 |
O1—C1—C3 | 126.0 (2) | C15—C14—C13 | 118.7 (2) |
O1—C1—C2 | 114.7 (2) | C15—C14—H14 | 120.6 |
C3—C1—C2 | 119.3 (2) | C13—C14—H14 | 120.6 |
C1—C2—H2A | 109.5 | C16—C15—C14 | 121.06 (19) |
C1—C2—H2B | 109.5 | C16—C15—Cl2 | 119.43 (17) |
H2A—C2—H2B | 109.5 | C14—C15—Cl2 | 119.46 (17) |
C1—C2—H2C | 109.5 | C15—C16—C17 | 119.8 (2) |
H2A—C2—H2C | 109.5 | C15—C16—H16 | 120.1 |
H2B—C2—H2C | 109.5 | C17—C16—H16 | 120.1 |
C4—C3—C1 | 126.21 (19) | C12—C17—C16 | 120.7 (2) |
C4—C3—H3 | 116.9 | C12—C17—H17 | 119.7 |
C1—C3—H3 | 116.9 | C16—C17—H17 | 119.7 |
O2—C4—C3 | 125.59 (19) | C19—C18—C23 | 118.53 (19) |
O2—C4—C5 | 114.7 (2) | C19—C18—P1 | 124.22 (15) |
C3—C4—C5 | 119.7 (2) | C23—C18—P1 | 117.25 (15) |
C4—C5—H5A | 109.5 | C20—C19—C18 | 120.98 (19) |
C4—C5—H5B | 109.5 | C20—C19—H19 | 119.5 |
H5A—C5—H5B | 109.5 | C18—C19—H19 | 119.5 |
C4—C5—H5C | 109.5 | C21—C20—C19 | 119.05 (19) |
H5A—C5—H5C | 109.5 | C21—C20—H20 | 120.5 |
H5B—C5—H5C | 109.5 | C19—C20—H20 | 120.5 |
C7—C6—C11 | 118.78 (18) | C20—C21—C22 | 121.51 (19) |
C7—C6—P1 | 120.16 (15) | C20—C21—Cl3 | 120.00 (16) |
C11—C6—P1 | 121.04 (15) | C22—C21—Cl3 | 118.47 (16) |
C8—C7—C6 | 120.7 (2) | C23—C22—C21 | 118.60 (19) |
C8—C7—H7 | 119.6 | C23—C22—H22 | 120.7 |
C6—C7—H7 | 119.6 | C21—C22—H22 | 120.7 |
C9—C8—C7 | 119.1 (2) | C22—C23—C18 | 121.32 (19) |
C9—C8—H8 | 120.5 | C22—C23—H23 | 119.3 |
C7—C8—H8 | 120.5 | C18—C23—H23 | 119.3 |
C8—C9—C10 | 121.73 (19) | O3—C24—Rh1 | 178.57 (19) |
Experimental details
Crystal data | |
Chemical formula | [Rh(C5H7O2)(C18H12Cl3P)(CO)] |
Mr | 595.62 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 9.6528 (17), 11.535 (2), 12.875 (2) |
α, β, γ (°) | 65.211 (3), 72.095 (4), 72.757 (4) |
V (Å3) | 1214.9 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.12 |
Crystal size (mm) | 0.18 × 0.13 × 0.12 |
Data collection | |
Diffractometer | Bruker APEX DUO 4K CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.826, 0.877 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19382, 6083, 5395 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.675 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.063, 1.01 |
No. of reflections | 6083 |
No. of parameters | 291 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.50, −0.48 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).
Acknowledgements
The National Research Foundation (NRF) and the University of Johannesburg are acknowledged for funding. H. Ogutu is acknowledged for the data collection.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156–3160. CrossRef Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brink, A., Roodt, A. & Visser, H. G. (2007). Acta Cryst. E63, m48–m50. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2008). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carraz, C. A., Ditzel, E. J., Orpen, A. G., Ellis, D. D., Pringle, P. G. & Sunley, G. J. (2000). Chem. Commun. pp. 1277–1278. Web of Science CSD CrossRef Google Scholar
Erasmus, J. J. C. & Conradie, J. (2011). Inorg. Chim. Acta, 375, 128–134. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Leipoldt, J. G., Basson, S. S., Bok, L. D. C. & Gerber, T. I. A. (1978). Inorg. Chim. Acta, 26, L35–L37. CSD CrossRef CAS Web of Science Google Scholar
Moloy, K. G. & Wegman, R. W. (1989). Organometallics, 8, 2883–2892. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steynberg, E. C., Lamprecht, G. J. & Leipoldt, J. G. (1987). Inorg. Chim. Acta, 133, 33–37. CSD CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acetylacetonate has two O-donor atoms with equivalent σ-electron donor capabilities. The high symmetry of dicarbonyl(acetylacetonate)rhodium(I) complexes promotes easy carbonyl displacement of either carbonyl group with a variety of phosphanes, phosphites and arsines (Bonati and Wilkinson, 1964). These dicarbonyl(acetylacetonate)rhodium(I) compounds are typically used in methyl iodide oxidative addition studies (Erasmus and Conradie, 2011). This study is part of ongoing research into induced effects of various phosphanes coordinated to Rh(I) centers. Previous work illustrating the catalytic importance of the rhodium(I) square-planar moieties has been conducted on rhodium mono- and di-phosphane complexes containing the symmetrical bidentate ligand, acac (acac = acetylacetonate) (Moloy and Wegman, 1989). Symmetrical di-phosphane ligands result in the production of acetaldehyde, whereas unsymmetrical di-phosphane ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000). In the title compound, [Rh(acac)(CO){P(4—Cl—C6H4)3}] (acac = acetylacetonate), the coordination around the Rh atom shows a slightly distorted square-planar arrangement, illustrated by C24—Rh1—P1 and O1—Rh1—O2 angles of 88.08 (7)° and 89.37 (6)°, respectively and a distance of 0.0015 (2) Å for Rh1 from the mean coordination plane. The Rh—C and Rh—P bond lengths are 1.812 (2) Å and 2.2280 (6) Å respectively. A larger trans influence of the phosphane ligand with respect to the carbonyl ligand is indicated by the longer Rh—O2 (2.0613 (14) Å) bond compared to Rh—O1 (2.0327 (15) Å) bond which is trans to the carbonyl ligand. The molecular geometries are similar to those observed from the closely related compounds known from Steynberg et al.(1987) and Leipoldt et al.(1978). These compounds show similar spectroscopic properties to those as discussed by Brink et al.(2007).