organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­methyl-4-[(E)-2-(3,6,7-tri­bromo-9-butyl-9H-carbazol-2-yl)ethen­yl]aniline

aOrganic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 28 February 2012; accepted 15 March 2012; online 21 March 2012)

In the title mol­ecule, C26H25Br3N2, a dihedral angle of 6.15 (10)° is present between the carbazole and benzene ring systems with an E conformation about the C=C bond [1.335 (4) Å]. The butyl group is almost perpendicular to the carbazole plane [C—N—C—C torsion angle = −98.7 (3)°]. In the crystal, supra­molecular double chains along [-7,18,-16] are formed via C—H⋯Br and ππ inter­actions [centroid(carbazole five-membered ring)⋯centroid(carbazole six-membered ring) distance = 3.6333 (13) Å].

Related literature

For the use of carbazole derivatives in organic light-emitting diodes and photovoltaic devices, see: Thomas et al. (2001[Thomas, K. R. J., Lin, J. T., Tao, Y.-T. & Ko, C.-W. (2001). J. Am. Chem. Soc. 123, 9404-9411.], 2004[Thomas, K. R. J., Lin, J. T., Tao, Y.-T. & Chuan, C.-H. (2004). Chem. Mater. 16, 5437-5444.]); Wu et al. (2005[Wu, F.-I., Shih, P.-I., Yuan, M.-C., Dixit, A. K., Shu, C.-F., Chung, Z.-M. & Diau, E. W.-G. (2005). J. Mater. Chem. 15, 4753-4760.]); Lee et al. (2012[Lee, W., Cho, N., Kwon, J., Ko, J. & Hong, J.-I. (2012). Chem. Asian J. 7, 343-350.]); Ooyama et al. (2011[Ooyama, Y., Nagno, T., Inou, S., Imae, I., Komaguchi, K., Ohshita, J. & Harima, Y. (2011). Chem. Eur. J. 17, 14837-14843.]). For related structures, see: Pawluć et al. (2011[Pawluć, P., Franczyk, A., Walkowiak, J., Hreczycho, G., Kubicki, M. & Marciniec, B. (2011). Org. Lett. 13, 1976-1979.]); Zhang & Zhang (2011[Zhang, J.-Y. & Zhang, W.-Y. (2011). Acta Cryst. E67, o3307.]); Ramathilagam et al. (2011[Ramathilagam, C., Venkatesan, N., Rajakumar, P., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o2796.]).

[Scheme 1]

Experimental

Crystal data
  • C26H25Br3N2

  • Mr = 605.21

  • Triclinic, [P \overline 1]

  • a = 9.7304 (3) Å

  • b = 11.3834 (4) Å

  • c = 11.8197 (4) Å

  • α = 114.308 (3)°

  • β = 101.957 (3)°

  • γ = 90.127 (3)°

  • V = 1161.62 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 6.56 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.244, Tmax = 0.735

  • 10766 measured reflections

  • 4827 independent reflections

  • 4680 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 1.07

  • 4827 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 1.18 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26C⋯Br1i 0.98 2.91 3.844 (3) 161
Symmetry code: (i) x+1, y-1, z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Polysubstituted carbazole derivatives have been widely explored as functional materials for applications in organic light-emitting diodes (Thomas et al., 2001; Thomas et al., 2004; Wu et al., 2005) and photovoltaic devices (Lee et al., 2012; Ooyama et al., 2011) due to their charge transporting and amorphous properties. Though the 3,6,9-trisubstituted (Thomas et al., 2001; Thomas et al., 2004) and 2,7,9-trisubstituted carbazole (Wu et al., 2005; Lee et al., 2012) compounds have been well documented in the literature, 2,3,6,7,9-pentasubstituted carbazole derivatives are relatively rare. Herein, the synthesis and crystal structure determination of the title compound, (I), are described. Several related structures are known (Pawluć et al., 2011; Zhang & Zhang, 2011; Ramathilagam et al., 2011).

In (I), the carbazole fused-ring system is planar with the r.m.s. deviation of the 13 fitted non-hydrogen atoms = 0.006 Å; the Br1, Br2 and Br3 atoms lie 0.058 (1), 0.062 (1) and 0.043 (1) Å out of this plane, respectively. The least-squares plane through the carbazole residue forms a dihedral angle of 6.15 (10)° with the benzene ring, indicating a small twist between the terminal ring systems. This twist is manifested in the value of the C15—C14—C17—C18 torsion angle of -11.2 (4)°. The butyl group is almost perpendicular to the carbazole plane with the C1—N1—C7—C8 torsion angle being -98.7 (3)°. Finally, the conformation about the C17C18 bond [1.335 (4) Å] is E.

In the crystal packing, molecules are linked into linear supramolecular chains via C—H···Br interactions, Fig. 2 and Table 1. These are connected into double chains along [7 18 16] via ππ interactions occurring between five- and six-membered rings of the carbazole residue [centroid(N1,C1,C6,C11,C16)···centroid(C1–C6)i = 3.6333 (13) Å, angle between rings = 0.50 (12)° for symmetry operation i: 1 - x, 1 - y, -z]. Chains assemble into layers, with no specific interactions between them. In turn, the layers stack along (2 0 2), again without specific interactions between them, Fig. 2.

Related literature top

For the use of carbazole derivatives in organic light-emitting diodes and photovoltaic devices, see: Thomas et al. (2001, 2004); Wu et al. (2005); Lee et al. (2012); Ooyama et al. (2011). For related structures, see: Pawluć et al. (2011); Zhang & Zhang (2011); Ramathilagam et al. (2011).

Experimental top

A mixture of 2,3,6,7-tetrabromo-9-butyl-9H-carbazole (0.25 g, 0.47 mmol), styrene (0.29 g, 1.96 mmol), tetrabutylammonium bromide (0.32 g, 0.98 mmol), sodium acetate (1.6 g, 19.6 mmol), Pd(OAc)2 (4 mg) and dimethylformamide (5 ml) was heated at 383 K for 48 h. Subsequently, it was cooled, then poured into water and extracted using ethyl acetate. On removal of solvent, a residue was obtained which on purification by column chromatography on silica gel gave an orange crystalline solid. Yield: 0.12 g, 42%. M.pt: 414 K. Crystals were grown from a solution of the title compound dissolved in dichloromethane/hexanes mixture (1:9 v/v).

1H NMR (500 MHz, CDCl3) δ: 8.20 (s, 1 H), 8.17 (s, 1 H), 7.63 (s, 1H), 7.58 (s, 1 H), 7.51 (d, J = 9.0 Hz, 2 H), 7.43 (d, J = 16 Hz, 1 H), 7.05 (d, J = 16 Hz, 1 H), 6.74 (d, J = 9 Hz, 2 H), 4.24 (t, J = 7.5 Hz, 2 H), 3.02 (s, 6 H), 1.86–1.83 (m, 2 H), 1.42–1.37 (m, 2 H), 0.97 (t, J = 7.5 Hz, 3 H); 13C NMR (125 MHz, CDCl3) δ: 150.4, 140.7, 140.5, 136.2, 131.4, 128.1, 127.8, 127.4, 125.4, 124.6, 124.4, 124.0, 122.7, 121.6, 121.4, 115.0, 114.0, 113.5, 112.5, 112.4, 105.8, 100.0, 43.2, 40.5, 30.9, 20.6, 13.9.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The maximum and minimum residual electron density peaks of 1.18 and 0.81 e Å-3, respectively, were located 0.86 Å and 0.44 Å from the H2 and Br1 atoms, respectively.

Structure description top

Polysubstituted carbazole derivatives have been widely explored as functional materials for applications in organic light-emitting diodes (Thomas et al., 2001; Thomas et al., 2004; Wu et al., 2005) and photovoltaic devices (Lee et al., 2012; Ooyama et al., 2011) due to their charge transporting and amorphous properties. Though the 3,6,9-trisubstituted (Thomas et al., 2001; Thomas et al., 2004) and 2,7,9-trisubstituted carbazole (Wu et al., 2005; Lee et al., 2012) compounds have been well documented in the literature, 2,3,6,7,9-pentasubstituted carbazole derivatives are relatively rare. Herein, the synthesis and crystal structure determination of the title compound, (I), are described. Several related structures are known (Pawluć et al., 2011; Zhang & Zhang, 2011; Ramathilagam et al., 2011).

In (I), the carbazole fused-ring system is planar with the r.m.s. deviation of the 13 fitted non-hydrogen atoms = 0.006 Å; the Br1, Br2 and Br3 atoms lie 0.058 (1), 0.062 (1) and 0.043 (1) Å out of this plane, respectively. The least-squares plane through the carbazole residue forms a dihedral angle of 6.15 (10)° with the benzene ring, indicating a small twist between the terminal ring systems. This twist is manifested in the value of the C15—C14—C17—C18 torsion angle of -11.2 (4)°. The butyl group is almost perpendicular to the carbazole plane with the C1—N1—C7—C8 torsion angle being -98.7 (3)°. Finally, the conformation about the C17C18 bond [1.335 (4) Å] is E.

In the crystal packing, molecules are linked into linear supramolecular chains via C—H···Br interactions, Fig. 2 and Table 1. These are connected into double chains along [7 18 16] via ππ interactions occurring between five- and six-membered rings of the carbazole residue [centroid(N1,C1,C6,C11,C16)···centroid(C1–C6)i = 3.6333 (13) Å, angle between rings = 0.50 (12)° for symmetry operation i: 1 - x, 1 - y, -z]. Chains assemble into layers, with no specific interactions between them. In turn, the layers stack along (2 0 2), again without specific interactions between them, Fig. 2.

For the use of carbazole derivatives in organic light-emitting diodes and photovoltaic devices, see: Thomas et al. (2001, 2004); Wu et al. (2005); Lee et al. (2012); Ooyama et al. (2011). For related structures, see: Pawluć et al. (2011); Zhang & Zhang (2011); Ramathilagam et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain in (I). The C—H···Br and ππ interactions are shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the stacking of layers, formed by non-interacting supramolecular chains, in (I). The C—H···Br and ππ interactions are shown as orange and purple dashed lines, respectively.
N,N-Dimethyl-4-[(E)-2-(3,6,7-tribromo-9-butyl-9H- carbazol-2-yl)ethenyl]aniline top
Crystal data top
C26H25Br3N2Z = 2
Mr = 605.21F(000) = 600
Triclinic, P1Dx = 1.730 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 9.7304 (3) ÅCell parameters from 7879 reflections
b = 11.3834 (4) Åθ = 4.2–76.4°
c = 11.8197 (4) ŵ = 6.56 mm1
α = 114.308 (3)°T = 100 K
β = 101.957 (3)°Plate, orange
γ = 90.127 (3)°0.30 × 0.30 × 0.05 mm
V = 1161.62 (7) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4827 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4680 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 4.2°
ω scanh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1414
Tmin = 0.244, Tmax = 0.735l = 1410
10766 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.89P]
where P = (Fo2 + 2Fc2)/3
4827 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
C26H25Br3N2γ = 90.127 (3)°
Mr = 605.21V = 1161.62 (7) Å3
Triclinic, P1Z = 2
a = 9.7304 (3) ÅCu Kα radiation
b = 11.3834 (4) ŵ = 6.56 mm1
c = 11.8197 (4) ÅT = 100 K
α = 114.308 (3)°0.30 × 0.30 × 0.05 mm
β = 101.957 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4827 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4680 reflections with I > 2σ(I)
Tmin = 0.244, Tmax = 0.735Rint = 0.021
10766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.07Δρmax = 1.18 e Å3
4827 reflectionsΔρmin = 0.81 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.29708 (3)0.83996 (3)0.02986 (2)0.02733 (9)
Br20.56802 (3)0.78783 (3)0.11524 (2)0.02739 (9)
Br31.11706 (3)0.35337 (3)0.20455 (3)0.02790 (9)
N10.5643 (2)0.5740 (2)0.27349 (19)0.0222 (4)
N21.1308 (3)0.0298 (3)0.7703 (2)0.0333 (5)
C10.5457 (2)0.6291 (2)0.1869 (2)0.0209 (4)
C20.4366 (3)0.6979 (2)0.1578 (2)0.0228 (5)
H20.35980.71320.19860.027*
C30.4443 (3)0.7433 (2)0.0664 (2)0.0226 (5)
C40.5569 (3)0.7208 (2)0.0055 (2)0.0227 (5)
C50.6653 (3)0.6523 (2)0.0351 (2)0.0232 (5)
H50.74180.63730.00610.028*
C60.6601 (2)0.6056 (2)0.1262 (2)0.0205 (4)
C70.4735 (2)0.5794 (2)0.3587 (2)0.0236 (5)
H7A0.46510.49400.36150.028*
H7B0.37800.59670.32400.028*
C80.5283 (3)0.6836 (2)0.4944 (2)0.0263 (5)
H8A0.46840.67520.54940.032*
H8B0.62530.66810.52740.032*
C90.5301 (3)0.8209 (3)0.5043 (2)0.0295 (5)
H9A0.43210.83980.47930.035*
H9B0.58330.82800.44410.035*
C100.5972 (3)0.9205 (3)0.6384 (3)0.0357 (6)
H10A0.59671.00740.64030.054*
H10B0.69470.90290.66320.054*
H10C0.54340.91550.69800.054*
C110.7525 (3)0.5336 (2)0.1799 (2)0.0213 (4)
C120.8799 (3)0.4835 (2)0.1613 (2)0.0223 (5)
H120.92460.49400.10140.027*
C130.9406 (2)0.4177 (2)0.2322 (2)0.0217 (4)
C140.8789 (2)0.3989 (2)0.3234 (2)0.0207 (4)
C150.7510 (3)0.4504 (2)0.3406 (2)0.0216 (4)
H150.70590.44020.40040.026*
C160.6895 (2)0.5168 (2)0.2704 (2)0.0207 (4)
C170.9466 (2)0.3259 (2)0.3949 (2)0.0211 (4)
H171.02390.27990.36830.025*
C180.9070 (3)0.3201 (2)0.4942 (2)0.0238 (5)
H180.83160.36870.52180.029*
C190.9685 (3)0.2460 (2)0.5642 (2)0.0222 (5)
C200.9072 (3)0.2399 (3)0.6593 (2)0.0258 (5)
H200.82670.28510.67690.031*
C210.9600 (3)0.1702 (3)0.7288 (3)0.0274 (5)
H210.91520.16830.79230.033*
C221.0787 (3)0.1029 (2)0.7058 (2)0.0245 (5)
C231.1426 (3)0.1108 (2)0.6119 (2)0.0253 (5)
H231.22480.06790.59580.030*
C241.0881 (3)0.1797 (2)0.5433 (2)0.0243 (5)
H241.13310.18220.48010.029*
C251.2647 (3)0.0235 (3)0.7574 (3)0.0300 (5)
H25A1.33750.04610.77720.045*
H25B1.25620.08850.66980.045*
H25C1.29090.06410.81660.045*
C261.0606 (3)0.0186 (3)0.8627 (3)0.0328 (6)
H26A0.96020.00930.82330.049*
H26B1.07080.10290.93600.049*
H26C1.10330.04530.89120.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02941 (16)0.02848 (15)0.02854 (15)0.00817 (11)0.00398 (11)0.01757 (11)
Br20.03297 (16)0.03048 (15)0.02791 (15)0.00781 (11)0.00784 (11)0.02082 (12)
Br30.02538 (15)0.03522 (16)0.03272 (16)0.01107 (11)0.01128 (11)0.02151 (12)
N10.0211 (9)0.0276 (10)0.0239 (9)0.0051 (8)0.0045 (8)0.0172 (8)
N20.0314 (12)0.0441 (13)0.0403 (13)0.0144 (10)0.0105 (10)0.0322 (11)
C10.0224 (11)0.0212 (10)0.0206 (10)0.0004 (9)0.0019 (8)0.0117 (9)
C20.0244 (11)0.0240 (11)0.0226 (11)0.0030 (9)0.0040 (9)0.0130 (9)
C30.0235 (11)0.0209 (10)0.0229 (11)0.0036 (9)0.0010 (9)0.0109 (9)
C40.0295 (12)0.0206 (10)0.0194 (10)0.0024 (9)0.0017 (9)0.0117 (9)
C50.0274 (12)0.0224 (11)0.0224 (11)0.0022 (9)0.0060 (9)0.0119 (9)
C60.0229 (11)0.0194 (10)0.0196 (10)0.0016 (8)0.0024 (8)0.0097 (9)
C70.0200 (11)0.0291 (12)0.0287 (12)0.0031 (9)0.0068 (9)0.0184 (10)
C80.0274 (12)0.0322 (13)0.0270 (12)0.0070 (10)0.0095 (9)0.0184 (10)
C90.0344 (13)0.0315 (13)0.0281 (12)0.0033 (10)0.0084 (10)0.0172 (11)
C100.0428 (16)0.0347 (14)0.0303 (13)0.0040 (12)0.0104 (12)0.0133 (11)
C110.0242 (11)0.0199 (10)0.0212 (11)0.0006 (9)0.0022 (9)0.0116 (9)
C120.0254 (12)0.0231 (11)0.0211 (11)0.0018 (9)0.0051 (9)0.0120 (9)
C130.0193 (11)0.0225 (10)0.0238 (11)0.0021 (8)0.0035 (9)0.0109 (9)
C140.0198 (11)0.0218 (11)0.0216 (11)0.0014 (8)0.0024 (8)0.0112 (9)
C150.0238 (11)0.0227 (11)0.0230 (11)0.0029 (9)0.0037 (9)0.0150 (9)
C160.0203 (11)0.0217 (10)0.0215 (11)0.0023 (8)0.0020 (8)0.0118 (9)
C170.0206 (10)0.0193 (10)0.0239 (11)0.0013 (8)0.0018 (8)0.0112 (9)
C180.0230 (11)0.0240 (11)0.0262 (11)0.0056 (9)0.0028 (9)0.0137 (9)
C190.0214 (11)0.0235 (11)0.0240 (11)0.0017 (9)0.0023 (9)0.0136 (9)
C200.0220 (11)0.0318 (12)0.0301 (12)0.0086 (9)0.0080 (9)0.0183 (10)
C210.0257 (12)0.0344 (13)0.0292 (12)0.0037 (10)0.0069 (10)0.0200 (11)
C220.0234 (11)0.0261 (11)0.0285 (12)0.0036 (9)0.0021 (9)0.0177 (10)
C230.0228 (11)0.0272 (12)0.0303 (12)0.0061 (9)0.0061 (9)0.0164 (10)
C240.0238 (11)0.0262 (12)0.0274 (12)0.0045 (9)0.0055 (9)0.0160 (10)
C250.0283 (13)0.0314 (13)0.0345 (13)0.0084 (10)0.0028 (10)0.0200 (11)
C260.0347 (14)0.0421 (15)0.0350 (14)0.0110 (12)0.0093 (11)0.0286 (12)
Geometric parameters (Å, º) top
Br1—C31.895 (2)C11—C121.386 (3)
Br2—C41.895 (2)C11—C161.413 (3)
Br3—C131.906 (2)C12—C131.388 (3)
N1—C161.382 (3)C12—H120.9500
N1—C11.388 (3)C13—C141.423 (3)
N1—C71.455 (3)C14—C151.394 (3)
N2—C221.378 (3)C14—C171.479 (3)
N2—C261.447 (3)C15—C161.389 (3)
N2—C251.448 (3)C15—H150.9500
C1—C21.390 (3)C17—C181.335 (4)
C1—C61.415 (3)C17—H170.9500
C2—C31.390 (3)C18—C191.458 (3)
C2—H20.9500C18—H180.9500
C3—C41.401 (4)C19—C241.398 (3)
C4—C51.385 (3)C19—C201.401 (3)
C5—C61.393 (3)C20—C211.390 (4)
C5—H50.9500C20—H200.9500
C6—C111.442 (3)C21—C221.399 (4)
C7—C81.530 (4)C21—H210.9500
C7—H7A0.9900C22—C231.412 (3)
C7—H7B0.9900C23—C241.379 (3)
C8—C91.518 (4)C23—H230.9500
C8—H8A0.9900C24—H240.9500
C8—H8B0.9900C25—H25A0.9800
C9—C101.520 (4)C25—H25B0.9800
C9—H9A0.9900C25—H25C0.9800
C9—H9B0.9900C26—H26A0.9800
C10—H10A0.9800C26—H26B0.9800
C10—H10B0.9800C26—H26C0.9800
C10—H10C0.9800
C16—N1—C1108.3 (2)C11—C12—C13118.5 (2)
C16—N1—C7124.7 (2)C11—C12—H12120.7
C1—N1—C7126.9 (2)C13—C12—H12120.7
C22—N2—C26120.0 (2)C12—C13—C14123.4 (2)
C22—N2—C25120.1 (2)C12—C13—Br3116.64 (18)
C26—N2—C25119.5 (2)C14—C13—Br3119.95 (18)
C2—C1—N1129.2 (2)C15—C14—C13117.0 (2)
C2—C1—C6121.6 (2)C15—C14—C17121.7 (2)
N1—C1—C6109.1 (2)C13—C14—C17121.3 (2)
C1—C2—C3117.4 (2)C14—C15—C16120.1 (2)
C1—C2—H2121.3C14—C15—H15119.9
C3—C2—H2121.3C16—C15—H15119.9
C2—C3—C4121.7 (2)N1—C16—C15128.7 (2)
C2—C3—Br1117.04 (19)N1—C16—C11109.5 (2)
C4—C3—Br1121.27 (18)C15—C16—C11121.8 (2)
C5—C4—C3120.7 (2)C18—C17—C14124.7 (2)
C5—C4—Br2118.33 (19)C18—C17—H17117.7
C3—C4—Br2120.98 (18)C14—C17—H17117.7
C4—C5—C6118.8 (2)C17—C18—C19126.1 (2)
C4—C5—H5120.6C17—C18—H18117.0
C6—C5—H5120.6C19—C18—H18117.0
C5—C6—C1119.8 (2)C24—C19—C20116.7 (2)
C5—C6—C11133.5 (2)C24—C19—C18123.8 (2)
C1—C6—C11106.6 (2)C20—C19—C18119.5 (2)
N1—C7—C8112.9 (2)C21—C20—C19122.3 (2)
N1—C7—H7A109.0C21—C20—H20118.8
C8—C7—H7A109.0C19—C20—H20118.8
N1—C7—H7B109.0C20—C21—C22120.4 (2)
C8—C7—H7B109.0C20—C21—H21119.8
H7A—C7—H7B107.8C22—C21—H21119.8
C9—C8—C7114.0 (2)N2—C22—C21121.7 (2)
C9—C8—H8A108.8N2—C22—C23120.8 (2)
C7—C8—H8A108.8C21—C22—C23117.5 (2)
C9—C8—H8B108.8C24—C23—C22121.3 (2)
C7—C8—H8B108.8C24—C23—H23119.4
H8A—C8—H8B107.7C22—C23—H23119.4
C8—C9—C10112.2 (2)C23—C24—C19121.7 (2)
C8—C9—H9A109.2C23—C24—H24119.1
C10—C9—H9A109.2C19—C24—H24119.1
C8—C9—H9B109.2N2—C25—H25A109.5
C10—C9—H9B109.2N2—C25—H25B109.5
H9A—C9—H9B107.9H25A—C25—H25B109.5
C9—C10—H10A109.5N2—C25—H25C109.5
C9—C10—H10B109.5H25A—C25—H25C109.5
H10A—C10—H10B109.5H25B—C25—H25C109.5
C9—C10—H10C109.5N2—C26—H26A109.5
H10A—C10—H10C109.5N2—C26—H26B109.5
H10B—C10—H10C109.5H26A—C26—H26B109.5
C12—C11—C16119.2 (2)N2—C26—H26C109.5
C12—C11—C6134.4 (2)H26A—C26—H26C109.5
C16—C11—C6106.4 (2)H26B—C26—H26C109.5
C16—N1—C1—C2179.3 (2)C12—C13—C14—C17178.9 (2)
C7—N1—C1—C22.2 (4)Br3—C13—C14—C172.1 (3)
C16—N1—C1—C60.7 (3)C13—C14—C15—C160.1 (3)
C7—N1—C1—C6177.8 (2)C17—C14—C15—C16179.1 (2)
N1—C1—C2—C3179.8 (2)C1—N1—C16—C15180.0 (2)
C6—C1—C2—C30.2 (4)C7—N1—C16—C152.7 (4)
C1—C2—C3—C40.2 (4)C1—N1—C16—C110.6 (3)
C1—C2—C3—Br1178.73 (17)C7—N1—C16—C11177.9 (2)
C2—C3—C4—C50.2 (4)C14—C15—C16—N1179.8 (2)
Br1—C3—C4—C5178.67 (18)C14—C15—C16—C110.4 (4)
C2—C3—C4—Br2178.20 (19)C12—C11—C16—N1180.0 (2)
Br1—C3—C4—Br20.6 (3)C6—C11—C16—N10.4 (3)
C3—C4—C5—C60.2 (4)C12—C11—C16—C150.6 (3)
Br2—C4—C5—C6178.27 (18)C6—C11—C16—C15179.8 (2)
C4—C5—C6—C10.2 (4)C15—C14—C17—C1811.2 (4)
C4—C5—C6—C11179.3 (2)C13—C14—C17—C18169.8 (2)
C2—C1—C6—C50.2 (4)C14—C17—C18—C19178.0 (2)
N1—C1—C6—C5179.8 (2)C17—C18—C19—C246.3 (4)
C2—C1—C6—C11179.5 (2)C17—C18—C19—C20174.2 (2)
N1—C1—C6—C110.4 (3)C24—C19—C20—C211.0 (4)
C16—N1—C7—C878.0 (3)C18—C19—C20—C21179.5 (2)
C1—N1—C7—C898.7 (3)C19—C20—C21—C220.2 (4)
N1—C7—C8—C965.2 (3)C26—N2—C22—C211.4 (4)
C7—C8—C9—C10175.0 (2)C25—N2—C22—C21171.3 (2)
C5—C6—C11—C120.2 (5)C26—N2—C22—C23177.6 (3)
C1—C6—C11—C12179.5 (3)C25—N2—C22—C239.7 (4)
C5—C6—C11—C16179.3 (3)C20—C21—C22—N2178.0 (3)
C1—C6—C11—C160.0 (3)C20—C21—C22—C231.1 (4)
C16—C11—C12—C130.4 (3)N2—C22—C23—C24177.5 (3)
C6—C11—C12—C13179.8 (2)C21—C22—C23—C241.6 (4)
C11—C12—C13—C140.0 (4)C22—C23—C24—C190.8 (4)
C11—C12—C13—Br3179.05 (17)C20—C19—C24—C230.6 (4)
C12—C13—C14—C150.2 (4)C18—C19—C24—C23180.0 (2)
Br3—C13—C14—C15178.85 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26C···Br1i0.982.913.844 (3)161
Symmetry code: (i) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formulaC26H25Br3N2
Mr605.21
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.7304 (3), 11.3834 (4), 11.8197 (4)
α, β, γ (°)114.308 (3), 101.957 (3), 90.127 (3)
V3)1161.62 (7)
Z2
Radiation typeCu Kα
µ (mm1)6.56
Crystal size (mm)0.30 × 0.30 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.244, 0.735
No. of measured, independent and
observed [I > 2σ(I)] reflections
10766, 4827, 4680
Rint0.021
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.07
No. of reflections4827
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 0.81

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26C···Br1i0.982.913.844 (3)161
Symmetry code: (i) x+1, y1, z+1.
 

Footnotes

Additional correspondence author: krjt8fcy@iitr.ernet.in.

Acknowledgements

KRJT thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for financial support [grant No. 01 (2111)/07/EMR-II)]. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLee, W., Cho, N., Kwon, J., Ko, J. & Hong, J.-I. (2012). Chem. Asian J. 7, 343–350.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOoyama, Y., Nagno, T., Inou, S., Imae, I., Komaguchi, K., Ohshita, J. & Harima, Y. (2011). Chem. Eur. J. 17, 14837–14843.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPawluć, P., Franczyk, A., Walkowiak, J., Hreczycho, G., Kubicki, M. & Marciniec, B. (2011). Org. Lett. 13, 1976–1979.  Web of Science PubMed Google Scholar
First citationRamathilagam, C., Venkatesan, N., Rajakumar, P., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o2796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, K. R. J., Lin, J. T., Tao, Y.-T. & Chuan, C.-H. (2004). Chem. Mater. 16, 5437–5444.  CAS Google Scholar
First citationThomas, K. R. J., Lin, J. T., Tao, Y.-T. & Ko, C.-W. (2001). J. Am. Chem. Soc. 123, 9404–9411.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, F.-I., Shih, P.-I., Yuan, M.-C., Dixit, A. K., Shu, C.-F., Chung, Z.-M. & Diau, E. W.-G. (2005). J. Mater. Chem. 15, 4753–4760.  Web of Science CrossRef CAS Google Scholar
First citationZhang, J.-Y. & Zhang, W.-Y. (2011). Acta Cryst. E67, o3307.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds