organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro-2-{[(tri­cyclo­[3.3.1.13,7]decan-1-yl)iminium­yl]meth­yl}phenolate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 21 March 2012; accepted 22 March 2012; online 28 March 2012)

The title compound, C17H20N2O3, is a Schiff base, which is found as a zwitterion in the solid state. The geometry around the iminium N atom indicates sp2-hybridization. The zwitterion shows a strong intra­molecular N—H⋯O hydrogen-bond inter­action between the iminium N atom and the phenolate O atom.

Related literature

For the crystal structure of 2-[(tricyclo­[3.3.1.13,7]decan-1-yl­imino)­meth­yl]phenol, see: Fernández-G et al. (2001[Fernández-G, J. M., del Rio-Portilla, F., Quiroz-García, B., Toscano, R. A. & Salcedo, R. (2001). J. Mol. Struct. 561, 197-207.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O3

  • Mr = 300.35

  • Triclinic, [P \overline 1]

  • a = 6.3531 (5) Å

  • b = 11.0617 (10) Å

  • c = 12.1576 (11) Å

  • α = 62.995 (2)°

  • β = 76.446 (2)°

  • γ = 75.487 (2)°

  • V = 729.71 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.26 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 1.000

  • 4583 measured reflections

  • 2822 independent reflections

  • 1457 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.146

  • S = 0.95

  • 2822 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.95 (3) 1.79 (3) 2.597 (3) 140 (2)

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, C17H20N2O3, is a Schiff base, which can act as a monobasic bidentate ligand, that is, the N,O donor atoms can coordinate to a metal ion. In the crystal structure, the Schiff base is found as a zwitterion (Fig. 1), whereas the closely related compound IDOHIS 2-[(tricyclo[3.3.1.13,7]decan-1-ylimino)methyl]phenol with similar molecular geometry is in the phenol-imine form (Fernández-G et al., 2001).

Related literature top

For the crystal structure of 2-[(tricyclo[3.3.1.13,7]decan-1-ylimino)methyl]phenol, see: Fernández-G et al. (2001).

Experimental top

1-Adamantylamine (0.4556 g, 3.012 mmol) and 5-nitrosalicylaldehyde (0.5040 g, 3.016 mmol) in acetone (20 ml) were stirred for 3 h at room temparature. After addition of pentane (50 ml) to the reaction mixture, the formed precipitate was separated by filtration, washed with pentane, and dried at 50 °C, to give a yellow powder (0.8312 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution at room temparature.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.95 — 1.00 Å with Uiso(H) = 1.2Ueq(C). Nitrogen-H atom was located from the difference Fourier map and allowed to refine with Uiso(H) = 1.5 Ueq(N).

Structure description top

The title compound, C17H20N2O3, is a Schiff base, which can act as a monobasic bidentate ligand, that is, the N,O donor atoms can coordinate to a metal ion. In the crystal structure, the Schiff base is found as a zwitterion (Fig. 1), whereas the closely related compound IDOHIS 2-[(tricyclo[3.3.1.13,7]decan-1-ylimino)methyl]phenol with similar molecular geometry is in the phenol-imine form (Fernández-G et al., 2001).

For the crystal structure of 2-[(tricyclo[3.3.1.13,7]decan-1-ylimino)methyl]phenol, see: Fernández-G et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atom numbering. Displacement ellipsoids are drawn at the 40% probability level for non-H atoms.
4-Nitro-2-[(tricyclo[3.3.1.13,7]decan-1-yliminiumyl)methyl]phenolate top
Crystal data top
C17H20N2O3Z = 2
Mr = 300.35F(000) = 320
Triclinic, P1Dx = 1.367 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3531 (5) ÅCell parameters from 1063 reflections
b = 11.0617 (10) Åθ = 3.4–24.9°
c = 12.1576 (11) ŵ = 0.09 mm1
α = 62.995 (2)°T = 200 K
β = 76.446 (2)°Block, yellow
γ = 75.487 (2)°0.26 × 0.25 × 0.15 mm
V = 729.71 (11) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
2822 independent reflections
Radiation source: fine-focus sealed tube1457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 76
Tmin = 0.897, Tmax = 1.000k = 1313
4583 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0616P)2]
where P = (Fo2 + 2Fc2)/3
2822 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H20N2O3γ = 75.487 (2)°
Mr = 300.35V = 729.71 (11) Å3
Triclinic, P1Z = 2
a = 6.3531 (5) ÅMo Kα radiation
b = 11.0617 (10) ŵ = 0.09 mm1
c = 12.1576 (11) ÅT = 200 K
α = 62.995 (2)°0.26 × 0.25 × 0.15 mm
β = 76.446 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2822 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1457 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 1.000Rint = 0.029
4583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.19 e Å3
2822 reflectionsΔρmin = 0.24 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0883 (3)0.7989 (2)0.01074 (18)0.0579 (6)
O20.9391 (3)0.5043 (2)0.3099 (2)0.0681 (6)
O30.6210 (3)0.5069 (2)0.19649 (19)0.0616 (6)
N10.7093 (3)0.7907 (2)0.12908 (19)0.0378 (6)
H1N0.856 (5)0.809 (3)0.103 (2)0.057*
N20.8088 (4)0.5349 (2)0.2295 (2)0.0487 (6)
C11.0215 (4)0.7417 (3)0.0628 (2)0.0423 (7)
C20.8046 (4)0.7034 (2)0.0257 (2)0.0357 (6)
C30.7394 (4)0.6358 (2)0.0807 (2)0.0374 (6)
H30.59800.61000.05420.045*
C40.8786 (4)0.6058 (2)0.1734 (2)0.0382 (6)
C51.0878 (4)0.6442 (3)0.2144 (2)0.0438 (7)
H51.18230.62300.27870.053*
C61.1554 (4)0.7108 (3)0.1634 (2)0.0463 (7)
H61.29560.73820.19460.056*
C70.6570 (4)0.7319 (2)0.0713 (2)0.0382 (6)
H70.51540.70670.09390.046*
C80.5734 (4)0.8178 (2)0.2350 (2)0.0331 (6)
C90.6942 (4)0.9009 (3)0.2633 (2)0.0422 (7)
H9A0.84280.84950.28190.051*
H9B0.71030.98940.18980.051*
C100.5661 (4)0.9281 (3)0.3747 (2)0.0418 (7)
H100.64610.98250.39310.050*
C110.5428 (4)0.7919 (3)0.4882 (2)0.0433 (7)
H11A0.68990.73890.50860.052*
H11B0.46110.80940.56100.052*
C120.4202 (4)0.7097 (2)0.4600 (2)0.0378 (6)
H120.40430.62050.53450.045*
C130.1928 (4)0.7910 (3)0.4292 (2)0.0424 (7)
H13A0.11240.73700.41190.051*
H13B0.10780.80910.50110.051*
C140.2172 (4)0.9268 (2)0.3153 (2)0.0389 (7)
H140.06830.98020.29540.047*
C150.3463 (4)0.8987 (3)0.2030 (2)0.0388 (7)
H15A0.26760.84510.18410.047*
H15B0.36080.98670.12870.047*
C160.5489 (4)0.6809 (2)0.3483 (2)0.0386 (6)
H16A0.69570.62660.36790.046*
H16B0.46990.62700.33000.046*
C170.3388 (4)1.0100 (3)0.3438 (3)0.0437 (7)
H17A0.25471.02920.41530.052*
H17B0.35361.09890.27070.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0459 (12)0.0837 (15)0.0525 (13)0.0252 (10)0.0053 (9)0.0343 (12)
O20.0599 (14)0.0838 (16)0.0720 (16)0.0015 (11)0.0120 (11)0.0577 (13)
O30.0535 (14)0.0717 (14)0.0720 (15)0.0210 (11)0.0125 (11)0.0453 (12)
N10.0337 (13)0.0449 (13)0.0311 (13)0.0116 (10)0.0008 (10)0.0128 (11)
N20.0498 (16)0.0414 (14)0.0502 (16)0.0020 (12)0.0023 (12)0.0224 (12)
C10.0354 (16)0.0461 (16)0.0335 (16)0.0065 (12)0.0019 (12)0.0080 (14)
C20.0353 (15)0.0344 (14)0.0263 (14)0.0051 (11)0.0020 (11)0.0065 (12)
C30.0347 (15)0.0345 (14)0.0338 (16)0.0010 (11)0.0005 (12)0.0115 (12)
C40.0378 (16)0.0325 (14)0.0356 (16)0.0018 (11)0.0004 (12)0.0130 (12)
C50.0367 (16)0.0440 (16)0.0353 (16)0.0019 (12)0.0052 (12)0.0129 (14)
C60.0382 (16)0.0509 (17)0.0373 (17)0.0085 (13)0.0054 (13)0.0124 (14)
C70.0371 (15)0.0360 (15)0.0346 (16)0.0095 (11)0.0000 (12)0.0096 (13)
C80.0311 (14)0.0408 (15)0.0273 (14)0.0089 (11)0.0017 (11)0.0155 (12)
C90.0396 (16)0.0473 (16)0.0404 (17)0.0125 (12)0.0057 (12)0.0164 (13)
C100.0446 (17)0.0484 (16)0.0400 (17)0.0156 (13)0.0026 (12)0.0226 (14)
C110.0367 (16)0.0543 (17)0.0354 (16)0.0017 (12)0.0083 (12)0.0191 (14)
C120.0383 (15)0.0339 (14)0.0304 (15)0.0048 (11)0.0036 (11)0.0088 (12)
C130.0364 (16)0.0469 (16)0.0432 (17)0.0091 (12)0.0015 (12)0.0207 (14)
C140.0328 (15)0.0409 (15)0.0434 (17)0.0017 (11)0.0094 (12)0.0201 (13)
C150.0423 (16)0.0393 (15)0.0335 (15)0.0058 (12)0.0080 (12)0.0133 (13)
C160.0373 (15)0.0362 (15)0.0352 (16)0.0042 (11)0.0004 (12)0.0125 (13)
C170.0523 (18)0.0364 (15)0.0411 (17)0.0026 (12)0.0065 (13)0.0177 (13)
Geometric parameters (Å, º) top
O1—C11.267 (3)C9—H9B0.9900
O2—N21.239 (3)C10—C111.525 (3)
O3—N21.236 (3)C10—C171.528 (3)
N1—C71.289 (3)C10—H101.0000
N1—C81.481 (3)C11—C121.520 (3)
N1—H1N0.95 (3)C11—H11A0.9900
N2—C41.441 (3)C11—H11B0.9900
C1—C61.444 (4)C12—C131.528 (3)
C1—C21.452 (3)C12—C161.535 (3)
C2—C31.385 (3)C12—H121.0000
C2—C71.428 (3)C13—C141.525 (3)
C3—C41.374 (3)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C51.406 (3)C14—C171.527 (3)
C5—C61.345 (4)C14—C151.539 (3)
C5—H50.9500C14—H141.0000
C6—H60.9500C15—H15A0.9900
C7—H70.9500C15—H15B0.9900
C8—C91.522 (3)C16—H16A0.9900
C8—C151.528 (3)C16—H16B0.9900
C8—C161.529 (3)C17—H17A0.9900
C9—C101.522 (4)C17—H17B0.9900
C9—H9A0.9900
C7—N1—C8126.4 (2)C17—C10—H10109.4
C7—N1—H1N113.5 (16)C12—C11—C10109.2 (2)
C8—N1—H1N119.8 (16)C12—C11—H11A109.8
O3—N2—O2122.0 (3)C10—C11—H11A109.8
O3—N2—C4119.2 (2)C12—C11—H11B109.8
O2—N2—C4118.8 (2)C10—C11—H11B109.8
O1—C1—C6122.3 (2)H11A—C11—H11B108.3
O1—C1—C2122.3 (2)C11—C12—C13109.8 (2)
C6—C1—C2115.4 (3)C11—C12—C16109.7 (2)
C3—C2—C7118.9 (2)C13—C12—C16109.2 (2)
C3—C2—C1121.0 (2)C11—C12—H12109.4
C7—C2—C1120.1 (2)C13—C12—H12109.4
C4—C3—C2120.3 (2)C16—C12—H12109.4
C4—C3—H3119.9C14—C13—C12109.35 (19)
C2—C3—H3119.9C14—C13—H13A109.8
C3—C4—C5120.6 (3)C12—C13—H13A109.8
C3—C4—N2119.7 (2)C14—C13—H13B109.8
C5—C4—N2119.8 (2)C12—C13—H13B109.8
C6—C5—C4120.6 (3)H13A—C13—H13B108.3
C6—C5—H5119.7C13—C14—C17109.3 (2)
C4—C5—H5119.7C13—C14—C15109.8 (2)
C5—C6—C1122.1 (3)C17—C14—C15109.8 (2)
C5—C6—H6119.0C13—C14—H14109.3
C1—C6—H6119.0C17—C14—H14109.3
N1—C7—C2122.2 (2)C15—C14—H14109.3
N1—C7—H7118.9C8—C15—C14108.5 (2)
C2—C7—H7118.9C8—C15—H15A110.0
N1—C8—C9107.1 (2)C14—C15—H15A110.0
N1—C8—C15111.4 (2)C8—C15—H15B110.0
C9—C8—C15109.8 (2)C14—C15—H15B110.0
N1—C8—C16109.2 (2)H15A—C15—H15B108.4
C9—C8—C16109.9 (2)C8—C16—C12109.0 (2)
C15—C8—C16109.45 (19)C8—C16—H16A109.9
C10—C9—C8109.6 (2)C12—C16—H16A109.9
C10—C9—H9A109.7C8—C16—H16B109.9
C8—C9—H9A109.7C12—C16—H16B109.9
C10—C9—H9B109.7H16A—C16—H16B108.3
C8—C9—H9B109.7C14—C17—C10109.3 (2)
H9A—C9—H9B108.2C14—C17—H17A109.8
C9—C10—C11109.8 (2)C10—C17—H17A109.8
C9—C10—C17109.2 (2)C14—C17—H17B109.8
C11—C10—C17109.7 (2)C10—C17—H17B109.8
C9—C10—H10109.4H17A—C17—H17B108.3
C11—C10—H10109.4
O1—C1—C2—C3177.2 (2)C16—C8—C9—C1059.6 (3)
C6—C1—C2—C33.0 (3)C8—C9—C10—C1159.8 (3)
O1—C1—C2—C71.0 (4)C8—C9—C10—C1760.5 (3)
C6—C1—C2—C7178.7 (2)C9—C10—C11—C1260.2 (3)
C7—C2—C3—C4179.4 (2)C17—C10—C11—C1259.8 (3)
C1—C2—C3—C41.2 (3)C10—C11—C12—C1359.8 (3)
C2—C3—C4—C50.5 (4)C10—C11—C12—C1660.3 (3)
C2—C3—C4—N2179.8 (2)C11—C12—C13—C1460.2 (3)
O3—N2—C4—C32.7 (3)C16—C12—C13—C1460.2 (3)
O2—N2—C4—C3177.5 (2)C12—C13—C14—C1760.2 (3)
O3—N2—C4—C5176.9 (2)C12—C13—C14—C1560.3 (3)
O2—N2—C4—C52.9 (3)N1—C8—C15—C14178.32 (19)
C3—C4—C5—C60.1 (4)C9—C8—C15—C1459.9 (3)
N2—C4—C5—C6179.8 (2)C16—C8—C15—C1460.8 (3)
C4—C5—C6—C12.0 (4)C13—C14—C15—C860.3 (3)
O1—C1—C6—C5176.8 (2)C17—C14—C15—C859.8 (2)
C2—C1—C6—C53.5 (4)N1—C8—C16—C12176.50 (19)
C8—N1—C7—C2176.4 (2)C9—C8—C16—C1259.3 (3)
C3—C2—C7—N1177.8 (2)C15—C8—C16—C1261.3 (3)
C1—C2—C7—N10.4 (4)C11—C12—C16—C859.8 (3)
C7—N1—C8—C9174.7 (2)C13—C12—C16—C860.6 (3)
C7—N1—C8—C1554.6 (3)C13—C14—C17—C1060.2 (3)
C7—N1—C8—C1666.4 (3)C15—C14—C17—C1060.3 (3)
N1—C8—C9—C10178.11 (19)C9—C10—C17—C1460.2 (3)
C15—C8—C9—C1060.9 (3)C11—C10—C17—C1460.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.95 (3)1.79 (3)2.597 (3)140 (2)

Experimental details

Crystal data
Chemical formulaC17H20N2O3
Mr300.35
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)6.3531 (5), 11.0617 (10), 12.1576 (11)
α, β, γ (°)62.995 (2), 76.446 (2), 75.487 (2)
V3)729.71 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.897, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4583, 2822, 1457
Rint0.029
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.146, 0.95
No. of reflections2822
No. of parameters202
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.24

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.95 (3)1.79 (3)2.597 (3)140 (2)
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFernández-G, J. M., del Rio-Portilla, F., Quiroz-García, B., Toscano, R. A. & Salcedo, R. (2001). J. Mol. Struct. 561, 197–207.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds