organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-6-{[(6-chloropyridin-3-yl)methyl](ethyl)amino}-1-methyl-5-nitro-4-phenyl-1,4-di­hydro­pyridine-3-carbo­nitrile ethanol monosolvate

aDepartment of Chemistry, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
*Correspondence e-mail: willin112@163.com

(Received 19 February 2012; accepted 19 March 2012; online 24 March 2012)

In the title compound, C21H21ClN6O2·C2H6O, a member of the insecticidal active neonicotinoid group of compounds, the 1,4-dihydro­pyridine ring adopts a boat conformation. An intra­molecular C—H⋯O hydrogen bond occurs while the components are linked by an N—H⋯O interaction. The crystal packing is stablized by O—H⋯N hydrogen bonds and C—H⋯O interactions.

Related literature

For the synthesis, see: Zhang et al. (2010[Zhang, W. W., Yang, X. B., Chen, W. D., Xu, X. Y., Li, L., Zhai, H. B. & Li, Z. (2010). J. Agric. Food Chem. 58, 2741-2745.]). For the insectidal activity of nitenpyram [systematic name: (E)-N-(6-Chloro-3-pyridyl­meth­yl)-N-ethyl-N′-methyl-2-nitro­vinyl­idenediamine], see: Elbert & Nauen (2000[Elbert, A. & Nauen, R. (2000). Pest Manage. Sci. 56, 60-64.]); Jeschke & Nauen (2008[Jeschke, P. & Nauen, R. (2008). Pest Manage. Sci. 64, 1084-1098.]); Kashiwada (1996[Kashiwada, Y. (1996). Agrochem. Jpn, 68, 18-19.]); Minamida et al. (1993[Minamida, I., Iwanaga, K. & Tabuchi, T. (1993). J. Pestic. Sci. 18, 31-40.]); Shao et al. (2008[Shao, X. S., Zhang, W. W., Peng, Y. Q., Li, Z., Tian, Z. Z. & Qian, X. H. (2008). Bioorg. Med. Chem. Lett. 18, 6513-6516.]); Tomizawa & Casida (2009[Tomizawa, M. & Casida, J. E. (2009). Acc. Chem. Res. 42, 260-269.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21ClN6O2·C2H6O

  • Mr = 470.96

  • Orthorhombic, P b c a

  • a = 19.3334 (19) Å

  • b = 12.1156 (12) Å

  • c = 20.644 (2) Å

  • V = 4835.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS: Bruker, 2001[Bruker (2001). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.981

  • 44471 measured reflections

  • 4267 independent reflections

  • 3044 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.135

  • S = 1.05

  • 4267 reflections

  • 330 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N1i 0.82 1.97 2.785 (13) 179
N4—H4B⋯O3 0.86 2.26 2.902 (11) 132
C6—H6A⋯O2 0.97 2.13 2.783 (3) 124
C7—H7B⋯O2ii 0.97 2.57 3.378 (3) 141
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Neonicotinoid insecticides (NNSs), which act agonistically on the insect nicotinic acetylcholine receptors (nAChRs), are gaining widespread use as a way to control pests, because of their high potency and low mammalian toxicity. As part of the chloronicotinyl subclass, nitenpyram, which was brought to the market two decades ago, also showed higher selectivity and better systemic properties against mammals, birds, aquatic life than insects, due to the differential binding affinities with the nAChR receptors of their neurosystem. (Jeschke & Nauen, 2008; Tomizawa & Casida, 2009; Minamida et al., 1993; Kashiwada, 1996; Shao et al., 2008; Elbert & Nauen, 2000). In this report, the title compound (Scheme I) was synthesized and characterized by X-ray diffraction.

In the title structure, C21H21ClN6O2C2H6O, (I), there is a cis-2-Amino-6-[N-(6-chloro-3-pyridinylmethyl)-N-ethyl]amino-3-cyano-1-methyl-5- nitro-4-phenyl-1,4-dihydropyridine molecule and a ethanol molecule in the asymmetric unit (Fig. 1). The 1,4-dihydropyridine ring adopts a sofa (boat) conformation. As compared with the trans configuration of nitro in the crystal structure of nitenpyram, the nitro group in the title compound is in the cis configuration as anticipated. Interestingly, the C–C and C-N bond length data (C9–N3 1.389 (2) Å, N3–C10 1.402 (3) Å, C11–C12 1.510 (3) Å and C12-C13 1.519 (3) Å) in the structure of (I) are shorter than the standard C–C (1.54 Å) and C–N (1.47 Å). On the contrary, the CC bond length data (C9C13 1.384 (3) Å and C10C11 1.348 (3) Å) are longer than the standard CC bond (1.34 Å). This shows that there is a homo-conjugation effect on the 1,4-dihydropyridine scaffold (Fig. 1).

The crystal packing is stablized by O-H···N, N-H···O and C-H···O hydrogen bonds (Fig. 2). Analysis shows that no intermolecular p···π or C-H···π interactions exist in the crystal structure.

Related literature top

For the synthesis, see: Zhang et al. (2010). For the insectidal activity of nitenpyram [systematic name: (E)-N-(6-Chloro-3-pyridylmethyl)-N-ethyl-N'-methyl-2-nitrovinylidenediamine], see: Elbert & Nauen (2000); Jeschke & Nauen (2008); Kashiwada (1996); Minamida et al. (1993); Shao et al. (2008); Tomizawa & Casida (2009).

Experimental top

The title compound was prepared by the literature method (Zhang et al., 2010) and it was obtained using volatilization of petroleum ether and ethanol solution at room temperature, giving yellow crystals (yield 83.7%). 1H NMR (CDCl3, 400 Hz): 8.08 (d, J = 12.4 Hz,1H, Py—H), 7.34 (d, J = 8.9 Hz, 1H, Py—H), 7.24 (s,3H,Ph—H), 7.08 (m, J = 7.8 Hz, 1H, Py—H), 7.05–6.95 (m, 2H, Ph—H), 5.06 (s, 1H, CH), 4.79 (s, 2H, NH2), 4.33 (d, J = 14.8 Hz, 1H), 4.06 (m, J = 14.6 Hz, 1H), 3.35–3.20 (m, 1H), 3.17 (s, 3H, NCH3), 3.10 (d, J = 7.3 Hz,1H), 1.33–1.21 (m,3H,NCH2CH3). IR(KBr, cm-1) 2974 (CH3), 3327, 3197 (NH2), 2184 (CN), 1457, 1409 (NO2), 1648, 1614, 1557 (benzene).Anal. calcd. for C23H21ClN6O2 C 59.36, H 4.98, N 19.78% found, C 59.38, H 4.97, N 19.76%.

Refinement top

During the refinement, the ethanol molecule was disordered over two sites. These C-C and C-O distances were refined with the restraints of C-C = 1.51 (1)Å and C-O = 1.38 (1)Å by using the DFIX command. The final occupancies for the major and minor components were 0.57 (1):0.43 (1), respectively. In (I), H atoms bonded to C and N atoms were located at their ideal positions and subsequently treated as riding modes with C–H distances of 0.93Å (aromatic), 0.97Å (methylene) 0.98Å (methine) 0.86Å (amine) and 0.96Å (methyl) with Uiso(H) = 1.2Ueq(aromatic, methylene, methine C or N) or 1.5Ueq(methyl C). H atoms bonded to ethanol O atoms were located at its ideal position (O-H=0.82Å) and refined with the constraint of the Uiso(H) = 1.5Ueq(O).

Structure description top

Neonicotinoid insecticides (NNSs), which act agonistically on the insect nicotinic acetylcholine receptors (nAChRs), are gaining widespread use as a way to control pests, because of their high potency and low mammalian toxicity. As part of the chloronicotinyl subclass, nitenpyram, which was brought to the market two decades ago, also showed higher selectivity and better systemic properties against mammals, birds, aquatic life than insects, due to the differential binding affinities with the nAChR receptors of their neurosystem. (Jeschke & Nauen, 2008; Tomizawa & Casida, 2009; Minamida et al., 1993; Kashiwada, 1996; Shao et al., 2008; Elbert & Nauen, 2000). In this report, the title compound (Scheme I) was synthesized and characterized by X-ray diffraction.

In the title structure, C21H21ClN6O2C2H6O, (I), there is a cis-2-Amino-6-[N-(6-chloro-3-pyridinylmethyl)-N-ethyl]amino-3-cyano-1-methyl-5- nitro-4-phenyl-1,4-dihydropyridine molecule and a ethanol molecule in the asymmetric unit (Fig. 1). The 1,4-dihydropyridine ring adopts a sofa (boat) conformation. As compared with the trans configuration of nitro in the crystal structure of nitenpyram, the nitro group in the title compound is in the cis configuration as anticipated. Interestingly, the C–C and C-N bond length data (C9–N3 1.389 (2) Å, N3–C10 1.402 (3) Å, C11–C12 1.510 (3) Å and C12-C13 1.519 (3) Å) in the structure of (I) are shorter than the standard C–C (1.54 Å) and C–N (1.47 Å). On the contrary, the CC bond length data (C9C13 1.384 (3) Å and C10C11 1.348 (3) Å) are longer than the standard CC bond (1.34 Å). This shows that there is a homo-conjugation effect on the 1,4-dihydropyridine scaffold (Fig. 1).

The crystal packing is stablized by O-H···N, N-H···O and C-H···O hydrogen bonds (Fig. 2). Analysis shows that no intermolecular p···π or C-H···π interactions exist in the crystal structure.

For the synthesis, see: Zhang et al. (2010). For the insectidal activity of nitenpyram [systematic name: (E)-N-(6-Chloro-3-pyridylmethyl)-N-ethyl-N'-methyl-2-nitrovinylidenediamine], see: Elbert & Nauen (2000); Jeschke & Nauen (2008); Kashiwada (1996); Minamida et al. (1993); Shao et al. (2008); Tomizawa & Casida (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) shown with 30% displacement ellipsoids. For clarity, the minor component of the disordered ethanol molecule is omitted. Hydrogen bonding is shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal packing in the title compound (I). Hydrogen bonds are shown as dashed lines.
2-Amino-6-{[(6-chloropyridin-3-yl)methyl](ethyl)amino}-1-methyl- 5-nitro-4-phenyl-1,4-dihydropyridine-3-carbonitrile ethanol monosolvate top
Crystal data top
C21H21ClN6O2·C2H6OF(000) = 1984
Mr = 470.96Dx = 1.294 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5913 reflections
a = 19.3334 (19) Åθ = 2.2–20.1°
b = 12.1156 (12) ŵ = 0.19 mm1
c = 20.644 (2) ÅT = 298 K
V = 4835.5 (8) Å3Block, yellow
Z = 80.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4267 independent reflections
Radiation source: fine-focus sealed tube3044 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS: Bruker, 2001)
h = 2323
Tmin = 0.970, Tmax = 0.981k = 1414
44471 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.8771P]
where P = (Fo2 + 2Fc2)/3
4267 reflections(Δ/σ)max < 0.001
330 parametersΔρmax = 0.21 e Å3
4 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H21ClN6O2·C2H6OV = 4835.5 (8) Å3
Mr = 470.96Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 19.3334 (19) ŵ = 0.19 mm1
b = 12.1156 (12) ÅT = 298 K
c = 20.644 (2) Å0.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4267 independent reflections
Absorption correction: multi-scan
(SADABS: Bruker, 2001)
3044 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.981Rint = 0.045
44471 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0484 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
4267 reflectionsΔρmin = 0.20 e Å3
330 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.16697 (13)0.1575 (2)0.97037 (12)0.0672 (6)
C20.16346 (13)0.0715 (2)0.92705 (12)0.0677 (6)
H20.14230.00510.93790.081*
C30.19239 (11)0.08776 (18)0.86736 (11)0.0594 (6)
H30.19130.03140.83680.071*
C40.22332 (10)0.18758 (16)0.85211 (10)0.0509 (5)
C50.22151 (11)0.26760 (19)0.89890 (12)0.0636 (6)
H50.24080.33590.88900.076*
C60.26080 (10)0.20673 (18)0.78962 (10)0.0538 (5)
H6A0.27660.28270.78840.065*
H6B0.30140.15960.78840.065*
C70.25784 (11)0.15403 (18)0.67342 (11)0.0608 (6)
H7A0.22560.13480.63920.073*
H7B0.28570.08930.68280.073*
C80.30456 (13)0.2463 (3)0.65010 (14)0.0890 (8)
H8A0.27730.31060.64090.133*
H8B0.32820.22330.61150.133*
H8C0.33790.26340.68310.133*
C90.15149 (10)0.21488 (15)0.72709 (10)0.0457 (5)
C100.04705 (11)0.17912 (18)0.66673 (10)0.0540 (5)
C110.01366 (10)0.26259 (18)0.69650 (11)0.0555 (5)
C120.04016 (10)0.30390 (16)0.76091 (10)0.0515 (5)
H120.02490.38050.76600.062*
C130.11850 (9)0.30414 (15)0.75527 (10)0.0473 (5)
C140.12560 (12)0.02347 (17)0.68983 (12)0.0629 (6)
H14A0.14310.00430.64780.094*
H14B0.08410.01750.69830.094*
H14C0.15960.00600.72210.094*
C150.04783 (12)0.3063 (2)0.66890 (13)0.0663 (6)
C160.01488 (10)0.23895 (18)0.81946 (11)0.0551 (5)
C170.01453 (13)0.1358 (2)0.81419 (14)0.0727 (7)
H170.02060.10460.77340.087*
C180.03510 (15)0.0781 (2)0.86844 (16)0.0910 (9)
H180.05440.00820.86380.109*
C190.02752 (15)0.1221 (3)0.92841 (17)0.0951 (9)
H190.04160.08300.96490.114*
C200.00120 (15)0.2249 (3)0.93454 (15)0.0975 (10)
H200.00670.25580.97550.117*
C210.02208 (13)0.2832 (2)0.88048 (13)0.0784 (7)
H210.04120.35310.88540.094*
Cl10.13433 (5)0.14060 (7)1.04868 (3)0.1000 (3)
N10.19380 (11)0.25445 (17)0.95814 (10)0.0710 (6)
N20.21881 (8)0.18511 (13)0.73179 (8)0.0486 (4)
N30.11034 (8)0.14244 (13)0.69193 (8)0.0491 (4)
N40.02386 (10)0.12143 (17)0.61498 (10)0.0750 (6)
H4A0.01560.13700.59810.090*
H4B0.04860.06920.59890.090*
N50.09771 (11)0.34154 (19)0.64678 (13)0.0927 (7)
N60.15343 (9)0.40156 (14)0.77108 (9)0.0568 (5)
O10.12139 (9)0.47446 (13)0.80126 (9)0.0812 (5)
O20.21474 (8)0.41614 (12)0.75479 (9)0.0703 (5)
C220.1322 (6)0.1213 (7)0.4967 (5)0.147 (4)0.57
H22A0.17460.14130.51780.220*0.57
H22B0.12630.16560.45850.220*0.57
H22C0.09410.13340.52560.220*0.57
C230.1345 (8)0.0106 (7)0.4793 (5)0.194 (6)0.57
H23A0.09420.00430.45280.233*0.57
H23B0.17470.00040.45190.233*0.57
O30.1370 (7)0.0705 (9)0.5276 (6)0.145 (5)0.57
H3A0.15320.12220.50690.218*0.57
C22'0.1377 (5)0.0766 (13)0.4602 (5)0.113 (3)0.43
H22D0.08960.08590.47010.169*0.43
H22E0.15810.14730.45130.169*0.43
H22F0.14250.02980.42290.169*0.43
C23'0.1723 (4)0.0269 (7)0.5146 (4)0.094 (2)0.43
H23C0.17320.07880.55030.113*0.43
H23D0.21980.01050.50280.113*0.43
O3'0.1403 (5)0.0683 (7)0.5341 (6)0.085 (3)0.43
H3B0.11930.09550.50350.127*0.43
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0703 (15)0.0707 (16)0.0606 (14)0.0110 (12)0.0025 (12)0.0082 (12)
C20.0759 (15)0.0581 (14)0.0690 (16)0.0160 (12)0.0023 (13)0.0120 (12)
C30.0652 (14)0.0515 (12)0.0616 (14)0.0049 (10)0.0046 (11)0.0034 (11)
C40.0448 (11)0.0496 (12)0.0582 (13)0.0018 (9)0.0067 (9)0.0043 (10)
C50.0669 (14)0.0556 (13)0.0683 (16)0.0134 (11)0.0021 (12)0.0053 (12)
C60.0416 (11)0.0535 (12)0.0665 (14)0.0009 (9)0.0016 (10)0.0037 (10)
C70.0543 (12)0.0631 (14)0.0651 (14)0.0088 (10)0.0134 (11)0.0066 (11)
C80.0765 (17)0.0963 (19)0.094 (2)0.0013 (15)0.0331 (15)0.0180 (16)
C90.0440 (11)0.0428 (11)0.0505 (11)0.0034 (9)0.0030 (9)0.0091 (9)
C100.0472 (11)0.0586 (13)0.0563 (13)0.0054 (10)0.0024 (10)0.0052 (11)
C110.0430 (11)0.0554 (12)0.0682 (14)0.0019 (10)0.0014 (10)0.0085 (11)
C120.0435 (11)0.0430 (11)0.0682 (14)0.0065 (9)0.0034 (10)0.0016 (10)
C130.0448 (11)0.0389 (10)0.0584 (12)0.0016 (9)0.0009 (9)0.0053 (9)
C140.0681 (14)0.0443 (12)0.0764 (16)0.0008 (10)0.0046 (12)0.0002 (11)
C150.0502 (13)0.0630 (14)0.0856 (17)0.0020 (11)0.0027 (12)0.0091 (13)
C160.0394 (10)0.0570 (13)0.0690 (14)0.0056 (10)0.0088 (10)0.0011 (11)
C170.0740 (15)0.0651 (15)0.0790 (17)0.0060 (13)0.0211 (13)0.0025 (13)
C180.094 (2)0.0777 (18)0.102 (2)0.0085 (15)0.0348 (18)0.0158 (17)
C190.0780 (19)0.118 (3)0.090 (2)0.0036 (18)0.0234 (16)0.033 (2)
C200.087 (2)0.141 (3)0.0646 (18)0.006 (2)0.0106 (15)0.0001 (19)
C210.0729 (16)0.0889 (19)0.0735 (18)0.0101 (14)0.0092 (14)0.0073 (15)
Cl10.1254 (7)0.1083 (6)0.0663 (5)0.0273 (5)0.0183 (4)0.0100 (4)
N10.0846 (14)0.0667 (13)0.0618 (13)0.0142 (11)0.0057 (10)0.0010 (10)
N20.0411 (9)0.0498 (9)0.0550 (10)0.0011 (7)0.0036 (8)0.0046 (8)
N30.0455 (9)0.0430 (9)0.0588 (10)0.0013 (7)0.0006 (8)0.0022 (8)
N40.0625 (12)0.0837 (14)0.0787 (14)0.0041 (10)0.0180 (10)0.0155 (12)
N50.0568 (13)0.0909 (16)0.130 (2)0.0106 (11)0.0179 (13)0.0186 (15)
N60.0557 (11)0.0431 (10)0.0715 (12)0.0019 (9)0.0003 (9)0.0057 (9)
O10.0788 (11)0.0533 (10)0.1115 (14)0.0030 (9)0.0099 (10)0.0224 (10)
O20.0534 (9)0.0533 (9)0.1042 (13)0.0117 (7)0.0058 (9)0.0071 (9)
C220.203 (10)0.110 (7)0.128 (8)0.023 (6)0.051 (7)0.017 (5)
C230.363 (19)0.097 (7)0.122 (8)0.046 (9)0.026 (10)0.009 (6)
O30.219 (11)0.122 (8)0.095 (6)0.048 (7)0.036 (6)0.014 (6)
C22'0.099 (6)0.134 (10)0.105 (8)0.003 (7)0.013 (6)0.021 (7)
C23'0.099 (5)0.105 (7)0.077 (5)0.040 (5)0.010 (4)0.013 (5)
O3'0.105 (6)0.055 (5)0.093 (7)0.001 (5)0.037 (5)0.016 (5)
Geometric parameters (Å, º) top
C1—N11.309 (3)C14—H14B0.9600
C1—C21.374 (3)C14—H14C0.9600
C1—Cl11.747 (3)C15—N51.149 (3)
C2—C31.368 (3)C16—C211.376 (3)
C2—H20.9300C16—C171.377 (3)
C3—C41.385 (3)C17—C181.379 (4)
C3—H30.9300C17—H170.9300
C4—C51.369 (3)C18—C191.356 (4)
C4—C61.498 (3)C18—H180.9300
C5—N11.345 (3)C19—C201.370 (5)
C5—H50.9300C19—H190.9300
C6—N21.467 (3)C20—C211.381 (4)
C6—H6A0.9700C20—H200.9300
C6—H6B0.9700C21—H210.9300
C7—N21.471 (3)N4—H4A0.8600
C7—C81.516 (3)N4—H4B0.8600
C7—H7A0.9700N6—O21.245 (2)
C7—H7B0.9700N6—O11.246 (2)
C8—H8A0.9600C22—C231.388 (8)
C8—H8B0.9600C22—H22A0.9600
C8—H8C0.9600C22—H22B0.9600
C9—N21.354 (2)C22—H22C0.9600
C9—C131.384 (3)C23—O31.400 (9)
C9—N31.389 (2)C23—H23A0.9700
C10—C111.348 (3)C23—H23B0.9700
C10—N41.353 (3)O3—H3A0.8200
C10—N31.402 (3)C22'—C23'1.439 (8)
C11—C151.420 (3)C22'—H22D0.9600
C11—C121.510 (3)C22'—H22E0.9600
C12—C131.519 (3)C22'—H22F0.9600
C12—C161.523 (3)C23'—O3'1.370 (8)
C12—H120.9800C23'—H23C0.9700
C13—N61.398 (3)C23'—H23D0.9700
C14—N31.472 (3)O3'—H3A0.8975
C14—H14A0.9600O3'—H3B0.8200
N1—C1—C2125.0 (2)H14A—C14—H14C109.5
N1—C1—Cl1115.25 (19)H14B—C14—H14C109.5
C2—C1—Cl1119.72 (19)N5—C15—C11179.7 (3)
C3—C2—C1117.2 (2)C21—C16—C17117.9 (2)
C3—C2—H2121.4C21—C16—C12119.5 (2)
C1—C2—H2121.4C17—C16—C12122.6 (2)
C2—C3—C4120.4 (2)C16—C17—C18121.0 (3)
C2—C3—H3119.8C16—C17—H17119.5
C4—C3—H3119.8C18—C17—H17119.5
C5—C4—C3116.5 (2)C19—C18—C17120.8 (3)
C5—C4—C6120.69 (19)C19—C18—H18119.6
C3—C4—C6122.7 (2)C17—C18—H18119.6
N1—C5—C4124.6 (2)C18—C19—C20119.0 (3)
N1—C5—H5117.7C18—C19—H19120.5
C4—C5—H5117.7C20—C19—H19120.5
N2—C6—C4113.92 (16)C19—C20—C21120.6 (3)
N2—C6—H6A108.8C19—C20—H20119.7
C4—C6—H6A108.8C21—C20—H20119.7
N2—C6—H6B108.8C16—C21—C20120.7 (3)
C4—C6—H6B108.8C16—C21—H21119.6
H6A—C6—H6B107.7C20—C21—H21119.6
N2—C7—C8112.2 (2)C1—N1—C5116.1 (2)
N2—C7—H7A109.2C9—N2—C6122.86 (17)
C8—C7—H7A109.2C9—N2—C7120.18 (18)
N2—C7—H7B109.2C6—N2—C7115.36 (15)
C8—C7—H7B109.2C9—N3—C10119.57 (16)
H7A—C7—H7B107.9C9—N3—C14121.28 (16)
C7—C8—H8A109.5C10—N3—C14118.32 (17)
C7—C8—H8B109.5C10—N4—H4A120.0
H8A—C8—H8B109.5C10—N4—H4B120.0
C7—C8—H8C109.5H4A—N4—H4B120.0
H8A—C8—H8C109.5O2—N6—O1120.54 (17)
H8B—C8—H8C109.5O2—N6—C13121.09 (18)
N2—C9—C13128.39 (18)O1—N6—C13118.36 (17)
N2—C9—N3114.80 (17)C22—C23—O3119.7 (11)
C13—C9—N3116.72 (17)C22—C23—H23A107.4
C11—C10—N4126.1 (2)O3—C23—H23A107.4
C11—C10—N3119.12 (19)C22—C23—H23B107.4
N4—C10—N3114.74 (19)O3—C23—H23B107.4
C10—C11—C15119.8 (2)H23A—C23—H23B106.9
C10—C11—C12119.17 (18)C23—O3—H3A100.2
C15—C11—C12120.9 (2)C23'—C22'—H22D109.5
C11—C12—C13105.76 (17)C23'—C22'—H22E109.5
C11—C12—C16114.75 (17)H22D—C22'—H22E109.5
C13—C12—C16112.45 (17)C23'—C22'—H22F109.5
C11—C12—H12107.9H22D—C22'—H22F109.5
C13—C12—H12107.9H22E—C22'—H22F109.5
C16—C12—H12107.9O3'—C23'—C22'111.9 (11)
C9—C13—N6122.37 (17)O3'—C23'—H23C109.2
C9—C13—C12119.35 (17)C22'—C23'—H23C109.2
N6—C13—C12117.72 (17)O3'—C23'—H23D109.2
N3—C14—H14A109.5C22'—C23'—H23D109.2
N3—C14—H14B109.5H23C—C23'—H23D107.9
H14A—C14—H14B109.5C23'—O3'—H3A107.5
N3—C14—H14C109.5C23'—O3'—H3B109.5
N1—C1—C2—C32.3 (4)C12—C16—C17—C18178.2 (2)
Cl1—C1—C2—C3177.31 (18)C16—C17—C18—C190.7 (4)
C1—C2—C3—C40.4 (3)C17—C18—C19—C200.2 (5)
C2—C3—C4—C51.5 (3)C18—C19—C20—C210.1 (5)
C2—C3—C4—C6174.9 (2)C17—C16—C21—C200.8 (4)
C3—C4—C5—N11.9 (3)C12—C16—C21—C20178.4 (2)
C6—C4—C5—N1174.6 (2)C19—C20—C21—C160.4 (4)
C5—C4—C6—N2127.6 (2)C2—C1—N1—C52.1 (4)
C3—C4—C6—N256.2 (3)Cl1—C1—N1—C5177.59 (17)
N4—C10—C11—C158.0 (3)C4—C5—N1—C10.1 (4)
N3—C10—C11—C15175.28 (19)C13—C9—N2—C631.1 (3)
N4—C10—C11—C12168.5 (2)N3—C9—N2—C6145.33 (18)
N3—C10—C11—C128.2 (3)C13—C9—N2—C7133.8 (2)
C10—C11—C12—C1340.0 (2)N3—C9—N2—C749.8 (2)
C15—C11—C12—C13143.46 (19)C4—C6—N2—C940.7 (3)
C10—C11—C12—C1684.5 (2)C4—C6—N2—C7153.71 (17)
C15—C11—C12—C1692.0 (2)C8—C7—N2—C9101.8 (2)
N2—C9—C13—N627.3 (3)C8—C7—N2—C664.2 (2)
N3—C9—C13—N6156.32 (18)N2—C9—N3—C10160.22 (17)
N2—C9—C13—C12161.53 (19)C13—C9—N3—C1022.9 (3)
N3—C9—C13—C1214.9 (3)N2—C9—N3—C1430.4 (3)
C11—C12—C13—C943.8 (2)C13—C9—N3—C14146.51 (19)
C16—C12—C13—C982.2 (2)C11—C10—N3—C926.8 (3)
C11—C12—C13—N6127.84 (19)N4—C10—N3—C9156.08 (19)
C16—C12—C13—N6106.2 (2)C11—C10—N3—C14142.9 (2)
C11—C12—C16—C21164.9 (2)N4—C10—N3—C1434.2 (3)
C13—C12—C16—C2174.1 (3)C9—C13—N6—O26.9 (3)
C11—C12—C16—C1715.9 (3)C12—C13—N6—O2164.43 (18)
C13—C12—C16—C17105.0 (2)C9—C13—N6—O1174.0 (2)
C21—C16—C17—C181.0 (4)C12—C13—N6—O114.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N1i0.821.972.785 (13)179
N4—H4B···O30.862.262.902 (11)132
C6—H6A···O20.972.132.783 (3)124
C7—H7B···O2ii0.972.573.378 (3)141
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC21H21ClN6O2·C2H6O
Mr470.96
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)19.3334 (19), 12.1156 (12), 20.644 (2)
V3)4835.5 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS: Bruker, 2001)
Tmin, Tmax0.970, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
44471, 4267, 3044
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 1.05
No. of reflections4267
No. of parameters330
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N1i0.821.972.785 (13)179
N4—H4B···O30.862.262.902 (11)132
C6—H6A···O20.972.132.783 (3)124
C7—H7B···O2ii0.972.573.378 (3)141
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1/2, y1/2, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (21042010, 21102092 and 30870560).

References

First citationBruker (2001). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElbert, A. & Nauen, R. (2000). Pest Manage. Sci. 56, 60–64.  Web of Science CrossRef CAS Google Scholar
First citationJeschke, P. & Nauen, R. (2008). Pest Manage. Sci. 64, 1084–1098.  Web of Science CrossRef CAS Google Scholar
First citationKashiwada, Y. (1996). Agrochem. Jpn, 68, 18–19.  Google Scholar
First citationMinamida, I., Iwanaga, K. & Tabuchi, T. (1993). J. Pestic. Sci. 18, 31–40.  CrossRef Google Scholar
First citationShao, X. S., Zhang, W. W., Peng, Y. Q., Li, Z., Tian, Z. Z. & Qian, X. H. (2008). Bioorg. Med. Chem. Lett. 18, 6513–6516.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomizawa, M. & Casida, J. E. (2009). Acc. Chem. Res. 42, 260–269.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, W. W., Yang, X. B., Chen, W. D., Xu, X. Y., Li, L., Zhai, H. B. & Li, Z. (2010). J. Agric. Food Chem. 58, 2741–2745.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds