metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m474-m475

Tetra­kis{2-[2-(2,6-di­chloro­anilino)phen­yl]ethano­ato-κ2O:O′}bis­­[(di­methyl sulfoxide-κO)copper(II)](CuCu): a binuclear CuII complex with the non-steroidal anti-inflammatory drug diclofenac

aInstitut de Chimie Moléculaire de Reims, ICMR, UMR CNRS 7312, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
*Correspondence e-mail: emmanuel.guillon@univ-reims.fr

(Received 10 February 2012; accepted 16 March 2012; online 24 March 2012)

The title compound, [Cu2(C14H10Cl2NO2)4(C2H6OS)2], comprises a CuII2 core that is quadruply bridged by four carboxyl­ate ligands with the dimethyl sulfoxide ligands binding along the Cu⋯Cu axis. The four carboxyl­ate ligands bind in a bidentate syn–syn bridging mode. Mol­ecules reside on crystallographic inversion centres bis­ecting the mid-point of the Cu⋯Cu axis. There are no inter­molecular inter­actions of note.

Related literature

CuII complexes of non-steroidal anti-inflammatory drugs (NSAIDs) show enhanced anti-inflammatory activity and reduced gastrointestinal toxicity compared with their uncomplexed parent drug, see: Weder et al. (2002[Weder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffin, J. R., Regtop, H. L. & Davies, N. M. (2002). Coord. Chem. Rev. 232, 95-126.]). The structure of the Cu–NSAID is likely to be an important factor for its biological activity. For example, the anti-tumor activity of the monomeric CuII complex of aspirin ([Cu(Asp)2(py)2]) is reportedly more effective than the dimeric [Cu2(Asp)4] complex, see: Oberley & Buettner (1979[Oberley, L. W. & Buettner, G. R. (1979). Cancer Res. 39, 1141-1147.]). It has been shown that dinuclear Cu–NSAID complexes exhibit similar bio­logical activity to mononuclear complexes, but with higher stability (Dimiza et al., 2011[Dimiza, F., Perdih, F., Tangoulis, V., Turel, I., Kessissoglou, D. & Psomas, G. (2011). J. Inorg. Biochem. 105, 476-489.]), making them relevant compounds in the treatment of tumor cell lines (Theodorou et al., 1999[Theodorou, A., Demertzis, M. A., Kovala-Demertzi, D., Lioliou, E. E., Pantazaki, A. A. & Kyriakidis, D. A. (1999). BioMetals, 12, 167-172.]). For mono- and binuclear CuII complexes of diclofenac, see: Sayen et al. (2012[Sayen, S., Carlier, A., Tarpin, M. & Guillon, E. (2012). Dalton Trans. Submitted.]) for [Cu(diclofenac)2(H2O)2]·2H2O and Kovala-Demertzi et al. (1997[Kovala-Demertzi, D., Theodorou, A., Demertzis, M., Raptopoulou, C. P. & Terzis, A. (1997). J. Inorg. Biochem. 65, 151-157.]) for [Cu2(diclofenac)4(DMF)2].

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C14H10Cl2NO2)4(C2H6OS)2]

  • Mr = 1463.90

  • Triclinic, [P \overline 1]

  • a = 10.357 (5) Å

  • b = 12.787 (5) Å

  • c = 12.925 (5) Å

  • α = 81.605 (5)°

  • β = 75.561 (5)°

  • γ = 68.489 (5)°

  • V = 1539.4 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 100 K

  • 0.30 × 0.21 × 0.18 mm

Data collection
  • Oxford Diffraction SuperNova Atlas diffractometer

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and ABSPACK. Oxford Diffraction, Yarnton, England.]) Tmin = 0.867, Tmax = 1.000

  • 42084 measured reflections

  • 10796 independent reflections

  • 9113 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 0.99

  • 10796 reflections

  • 396 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O2 1.9647 (11)
Cu1—O1 1.9655 (11)
Cu1—O2′ 1.9725 (11)
Cu1—O1′ 1.9799 (11)
Cu1—O1D 2.1344 (14)
Cu1—Cu1i 2.6619 (12)
O2—Cu1—O1 86.92 (5)
O2—Cu1—O2′ 167.83 (4)
O1—Cu1—O2′ 92.47 (6)
O2—Cu1—O1′ 90.59 (5)
O1—Cu1—O1′ 167.60 (4)
O2′—Cu1—O1′ 87.41 (6)
O2—Cu1—O1D 97.11 (5)
O1—Cu1—O1D 94.31 (4)
O2′—Cu1—O1D 95.06 (4)
O1′—Cu1—O1D 98.06 (4)
O2—Cu1—Cu1i 86.45 (4)
O1—Cu1—Cu1i 85.35 (3)
O2′—Cu1—Cu1i 81.39 (4)
O1′—Cu1—Cu1i 82.36 (3)
O1D—Cu1—Cu1i 176.41 (3)
Symmetry code: (i) -x, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and ABSPACK. Oxford Diffraction, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The proposed curative properties of Cu-based non-steroidal anti-inflammatory drugs (NSAIDs) have led to the development of numerous Cu(II) complexes of NSAIDs with enhanced anti-inflammatory activity and reduced gastrointestinal toxicity compared with their uncomplexed parent drug (Weder et al., 2002). Furthermore, little is known of their pharmacokinetic and biodistribution profile in both humans and animals, stabilty in biological media, or of the relative potency/efficacy of the CuII monomeric versus CuII dimeric complexes. The structure of the Cu-NSAID is likely to be an important factor for its biological activity. For example, the anti-tumor activity of the monomeric CuII complex of aspirin ([Cu(Asp)2(py)2]) is reportedly more effective than the dimeric [Cu2(Asp)4] complex (Oberley & Buettner, 1979). Thus, it appears to be essential to obtain structural information on Cu(II) complexes of NSAIDs in order to fully understand their biological activity. Being able to act as a ligand through its carboxylate function of the aromatic ring, different diclofenac complexes (Cu-NSAID complex) were described in the literature. It gives rise to a mononuclear [Cu(diclofenac)2(H2O)2].2H2O complex (Sayen et al., 2012) and a binuclear [Cu2(diclofenac)4(DMF)2] complex without a metal-metal bond (Kovala-Demertzi et al., 1997). The former resulted in a distorted octahedral geometry, whereas the latter resulted in a binuclear copper complex where each metal centre is described as a perfect square bipyramid with a DMF oxygen occupying apical position. In order to favour the metal···metal bond, which stabilizes the complex and thus impact the biological activity, we have tried various coordinating solvents during the recrystallization.

The structure of the binuclear [bis(2-[2-(2,6-dichlorophenyl)aminophenyl]ethanoate)bis(DMSO)copper(II)] complex (I) has been obtained. It consists of a quadruply bridged neutral molecule lying on a crystallographic centre of inversion (Fig. 1). Indeed, the four carboxylato moieties act as bridging ligands exhibiting a centre of symmetry midway between the two Cu atoms. The solvent used in the synthesis binds in the position trans to the Cu—Cu axis. The dimeric structure has a Cu—Cu distance of 2.6619 (12) Å, with an octahedral stereochemistry tetragonally elongated along the Cu—Cu-Osolvent axis due to the Jahn-Teller effect (Table 1).

In the binuclear unit, the carboxylic acids are fully deprotonated to balance the charge from the CuII ions. The stability of the structure is ensured via a network of /p···/p interactions involving the phenyl acetate rings of the diclofenac molecules. On the other hand, no intermolecular H-bonding is observed (Fig. 2).

The use of DMSO solvent allowed the formation of a binuclear complex with a Cu2 metal core, which stabilizes the complex in biological media. It was shown that binuclear Cu-NSAID complexes exhibit similar biological activity as the mononuclear complex, but with a higher stability (Dimiza et al., 2011), making them relevant compounds in the treatment of tumor cell lines (Theodorou et al., 1999).

Related literature top

Cu(II) complexes ofnon-steroidal anti-inflammatory drugs (NSAIDs) show enhanced anti-inflammatory activity and reduced gastrointestinal toxicity compared with their uncomplexed parent drug, see: Weder et al. (2002). The structure of the Cu–NSAID is likely to be an important factor for its biological activity. For example, the anti-tumor activity of the monomeric CuII complex of aspirin ([Cu(Asp)2(py)2]) is reportedly more effective than the dimeric [Cu2(Asp)4] complex, see: Oberley & Buettner (1979). It has been shown that binuclear Cu–NSAID complexes exhibit similar biological activity to mononuclear complexes, but with higher stability (Dimiza et al., 2011), making them relevant compounds in the treatment of tumor cell lines (Theodorou et al., 1999). For mono- and binuclear Cu complexes of diclofenac, see: Sayen et al. (2012) for [Cu(diclofenac)2(H2O)2].2H2O and Kovala-Demertzi et al. (1997) for [Cu2(diclofenac)4(DMF)2].

Experimental top

The [bis(2-[2-(2,6-dichlorophenyl)aminophenyl]ethanoate)bis(DMSO)copper(II)] was prepared from a mixture of copper sulfate and diclofenac sodium salt in the molar ratio 1:2 in deionized water. After stirring for 2 hrs at room temperature, the reaction mixture was filtered and the green precipitate was washed with water and dried in air. Crystals suitable for X-ray diffraction measurements were obtained by slow evaporation of a DMSO solution of the complex.

Structure description top

The proposed curative properties of Cu-based non-steroidal anti-inflammatory drugs (NSAIDs) have led to the development of numerous Cu(II) complexes of NSAIDs with enhanced anti-inflammatory activity and reduced gastrointestinal toxicity compared with their uncomplexed parent drug (Weder et al., 2002). Furthermore, little is known of their pharmacokinetic and biodistribution profile in both humans and animals, stabilty in biological media, or of the relative potency/efficacy of the CuII monomeric versus CuII dimeric complexes. The structure of the Cu-NSAID is likely to be an important factor for its biological activity. For example, the anti-tumor activity of the monomeric CuII complex of aspirin ([Cu(Asp)2(py)2]) is reportedly more effective than the dimeric [Cu2(Asp)4] complex (Oberley & Buettner, 1979). Thus, it appears to be essential to obtain structural information on Cu(II) complexes of NSAIDs in order to fully understand their biological activity. Being able to act as a ligand through its carboxylate function of the aromatic ring, different diclofenac complexes (Cu-NSAID complex) were described in the literature. It gives rise to a mononuclear [Cu(diclofenac)2(H2O)2].2H2O complex (Sayen et al., 2012) and a binuclear [Cu2(diclofenac)4(DMF)2] complex without a metal-metal bond (Kovala-Demertzi et al., 1997). The former resulted in a distorted octahedral geometry, whereas the latter resulted in a binuclear copper complex where each metal centre is described as a perfect square bipyramid with a DMF oxygen occupying apical position. In order to favour the metal···metal bond, which stabilizes the complex and thus impact the biological activity, we have tried various coordinating solvents during the recrystallization.

The structure of the binuclear [bis(2-[2-(2,6-dichlorophenyl)aminophenyl]ethanoate)bis(DMSO)copper(II)] complex (I) has been obtained. It consists of a quadruply bridged neutral molecule lying on a crystallographic centre of inversion (Fig. 1). Indeed, the four carboxylato moieties act as bridging ligands exhibiting a centre of symmetry midway between the two Cu atoms. The solvent used in the synthesis binds in the position trans to the Cu—Cu axis. The dimeric structure has a Cu—Cu distance of 2.6619 (12) Å, with an octahedral stereochemistry tetragonally elongated along the Cu—Cu-Osolvent axis due to the Jahn-Teller effect (Table 1).

In the binuclear unit, the carboxylic acids are fully deprotonated to balance the charge from the CuII ions. The stability of the structure is ensured via a network of /p···/p interactions involving the phenyl acetate rings of the diclofenac molecules. On the other hand, no intermolecular H-bonding is observed (Fig. 2).

The use of DMSO solvent allowed the formation of a binuclear complex with a Cu2 metal core, which stabilizes the complex in biological media. It was shown that binuclear Cu-NSAID complexes exhibit similar biological activity as the mononuclear complex, but with a higher stability (Dimiza et al., 2011), making them relevant compounds in the treatment of tumor cell lines (Theodorou et al., 1999).

Cu(II) complexes ofnon-steroidal anti-inflammatory drugs (NSAIDs) show enhanced anti-inflammatory activity and reduced gastrointestinal toxicity compared with their uncomplexed parent drug, see: Weder et al. (2002). The structure of the Cu–NSAID is likely to be an important factor for its biological activity. For example, the anti-tumor activity of the monomeric CuII complex of aspirin ([Cu(Asp)2(py)2]) is reportedly more effective than the dimeric [Cu2(Asp)4] complex, see: Oberley & Buettner (1979). It has been shown that binuclear Cu–NSAID complexes exhibit similar biological activity to mononuclear complexes, but with higher stability (Dimiza et al., 2011), making them relevant compounds in the treatment of tumor cell lines (Theodorou et al., 1999). For mono- and binuclear Cu complexes of diclofenac, see: Sayen et al. (2012) for [Cu(diclofenac)2(H2O)2].2H2O and Kovala-Demertzi et al. (1997) for [Cu2(diclofenac)4(DMF)2].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : A representation of the title compound (I) with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. : The π···π stacking interactions in the [Cu2(diclofenac)4(DMSO)2] complex (H atoms are omitted for clarity).
Tetrakis{2-[2-(2,6-dichloroanilino)phenyl]ethanoato- κ2O:O'}bis[(dimethyl sulfoxide-κO)copper(II)](CuCu) top
Crystal data top
[Cu2(C14H10Cl2NO2)4(C2H6OS)2]Z = 1
Mr = 1463.90F(000) = 746
Triclinic, P1Dx = 1.579 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.357 (5) ÅCell parameters from 19895 reflections
b = 12.787 (5) Åθ = 3.0–33.3°
c = 12.925 (5) ŵ = 1.17 mm1
α = 81.605 (5)°T = 100 K
β = 75.561 (5)°Prismatic, green
γ = 68.489 (5)°0.30 × 0.21 × 0.18 mm
V = 1539.4 (11) Å3
Data collection top
Oxford Diffraction SuperNova Atlas
diffractometer
10796 independent reflections
Radiation source: SuperNova (Mo) X-ray Source9113 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4508 pixels mm-1θmax = 33.4°, θmin = 3.0°
CCD scansh = 1515
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2010)
k = 1819
Tmin = 0.867, Tmax = 1.000l = 1919
42084 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.9652P]
where P = (Fo2 + 2Fc2)/3
10796 reflections(Δ/σ)max = 0.012
396 parametersΔρmax = 0.71 e Å3
1 restraintΔρmin = 0.51 e Å3
Crystal data top
[Cu2(C14H10Cl2NO2)4(C2H6OS)2]γ = 68.489 (5)°
Mr = 1463.90V = 1539.4 (11) Å3
Triclinic, P1Z = 1
a = 10.357 (5) ÅMo Kα radiation
b = 12.787 (5) ŵ = 1.17 mm1
c = 12.925 (5) ÅT = 100 K
α = 81.605 (5)°0.30 × 0.21 × 0.18 mm
β = 75.561 (5)°
Data collection top
Oxford Diffraction SuperNova Atlas
diffractometer
10796 independent reflections
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2010)
9113 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 1.000Rint = 0.030
42084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.71 e Å3
10796 reflectionsΔρmin = 0.51 e Å3
396 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.120933 (16)0.021416 (13)0.473791 (12)0.01201 (4)
Cl30.08018 (4)0.53916 (3)0.12807 (3)0.02570 (8)
Cl20.24985 (4)0.22114 (3)1.09549 (3)0.02408 (7)
S1D0.46463 (3)0.01303 (3)0.37338 (3)0.01652 (7)
Cl40.36720 (4)0.26927 (3)0.29584 (3)0.02399 (8)
Cl10.13597 (4)0.16032 (3)0.90149 (3)0.02907 (9)
O20.02500 (10)0.14887 (8)0.38286 (8)0.01807 (19)
O1D0.31958 (10)0.04789 (8)0.43929 (8)0.01638 (18)
O10.03591 (10)0.12257 (9)0.59225 (8)0.0190 (2)
O1'0.16521 (11)0.08291 (9)0.36053 (8)0.0197 (2)
O2'0.17899 (11)0.11273 (9)0.57158 (9)0.0205 (2)
N0120.05900 (13)0.35894 (10)0.27795 (10)0.0178 (2)
H0120.097 (2)0.2948 (17)0.2976 (15)0.021*
C140.21991 (14)0.07801 (12)1.10092 (11)0.0177 (2)
C280.06437 (14)0.42098 (11)0.35062 (11)0.0169 (2)
C80.31758 (14)0.17788 (12)0.88170 (10)0.0159 (2)
N10.19748 (13)0.08795 (11)0.90651 (10)0.0205 (2)
H10.153 (2)0.0471 (17)0.8576 (16)0.025*
C310.17566 (15)0.56327 (12)0.07734 (12)0.0199 (3)
H310.13520.62480.03080.024*
C130.21504 (15)0.01805 (13)1.19914 (11)0.0199 (3)
H130.23230.05571.26200.024*
C270.07237 (16)0.51895 (12)0.39113 (12)0.0205 (3)
H270.00520.54560.36910.025*
C20.15089 (14)0.23216 (12)0.72217 (11)0.0162 (2)
H2A0.08600.21870.77130.019*
H2B0.15370.30380.68000.019*
C90.19799 (14)0.02709 (12)1.00581 (11)0.0176 (3)
C10.08847 (14)0.13770 (11)0.64569 (10)0.0136 (2)
C300.09412 (15)0.50313 (12)0.14053 (11)0.0187 (3)
C1D0.44047 (16)0.01951 (14)0.24247 (11)0.0219 (3)
H02A0.36650.05200.24810.033*
H02B0.52980.06670.19950.033*
H02C0.41180.05660.20800.033*
C50.55113 (15)0.35002 (13)0.82325 (12)0.0232 (3)
H50.63060.40770.80230.028*
C120.18466 (15)0.09755 (14)1.20482 (12)0.0221 (3)
H120.18100.13941.27180.026*
C110.15969 (15)0.15203 (13)1.11267 (13)0.0223 (3)
H110.13750.23131.11610.027*
C70.45321 (15)0.19793 (13)0.94636 (11)0.0190 (3)
H70.46630.15231.01030.023*
C60.56910 (15)0.28436 (13)0.91755 (12)0.0216 (3)
H60.66090.29860.96250.026*
C2D0.50562 (18)0.15937 (13)0.41473 (14)0.0281 (3)
H03A0.52130.17170.48790.042*
H03B0.59170.20370.36650.042*
H03C0.42630.18280.41240.042*
C40.41565 (15)0.33051 (12)0.75986 (12)0.0198 (3)
H40.40340.37570.69550.024*
C260.19259 (16)0.57789 (13)0.46336 (12)0.0227 (3)
H260.19740.64490.49000.027*
C220.17896 (14)0.28408 (11)0.32842 (11)0.0162 (2)
H22A0.12990.28570.25220.019*
H22B0.27800.29070.33110.019*
C320.31703 (15)0.53252 (12)0.08282 (12)0.0205 (3)
H320.37340.57420.04120.025*
C100.16740 (15)0.09000 (13)1.01577 (11)0.0196 (3)
C210.10505 (14)0.17246 (11)0.38384 (10)0.0142 (2)
C230.17988 (14)0.38320 (11)0.37996 (11)0.0159 (2)
C30.29740 (14)0.24632 (11)0.78848 (10)0.0151 (2)
C240.29898 (15)0.44231 (12)0.45452 (12)0.0201 (3)
H240.37690.41600.47690.024*
C250.30575 (16)0.53873 (13)0.49652 (13)0.0243 (3)
H250.38720.57750.54750.029*
C330.37580 (15)0.44104 (12)0.14897 (12)0.0196 (3)
H330.47350.41790.15070.024*
C340.29167 (14)0.38323 (11)0.21269 (11)0.0167 (2)
C290.14713 (14)0.41375 (11)0.21268 (11)0.0163 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01134 (7)0.01206 (8)0.01214 (7)0.00424 (6)0.00065 (5)0.00190 (5)
Cl30.01649 (15)0.03093 (19)0.02816 (18)0.00870 (14)0.00621 (13)0.00686 (14)
Cl20.02819 (18)0.02315 (17)0.02436 (16)0.01136 (14)0.00732 (14)0.00237 (13)
S1D0.01188 (14)0.01976 (16)0.01874 (15)0.00561 (12)0.00296 (11)0.00384 (12)
Cl40.02377 (17)0.01794 (16)0.02430 (16)0.00113 (13)0.00500 (13)0.00066 (12)
Cl10.02692 (18)0.02932 (19)0.02732 (18)0.00156 (15)0.00549 (14)0.01270 (15)
O20.0154 (4)0.0174 (5)0.0202 (5)0.0061 (4)0.0037 (4)0.0033 (4)
O1D0.0130 (4)0.0179 (5)0.0176 (4)0.0055 (4)0.0002 (3)0.0039 (4)
O10.0154 (4)0.0255 (5)0.0171 (4)0.0091 (4)0.0031 (4)0.0097 (4)
O1'0.0168 (5)0.0198 (5)0.0232 (5)0.0089 (4)0.0040 (4)0.0112 (4)
O2'0.0176 (5)0.0186 (5)0.0256 (5)0.0086 (4)0.0057 (4)0.0057 (4)
N0120.0174 (5)0.0128 (5)0.0200 (5)0.0058 (4)0.0018 (4)0.0003 (4)
C140.0140 (6)0.0215 (7)0.0176 (6)0.0060 (5)0.0030 (5)0.0018 (5)
C280.0164 (6)0.0154 (6)0.0163 (6)0.0046 (5)0.0010 (5)0.0003 (5)
C80.0138 (6)0.0196 (6)0.0139 (5)0.0041 (5)0.0031 (4)0.0048 (5)
N10.0152 (5)0.0249 (6)0.0139 (5)0.0001 (5)0.0005 (4)0.0023 (4)
C310.0186 (6)0.0176 (6)0.0207 (6)0.0060 (5)0.0012 (5)0.0019 (5)
C130.0152 (6)0.0294 (7)0.0163 (6)0.0087 (5)0.0040 (5)0.0014 (5)
C270.0205 (6)0.0192 (7)0.0220 (6)0.0080 (5)0.0023 (5)0.0026 (5)
C20.0149 (6)0.0175 (6)0.0167 (6)0.0064 (5)0.0002 (5)0.0062 (5)
C90.0116 (5)0.0231 (7)0.0159 (6)0.0038 (5)0.0016 (5)0.0019 (5)
C10.0139 (5)0.0135 (6)0.0123 (5)0.0031 (4)0.0028 (4)0.0013 (4)
C300.0150 (6)0.0198 (6)0.0206 (6)0.0070 (5)0.0021 (5)0.0000 (5)
C1D0.0190 (6)0.0308 (8)0.0181 (6)0.0108 (6)0.0015 (5)0.0066 (5)
C50.0145 (6)0.0254 (7)0.0257 (7)0.0015 (5)0.0044 (5)0.0035 (6)
C120.0150 (6)0.0296 (8)0.0202 (6)0.0072 (5)0.0059 (5)0.0051 (6)
C110.0152 (6)0.0213 (7)0.0279 (7)0.0035 (5)0.0062 (5)0.0012 (6)
C70.0157 (6)0.0244 (7)0.0157 (6)0.0066 (5)0.0005 (5)0.0033 (5)
C60.0124 (6)0.0288 (8)0.0220 (6)0.0053 (5)0.0005 (5)0.0074 (6)
C2D0.0259 (8)0.0193 (7)0.0342 (8)0.0007 (6)0.0085 (6)0.0017 (6)
C40.0181 (6)0.0197 (6)0.0196 (6)0.0043 (5)0.0032 (5)0.0025 (5)
C260.0226 (7)0.0181 (7)0.0260 (7)0.0040 (5)0.0040 (6)0.0069 (5)
C220.0162 (6)0.0161 (6)0.0163 (6)0.0055 (5)0.0050 (5)0.0013 (5)
C320.0190 (6)0.0197 (7)0.0217 (6)0.0091 (5)0.0017 (5)0.0015 (5)
C100.0141 (6)0.0226 (7)0.0196 (6)0.0023 (5)0.0032 (5)0.0052 (5)
C210.0156 (6)0.0143 (6)0.0116 (5)0.0044 (5)0.0015 (4)0.0024 (4)
C230.0157 (6)0.0142 (6)0.0168 (6)0.0041 (5)0.0037 (5)0.0002 (4)
C30.0132 (5)0.0170 (6)0.0153 (5)0.0049 (5)0.0006 (4)0.0068 (4)
C240.0148 (6)0.0210 (7)0.0220 (6)0.0043 (5)0.0015 (5)0.0022 (5)
C250.0183 (7)0.0240 (7)0.0259 (7)0.0025 (5)0.0000 (5)0.0084 (6)
C330.0147 (6)0.0199 (7)0.0233 (6)0.0056 (5)0.0004 (5)0.0056 (5)
C340.0168 (6)0.0135 (6)0.0177 (6)0.0033 (5)0.0025 (5)0.0020 (5)
C290.0164 (6)0.0140 (6)0.0175 (6)0.0062 (5)0.0005 (5)0.0024 (5)
Geometric parameters (Å, º) top
Cu1—O21.9647 (11)C2—H2B0.9900
Cu1—O11.9655 (11)C9—C101.405 (2)
Cu1—O2'1.9725 (11)C1—O1'i1.2592 (17)
Cu1—O1'1.9799 (11)C30—C291.400 (2)
Cu1—O1D2.1344 (14)C1D—H02A0.9800
Cu1—Cu1i2.6619 (12)C1D—H02B0.9800
Cl3—C301.7350 (17)C1D—H02C0.9800
Cl2—C141.7344 (17)C5—C61.389 (2)
S1D—O1D1.5122 (11)C5—C41.390 (2)
S1D—C1D1.7889 (16)C5—H50.9500
S1D—C2D1.7905 (18)C12—C111.388 (2)
Cl4—C341.7368 (15)C12—H120.9500
Cl1—C101.7406 (16)C11—C101.385 (2)
O2—C211.2649 (17)C11—H110.9500
O1—C11.2595 (16)C7—C61.389 (2)
O1'—C1i1.2592 (17)C7—H70.9500
O2'—C21i1.2578 (16)C6—H60.9500
N012—C291.3959 (18)C2D—H03A0.9800
N012—C281.4212 (18)C2D—H03B0.9800
N012—H0120.80 (2)C2D—H03C0.9800
C14—C131.386 (2)C4—C31.392 (2)
C14—C91.405 (2)C4—H40.9500
C28—C271.394 (2)C26—C251.388 (2)
C28—C231.397 (2)C26—H260.9500
C8—C71.3966 (19)C22—C231.511 (2)
C8—C31.401 (2)C22—C211.5198 (19)
C8—N11.4193 (18)C22—H22A0.9900
N1—C91.4003 (19)C22—H22B0.9900
N1—H10.81 (2)C32—C331.384 (2)
C31—C301.386 (2)C32—H320.9500
C31—C321.387 (2)C21—O2'i1.2579 (16)
C31—H310.9500C23—C241.3992 (19)
C13—C121.389 (2)C24—C251.390 (2)
C13—H130.9500C24—H240.9500
C27—C261.388 (2)C25—H250.9500
C27—H270.9500C33—C341.386 (2)
C2—C31.5050 (19)C33—H330.9500
C2—C11.5203 (19)C34—C291.402 (2)
C2—H2A0.9900
O2—Cu1—O186.92 (5)H02A—C1D—H02C109.5
O2—Cu1—O2'167.83 (4)H02B—C1D—H02C109.5
O1—Cu1—O2'92.47 (6)C6—C5—C4119.31 (14)
O2—Cu1—O1'90.59 (5)C6—C5—H5120.3
O1—Cu1—O1'167.60 (4)C4—C5—H5120.3
O2'—Cu1—O1'87.41 (6)C11—C12—C13120.00 (14)
O2—Cu1—O1D97.11 (5)C11—C12—H12120.0
O1—Cu1—O1D94.31 (4)C13—C12—H12120.0
O2'—Cu1—O1D95.06 (4)C10—C11—C12119.50 (15)
O1'—Cu1—O1D98.06 (4)C10—C11—H11120.3
O2—Cu1—Cu1i86.45 (4)C12—C11—H11120.3
O1—Cu1—Cu1i85.35 (3)C6—C7—C8120.25 (13)
O2'—Cu1—Cu1i81.39 (4)C6—C7—H7119.9
O1'—Cu1—Cu1i82.36 (3)C8—C7—H7119.9
O1D—Cu1—Cu1i176.41 (3)C5—C6—C7120.16 (13)
O1D—S1D—C1D106.71 (7)C5—C6—H6119.9
O1D—S1D—C2D106.52 (7)C7—C6—H6119.9
C1D—S1D—C2D98.13 (8)S1D—C2D—H03A109.5
C21—O2—Cu1120.01 (9)S1D—C2D—H03B109.5
S1D—O1D—Cu1133.22 (6)H03A—C2D—H03B109.5
C1—O1—Cu1121.65 (9)S1D—C2D—H03C109.5
C1i—O1'—Cu1124.30 (9)H03A—C2D—H03C109.5
C21i—O2'—Cu1125.79 (9)H03B—C2D—H03C109.5
C29—N012—C28119.75 (12)C5—C4—C3121.55 (14)
C29—N012—H012116.5 (14)C5—C4—H4119.2
C28—N012—H012115.4 (14)C3—C4—H4119.2
C13—C14—C9122.73 (14)C25—C26—C27119.88 (14)
C13—C14—Cl2118.27 (11)C25—C26—H26120.1
C9—C14—Cl2118.98 (11)C27—C26—H26120.1
C27—C28—C23120.00 (13)C23—C22—C21111.97 (11)
C27—C28—N012121.21 (13)C23—C22—H22A109.2
C23—C28—N012118.79 (13)C21—C22—H22A109.2
C7—C8—C3120.06 (13)C23—C22—H22B109.2
C7—C8—N1121.86 (13)C21—C22—H22B109.2
C3—C8—N1118.07 (12)H22A—C22—H22B107.9
C9—N1—C8123.36 (12)C33—C32—C31119.92 (13)
C9—N1—H1111.4 (14)C33—C32—H32120.0
C8—N1—H1113.6 (14)C31—C32—H32120.0
C30—C31—C32119.23 (13)C11—C10—C9122.69 (14)
C30—C31—H31120.4C11—C10—Cl1118.58 (12)
C32—C31—H31120.4C9—C10—Cl1118.73 (11)
C14—C13—C12119.40 (14)O2'i—C21—O2125.72 (13)
C14—C13—H13120.3O2'i—C21—C22117.28 (12)
C12—C13—H13120.3O2—C21—C22116.98 (12)
C26—C27—C28120.68 (14)C28—C23—C24118.49 (13)
C26—C27—H27119.7C28—C23—C22120.72 (12)
C28—C27—H27119.7C24—C23—C22120.72 (13)
C3—C2—C1115.83 (11)C4—C3—C8118.60 (12)
C3—C2—H2A108.3C4—C3—C2120.36 (13)
C1—C2—H2A108.3C8—C3—C2121.01 (12)
C3—C2—H2B108.3C25—C24—C23121.42 (14)
C1—C2—H2B108.3C25—C24—H24119.3
H2A—C2—H2B107.4C23—C24—H24119.3
N1—C9—C14122.05 (14)C26—C25—C24119.44 (14)
N1—C9—C10122.15 (13)C26—C25—H25120.3
C14—C9—C10115.66 (13)C24—C25—H25120.3
O1'i—C1—O1125.60 (12)C32—C33—C34119.82 (13)
O1'i—C1—C2117.90 (12)C32—C33—H33120.1
O1—C1—C2116.48 (12)C34—C33—H33120.1
C31—C30—C29122.77 (13)C33—C34—C29122.24 (13)
C31—C30—Cl3118.42 (11)C33—C34—Cl4119.09 (11)
C29—C30—Cl3118.81 (10)C29—C34—Cl4118.66 (10)
S1D—C1D—H02A109.5N012—C29—C30120.60 (13)
S1D—C1D—H02B109.5N012—C29—C34123.50 (13)
H02A—C1D—H02B109.5C30—C29—C34115.89 (12)
S1D—C1D—H02C109.5
O1—Cu1—O2—C2180.75 (10)C3—C8—C7—C61.2 (2)
O2'—Cu1—O2—C216.7 (3)N1—C8—C7—C6177.75 (13)
O1'—Cu1—O2—C2187.09 (10)C4—C5—C6—C71.9 (2)
O1D—Cu1—O2—C21174.72 (10)C8—C7—C6—C51.2 (2)
Cu1i—Cu1—O2—C214.78 (10)C6—C5—C4—C30.2 (2)
C1D—S1D—O1D—Cu154.37 (10)C28—C27—C26—C250.5 (2)
C2D—S1D—O1D—Cu149.71 (10)C30—C31—C32—C331.5 (2)
O2—Cu1—O1D—S1D106.94 (9)C12—C11—C10—C90.8 (2)
O1—Cu1—O1D—S1D165.63 (8)C12—C11—C10—Cl1179.88 (11)
O2'—Cu1—O1D—S1D72.77 (9)N1—C9—C10—C11176.25 (13)
O1'—Cu1—O1D—S1D15.32 (9)C14—C9—C10—C110.3 (2)
O2—Cu1—O1—C184.24 (11)N1—C9—C10—Cl13.02 (18)
O2'—Cu1—O1—C183.59 (11)C14—C9—C10—Cl1179.00 (10)
O1'—Cu1—O1—C15.6 (3)Cu1—O2—C21—O2'i9.74 (19)
O1D—Cu1—O1—C1178.85 (10)Cu1—O2—C21—C22168.74 (9)
Cu1i—Cu1—O1—C12.44 (10)C23—C22—C21—O2'i116.54 (13)
O2—Cu1—O1'—C1i93.06 (12)C23—C22—C21—O262.08 (16)
O1—Cu1—O1'—C1i14.8 (3)C27—C28—C23—C243.4 (2)
O2'—Cu1—O1'—C1i74.93 (11)N012—C28—C23—C24177.69 (13)
O1D—Cu1—O1'—C1i169.68 (11)C27—C28—C23—C22173.79 (13)
Cu1i—Cu1—O1'—C1i6.72 (11)N012—C28—C23—C225.15 (19)
O2—Cu1—O2'—C21i2.2 (3)C21—C22—C23—C2885.23 (16)
O1—Cu1—O2'—C21i89.04 (12)C21—C22—C23—C2497.69 (15)
O1'—Cu1—O2'—C21i78.54 (11)C5—C4—C3—C82.1 (2)
O1D—Cu1—O2'—C21i176.41 (11)C5—C4—C3—C2175.91 (13)
Cu1i—Cu1—O2'—C21i4.12 (11)C7—C8—C3—C42.8 (2)
C29—N012—C28—C2726.4 (2)N1—C8—C3—C4176.17 (12)
C29—N012—C28—C23152.56 (13)C7—C8—C3—C2175.18 (12)
C7—C8—N1—C913.2 (2)N1—C8—C3—C25.80 (19)
C3—C8—N1—C9167.83 (13)C1—C2—C3—C4100.88 (15)
C9—C14—C13—C121.3 (2)C1—C2—C3—C881.12 (16)
Cl2—C14—C13—C12177.01 (11)C28—C23—C24—C252.1 (2)
C23—C28—C27—C262.1 (2)C22—C23—C24—C25175.05 (13)
N012—C28—C27—C26178.99 (14)C27—C26—C25—C241.8 (2)
C8—N1—C9—C1463.1 (2)C23—C24—C25—C260.5 (2)
C8—N1—C9—C10121.19 (16)C31—C32—C33—C342.6 (2)
C13—C14—C9—N1177.33 (13)C32—C33—C34—C290.3 (2)
Cl2—C14—C9—N10.95 (18)C32—C33—C34—Cl4179.55 (11)
C13—C14—C9—C101.3 (2)C28—N012—C29—C3059.39 (19)
Cl2—C14—C9—C10176.94 (10)C28—N012—C29—C34121.85 (15)
Cu1—O1—C1—O1'i8.65 (19)C31—C30—C29—N012177.19 (14)
Cu1—O1—C1—C2169.98 (9)Cl3—C30—C29—N0123.74 (19)
C3—C2—C1—O1'i3.49 (18)C31—C30—C29—C344.0 (2)
C3—C2—C1—O1177.76 (12)Cl3—C30—C29—C34175.12 (10)
C32—C31—C30—C291.9 (2)C33—C34—C29—N012178.30 (13)
C32—C31—C30—Cl3177.23 (11)Cl4—C34—C29—N0121.52 (19)
C14—C13—C12—C110.1 (2)C33—C34—C29—C302.9 (2)
C13—C12—C11—C100.9 (2)Cl4—C34—C29—C30177.30 (10)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C14H10Cl2NO2)4(C2H6OS)2]
Mr1463.90
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.357 (5), 12.787 (5), 12.925 (5)
α, β, γ (°)81.605 (5), 75.561 (5), 68.489 (5)
V3)1539.4 (11)
Z1
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.30 × 0.21 × 0.18
Data collection
DiffractometerOxford Diffraction SuperNova Atlas
Absorption correctionMulti-scan
(ABSPACK; Oxford Diffraction, 2010)
Tmin, Tmax0.867, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
42084, 10796, 9113
Rint0.030
(sin θ/λ)max1)0.774
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 0.99
No. of reflections10796
No. of parameters396
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.71, 0.51

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O21.9647 (11)Cu1—O1'1.9799 (11)
Cu1—O11.9655 (11)Cu1—O1D2.1344 (14)
Cu1—O2'1.9725 (11)Cu1—Cu1i2.6619 (12)
O2—Cu1—O186.92 (5)O2'—Cu1—O1D95.06 (4)
O2—Cu1—O2'167.83 (4)O1'—Cu1—O1D98.06 (4)
O1—Cu1—O2'92.47 (6)O2—Cu1—Cu1i86.45 (4)
O2—Cu1—O1'90.59 (5)O1—Cu1—Cu1i85.35 (3)
O1—Cu1—O1'167.60 (4)O2'—Cu1—Cu1i81.39 (4)
O2'—Cu1—O1'87.41 (6)O1'—Cu1—Cu1i82.36 (3)
O2—Cu1—O1D97.11 (5)O1D—Cu1—Cu1i176.41 (3)
O1—Cu1—O1D94.31 (4)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

Dr S. Chevreux and Professor E. Wenger are gratefully acknowledged for the crystal structure determination.

References

First citationDimiza, F., Perdih, F., Tangoulis, V., Turel, I., Kessissoglou, D. & Psomas, G. (2011). J. Inorg. Biochem. 105, 476–489.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKovala-Demertzi, D., Theodorou, A., Demertzis, M., Raptopoulou, C. P. & Terzis, A. (1997). J. Inorg. Biochem. 65, 151–157.  CAS Google Scholar
First citationOberley, L. W. & Buettner, G. R. (1979). Cancer Res. 39, 1141–1147.  CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and ABSPACK. Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSayen, S., Carlier, A., Tarpin, M. & Guillon, E. (2012). Dalton Trans. Submitted.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTheodorou, A., Demertzis, M. A., Kovala-Demertzi, D., Lioliou, E. E., Pantazaki, A. A. & Kyriakidis, D. A. (1999). BioMetals, 12, 167–172.  Web of Science CrossRef CAS Google Scholar
First citationWeder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffin, J. R., Regtop, H. L. & Davies, N. M. (2002). Coord. Chem. Rev. 232, 95–126.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m474-m475
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds