organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2H-1,3-Benzodioxol-5-yl)-1,3-benzo­thia­zole

aDepartment of Physics, C. Abdul Hakeem College of Engineering & Technology, Melvisharam, Vellore 632 509, India, bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 13 February 2012; accepted 28 February 2012; online 3 March 2012)

In the title compound, C14H9O2S, the benzothia­zole unit is oriented at a dihedral angle of 7.1 (1)° with respect to the benzodioxole unit. The dioxole ring adopts flattened envelope conformation with the methyl­ene C atom at the flap. The crystal packing is stabilized by ππ inter­actions [centroid–centroid distances = 3.705 (1) and 3.752 (1) Å], C—H⋯π inter­actions and a short S⋯S contact of 3.485 (1) Å.

Related literature

For background to the applications of benzothia­zoles in the chemical industry, see: Bradshaw et al. (2002[Bradshaw, T. D., Chua, M. S., Browne, H. L., Trapani, V., Sausville, E. A. & Stevens, M. F. G. (2002). Br. J. Cancer, 86, 1348-1354.]); Delmas et al. (2002[Delmas, F., Di Giorgio, C., Robin, M., Azas, N., Gasquet, M., Detang, C., Costa, M., Timon-David, P. & Galy, J.-P. (2002). Antimicrob. Agents Chemother. 46, 2588-2594.]); Hutchinson et al. (2002[Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744-747.]). For the pharmacological activity of benzothia­zole derivatives, see: Repiĉ et al. (2001[Repiĉ, O., Prasad, K. & Lee, G. T. (2001). Org. Process Res. Dev. 5, 519-527.]); Schwartz et al. (1992[Schwartz, A., Madan, P. B., Mohacsi, E., O-Brien, J. P., Todaro, L. J. & Coffen, D. L. (1992). J. Org. Chem. 57, 851-856.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Baryala et al. (2010[Baryala, Y., Zerzouf, A., Salem, M., Essassi, E. M. & El Ammari, L. (2010). Acta Cryst. E66, o857.]); Zhang et al. (2008[Zhang, Y., Su, Z.-H., Wang, Q.-Z. & Teng, L. (2008). Acta Cryst. E64, o2065.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9NO2S

  • Mr = 255.28

  • Orthorhombic, P b c a

  • a = 6.3356 (2) Å

  • b = 16.3222 (5) Å

  • c = 22.0471 (7) Å

  • V = 2279.91 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 0.952

  • 15338 measured reflections

  • 3135 independent reflections

  • 2243 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.02

  • 3135 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the dioxole ring and Cg2 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.93 2.79 3.624 (2) 150
C14—H14BCg2ii 0.97 2.84 3.580 (2) 134
Symmetry codes: (i) [x, -y-{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzothiazoles are remarkable heterocyclic ring systems. They possess therapeutic value, are synthetic intermediates in the preparation of medicinal compounds and find numerous applications in chemical industry (Bradshaw et al., 2002; Hutchinson et al., 2002; Delmas et al., 2002). Benzothiazole nucleus is associated with several pharmacological activities such as anti-tumor (Repiĉ et al., 2001) and antimicrobial (Schwartz et al., 1992). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The benzothiazole moiety is essentially planar [maximum deviation = -0.016 (1) Å for the C14 atom] and lies at an angle 7.1 (1)° with respect to the benzodioxole unit. The dioxole (O1/O2/C11/C12/C14) ring adopts an envelope conformation with the C14 (displacement = 0.03 (18) Å) atom as the flap atom and with puckering parameters (Cremer & Pople, 1975), q2 = 0.0882 (16) Å and φ2 = 143.8 (1)°. The geometric parameters of the title molecule agree well with those reported for similar structures (Baryala et al., 2010; Zhang et al., 2008).

The crystal packing is stabilized by ππ interactions with Cg3···Cg4i and Cg1···Cg4i seperations of 3.705 (1) Å and 3.752 (1) Å, respectively (Fig. 2; Cg1, Cg3 and Cg4 are the centroids of the N1/S1/C1/C2/C7 thiazole ring, C2–C7 benzene ring and C8–C13 benzene ring, respectively, symmetry code as in Fig. 2). The crystal packing (Fig. 3) is further stabilized by a short contact S1···S1iii [3.485 (1) Å; symmetry code: (iii) = -x, 1 - y, 1 - z], which is shorter than the sum of the van der Waals radii of these atoms [3.60 Å].

Related literature top

For background to the applications of benzothiazoles in the chemical industry, see: Bradshaw et al. (2002); Delmas et al. (2002); Hutchinson et al. (2002). For the pharmacological activity of benzothiazole derivatives, see: Repiĉ et al. (2001); Schwartz et al. (1992). For ring puckering analysis, see: Cremer & Pople (1975). For related structures, see: Baryala et al. (2010); Zhang et al. (2008).

Experimental top

A mixture of benzo[d][1,3]dioxole-5-carbaldehyde (0.15 g, 1 mmol), 2-aminobenzenethiol (0.125 g, 1 mmol), H2O2 (0.013 g, 0.4 mmol) and NH4Ce(NO3)6 (0.053 g, 0.1 mmol) was heated at 50°C for 12 h. After completion of the reaction, the reaction mixture was dissolved in EtOH and then poured into ice–water. The products were filtered, washed with ice-water, and subsequently dried. Recystallization of the product from ethyl acetate: hexanes (1: 10) yielded colourless crystals of the title compound (0.22 g; yield: 91%).

Refinement top

All the H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

Benzothiazoles are remarkable heterocyclic ring systems. They possess therapeutic value, are synthetic intermediates in the preparation of medicinal compounds and find numerous applications in chemical industry (Bradshaw et al., 2002; Hutchinson et al., 2002; Delmas et al., 2002). Benzothiazole nucleus is associated with several pharmacological activities such as anti-tumor (Repiĉ et al., 2001) and antimicrobial (Schwartz et al., 1992). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The benzothiazole moiety is essentially planar [maximum deviation = -0.016 (1) Å for the C14 atom] and lies at an angle 7.1 (1)° with respect to the benzodioxole unit. The dioxole (O1/O2/C11/C12/C14) ring adopts an envelope conformation with the C14 (displacement = 0.03 (18) Å) atom as the flap atom and with puckering parameters (Cremer & Pople, 1975), q2 = 0.0882 (16) Å and φ2 = 143.8 (1)°. The geometric parameters of the title molecule agree well with those reported for similar structures (Baryala et al., 2010; Zhang et al., 2008).

The crystal packing is stabilized by ππ interactions with Cg3···Cg4i and Cg1···Cg4i seperations of 3.705 (1) Å and 3.752 (1) Å, respectively (Fig. 2; Cg1, Cg3 and Cg4 are the centroids of the N1/S1/C1/C2/C7 thiazole ring, C2–C7 benzene ring and C8–C13 benzene ring, respectively, symmetry code as in Fig. 2). The crystal packing (Fig. 3) is further stabilized by a short contact S1···S1iii [3.485 (1) Å; symmetry code: (iii) = -x, 1 - y, 1 - z], which is shorter than the sum of the van der Waals radii of these atoms [3.60 Å].

For background to the applications of benzothiazoles in the chemical industry, see: Bradshaw et al. (2002); Delmas et al. (2002); Hutchinson et al. (2002). For the pharmacological activity of benzothiazole derivatives, see: Repiĉ et al. (2001); Schwartz et al. (1992). For ring puckering analysis, see: Cremer & Pople (1975). For related structures, see: Baryala et al. (2010); Zhang et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the π···π interactions (dotted lines) in the crystal structure of the title compound. Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/S1/C1/C2/C7 thiazole ring, O1/O2/C11/C12/C14 dioxole ring, C2–C7 benzene ring and C8–C13 benzene ring, respectively [symmetry codes: (i)1 + x, y, z; (ii) -1 + x, y, z].
[Figure 3] Fig. 3. Part of the crystal structure showing a short S···S contact [symmetry code: (iii) = -x, 1 - y, 1 - z].
2-(2H-1,3-Benzodioxol-5-yl)-1,3-benzothiazole top
Crystal data top
C14H9NO2SF(000) = 1056
Mr = 255.28Dx = 1.487 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3185 reflections
a = 6.3356 (2) Åθ = 2.7–29.5°
b = 16.3222 (5) ŵ = 0.28 mm1
c = 22.0471 (7) ÅT = 293 K
V = 2279.91 (12) Å3Block, colourless
Z = 80.25 × 0.23 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
3135 independent reflections
Radiation source: fine-focus sealed tube2243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 29.5°, θmin = 2.7°
ω scansh = 78
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2219
Tmin = 0.934, Tmax = 0.952l = 3030
15338 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.5885P]
where P = (Fo2 + 2Fc2)/3
3135 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H9NO2SV = 2279.91 (12) Å3
Mr = 255.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 6.3356 (2) ŵ = 0.28 mm1
b = 16.3222 (5) ÅT = 293 K
c = 22.0471 (7) Å0.25 × 0.23 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
3135 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2243 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.952Rint = 0.027
15338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
3135 reflectionsΔρmin = 0.24 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.3453 (2)0.55583 (8)0.34631 (6)0.0361 (3)
C30.5016 (3)0.53503 (10)0.30472 (7)0.0467 (4)
H30.50440.55910.26650.056*
C40.6519 (3)0.47847 (11)0.32101 (8)0.0536 (4)
H40.75540.46370.29320.064*
C50.6523 (3)0.44284 (10)0.37826 (9)0.0540 (4)
H50.75620.40490.38820.065*
C60.5011 (3)0.46295 (10)0.42024 (8)0.0497 (4)
H60.50130.43930.45860.060*
C70.3482 (2)0.51935 (9)0.40395 (7)0.0389 (3)
C10.0600 (2)0.61568 (8)0.38384 (6)0.0352 (3)
C80.1316 (2)0.66515 (9)0.38831 (6)0.0361 (3)
C90.2413 (3)0.67047 (10)0.44268 (6)0.0426 (4)
H90.18960.64270.47640.051*
C100.4255 (3)0.71583 (10)0.44857 (7)0.0482 (4)
H100.49710.71940.48530.058*
C110.4962 (2)0.75501 (9)0.39779 (7)0.0423 (3)
C140.6822 (3)0.82343 (13)0.32904 (9)0.0610 (5)
H14A0.80350.79670.31100.073*
H14B0.69770.88210.32380.073*
C120.3898 (2)0.74996 (9)0.34317 (7)0.0399 (3)
C130.2079 (2)0.70649 (9)0.33649 (7)0.0395 (3)
H130.13730.70410.29960.047*
N10.17928 (19)0.61002 (7)0.33610 (5)0.0374 (3)
O10.6701 (2)0.80397 (8)0.39209 (6)0.0589 (3)
O20.49343 (19)0.79602 (7)0.30038 (5)0.0559 (3)
S10.13899 (7)0.55612 (3)0.445920 (18)0.05001 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0354 (8)0.0350 (7)0.0380 (7)0.0045 (6)0.0022 (6)0.0013 (5)
C30.0491 (10)0.0484 (9)0.0426 (8)0.0004 (8)0.0053 (7)0.0030 (6)
C40.0486 (10)0.0508 (9)0.0613 (11)0.0041 (8)0.0078 (8)0.0119 (8)
C50.0499 (10)0.0412 (9)0.0710 (12)0.0092 (8)0.0066 (9)0.0042 (8)
C60.0515 (10)0.0455 (8)0.0523 (9)0.0040 (8)0.0069 (8)0.0062 (7)
C70.0387 (8)0.0389 (7)0.0391 (7)0.0033 (6)0.0013 (6)0.0022 (6)
C10.0336 (7)0.0396 (7)0.0323 (6)0.0061 (6)0.0033 (6)0.0018 (5)
C80.0326 (7)0.0390 (7)0.0367 (7)0.0043 (6)0.0021 (6)0.0033 (5)
C90.0443 (9)0.0464 (8)0.0372 (7)0.0018 (7)0.0001 (7)0.0014 (6)
C100.0477 (9)0.0531 (9)0.0439 (8)0.0007 (8)0.0093 (7)0.0072 (7)
C110.0368 (8)0.0372 (7)0.0528 (8)0.0005 (7)0.0023 (7)0.0094 (6)
C140.0496 (11)0.0653 (12)0.0680 (12)0.0174 (9)0.0045 (9)0.0032 (9)
C120.0391 (8)0.0368 (7)0.0439 (8)0.0016 (7)0.0050 (6)0.0027 (6)
C130.0381 (8)0.0429 (8)0.0375 (7)0.0013 (7)0.0011 (6)0.0020 (6)
N10.0378 (7)0.0409 (6)0.0334 (6)0.0007 (5)0.0006 (5)0.0012 (5)
O10.0511 (8)0.0612 (7)0.0644 (8)0.0187 (6)0.0052 (6)0.0041 (6)
O20.0511 (7)0.0618 (7)0.0549 (7)0.0179 (6)0.0032 (6)0.0060 (5)
S10.0452 (3)0.0662 (3)0.0386 (2)0.0075 (2)0.00557 (17)0.01540 (17)
Geometric parameters (Å, º) top
C2—C31.392 (2)C8—C91.388 (2)
C2—N11.3926 (18)C8—C131.412 (2)
C2—C71.403 (2)C9—C101.388 (2)
C3—C41.374 (2)C9—H90.9300
C3—H30.9300C10—C111.365 (2)
C4—C51.390 (3)C10—H100.9300
C4—H40.9300C11—O11.3668 (19)
C5—C61.372 (3)C11—C121.383 (2)
C5—H50.9300C14—O21.424 (2)
C6—C71.384 (2)C14—O11.428 (2)
C6—H60.9300C14—H14A0.9700
C7—S11.7243 (16)C14—H14B0.9700
C1—N11.2991 (18)C12—C131.361 (2)
C1—C81.461 (2)C12—O21.3731 (18)
C1—S11.7517 (14)C13—H130.9300
C3—C2—N1125.86 (13)C10—C9—H9118.8
C3—C2—C7118.93 (14)C8—C9—H9118.8
N1—C2—C7115.20 (13)C11—C10—C9116.70 (14)
C4—C3—C2118.99 (15)C11—C10—H10121.7
C4—C3—H3120.5C9—C10—H10121.7
C2—C3—H3120.5C10—C11—O1127.88 (15)
C3—C4—C5121.33 (16)C10—C11—C12121.77 (15)
C3—C4—H4119.3O1—C11—C12110.34 (14)
C5—C4—H4119.3O2—C14—O1108.49 (14)
C6—C5—C4120.75 (16)O2—C14—H14A110.0
C6—C5—H5119.6O1—C14—H14A110.0
C4—C5—H5119.6O2—C14—H14B110.0
C5—C6—C7118.21 (15)O1—C14—H14B110.0
C5—C6—H6120.9H14A—C14—H14B108.4
C7—C6—H6120.9C13—C12—O2128.00 (14)
C6—C7—C2121.78 (15)C13—C12—C11122.54 (14)
C6—C7—S1129.07 (12)O2—C12—C11109.44 (13)
C2—C7—S1109.16 (11)C12—C13—C8116.84 (14)
N1—C1—C8125.25 (13)C12—C13—H13121.6
N1—C1—S1115.30 (11)C8—C13—H13121.6
C8—C1—S1119.43 (10)C1—N1—C2110.70 (12)
C9—C8—C13119.81 (14)C11—O1—C14105.23 (13)
C9—C8—C1120.58 (13)C12—O2—C14105.57 (13)
C13—C8—C1119.60 (13)C7—S1—C189.62 (7)
C10—C9—C8122.34 (14)
N1—C2—C3—C4178.02 (14)O1—C11—C12—C13178.48 (13)
C7—C2—C3—C41.1 (2)C10—C11—C12—O2179.03 (14)
C2—C3—C4—C51.0 (3)O1—C11—C12—O20.01 (18)
C3—C4—C5—C60.4 (3)O2—C12—C13—C8178.89 (14)
C4—C5—C6—C70.2 (3)C11—C12—C13—C80.7 (2)
C5—C6—C7—C20.1 (2)C9—C8—C13—C120.3 (2)
C5—C6—C7—S1179.51 (13)C1—C8—C13—C12178.46 (13)
C3—C2—C7—C60.5 (2)C8—C1—N1—C2178.07 (12)
N1—C2—C7—C6178.66 (14)S1—C1—N1—C20.36 (15)
C3—C2—C7—S1179.79 (12)C3—C2—N1—C1179.57 (14)
N1—C2—C7—S11.03 (16)C7—C2—N1—C10.45 (17)
N1—C1—C8—C9176.37 (14)C10—C11—O1—C14175.20 (17)
S1—C1—C8—C95.26 (19)C12—C11—O1—C145.84 (18)
N1—C1—C8—C134.9 (2)O2—C14—O1—C119.44 (19)
S1—C1—C8—C13173.44 (11)C13—C12—O2—C14175.75 (16)
C13—C8—C9—C100.4 (2)C11—C12—O2—C145.88 (18)
C1—C8—C9—C10179.06 (14)O1—C14—O2—C129.48 (19)
C8—C9—C10—C110.5 (2)C6—C7—S1—C1178.68 (15)
C9—C10—C11—O1178.94 (14)C2—C7—S1—C10.98 (11)
C9—C10—C11—C120.1 (2)N1—C1—S1—C70.81 (12)
C10—C11—C12—C130.6 (2)C8—C1—S1—C7177.71 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the dioxole ring and Cg2 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.793.624 (2)150
C14—H14B···Cg2ii0.972.843.580 (2)134
Symmetry codes: (i) x, y3/2, z1/2; (ii) x1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H9NO2S
Mr255.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)6.3356 (2), 16.3222 (5), 22.0471 (7)
V3)2279.91 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.25 × 0.23 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.934, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
15338, 3135, 2243
Rint0.027
(sin θ/λ)max1)0.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.02
No. of reflections3135
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the dioxole ring and Cg2 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.793.624 (2)150
C14—H14B···Cg2ii0.972.843.580 (2)134
Symmetry codes: (i) x, y3/2, z1/2; (ii) x1, y1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBaryala, Y., Zerzouf, A., Salem, M., Essassi, E. M. & El Ammari, L. (2010). Acta Cryst. E66, o857.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBradshaw, T. D., Chua, M. S., Browne, H. L., Trapani, V., Sausville, E. A. & Stevens, M. F. G. (2002). Br. J. Cancer, 86, 1348–1354.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDelmas, F., Di Giorgio, C., Robin, M., Azas, N., Gasquet, M., Detang, C., Costa, M., Timon-David, P. & Galy, J.-P. (2002). Antimicrob. Agents Chemother. 46, 2588–2594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744–747.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRepiĉ, O., Prasad, K. & Lee, G. T. (2001). Org. Process Res. Dev. 5, 519–527.  Google Scholar
First citationSchwartz, A., Madan, P. B., Mohacsi, E., O–Brien, J. P., Todaro, L. J. & Coffen, D. L. (1992). J. Org. Chem. 57, 851–856.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Su, Z.-H., Wang, Q.-Z. & Teng, L. (2008). Acta Cryst. E64, o2065.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds