organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Cyclo­hexyl-2-methyl-3-(4-methyl­phenyl­sulfin­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 21 February 2012; accepted 24 February 2012; online 3 March 2012)

In the title compound, C22H24O2S, the cyclo­hexyl ring adopts a chair conformation. The 4-methyl­phenyl ring makes a dihedral angle of 81.60 (5)° with the mean plane [r.m.s. deviation = 0.004 (1) Å] of the benzofuran fragment. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds and weak ππ inter­actions between the furan rings of adjacent mol­ecules [centroid–centroid distance = 3.545 (2) Å, inter­planar distance = 3.489 (2) Å and slippage = 0.628 (2) Å.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2011[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o768.], 2012[Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o205.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24O2S

  • Mr = 352.47

  • Monoclinic, P 21 /c

  • a = 16.6086 (4) Å

  • b = 8.8344 (2) Å

  • c = 13.0330 (3) Å

  • β = 104.064 (1)°

  • V = 1854.97 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.37 × 0.25 × 0.23 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.958

  • 16901 measured reflections

  • 4265 independent reflections

  • 3545 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.06

  • 4265 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O2i 0.95 2.48 3.140 (2) 127
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 5-cyclohexyl-2-methyl-1-benzofuran derivatives containing 3-(4-fluorophenylsulfinyl (Choi et al., 2011) or 3-(4-bromophenylsulfinyl) (Choi et al., 2012) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.004 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring is in the chair form. The dihedral angle between the 4-methylphenyl ring and the mean plane of the benzofurn fragment is 81.60 (5)°. The crystal packing is stabilized by weak intermolecular C–H···O hydrogen bonds (Fig. 2 & Table 1). The crystal packing (Fig. 2) also exhibits weak slipped ππ interactions between the furan rings of adjacent molecules, with a Cg···Cgii distance of 3.545 (2) Å and an interplanar distance of3.489 (2) Å resulting in a slippage of 0.628 (2) Å (Cg is the centroid of the C1/C2/C7/O1/C8 furan ring).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2011, 2012).

Experimental top

77% 3-Chloroperoxybenzoic acid (224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-cyclohexyl-2-methyl-3-(4-methylphenylsulfanyl)-1-benzofuran (302 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 77%, m.p. 423-424 K; Rf = 0.52 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl, 1.0 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) =1.2Ueq(C) for aryl, methine, and methylene, and 1.5Ueq(C) for methyl H atoms.

Structure description top

As a part of our ongoing study of 5-cyclohexyl-2-methyl-1-benzofuran derivatives containing 3-(4-fluorophenylsulfinyl (Choi et al., 2011) or 3-(4-bromophenylsulfinyl) (Choi et al., 2012) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.004 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring is in the chair form. The dihedral angle between the 4-methylphenyl ring and the mean plane of the benzofurn fragment is 81.60 (5)°. The crystal packing is stabilized by weak intermolecular C–H···O hydrogen bonds (Fig. 2 & Table 1). The crystal packing (Fig. 2) also exhibits weak slipped ππ interactions between the furan rings of adjacent molecules, with a Cg···Cgii distance of 3.545 (2) Å and an interplanar distance of3.489 (2) Å resulting in a slippage of 0.628 (2) Å (Cg is the centroid of the C1/C2/C7/O1/C8 furan ring).

For background information and the crystal structures of related compounds, see: Choi et al. (2011, 2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H···O and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [ Symmetry codes: (i) x, - y +1/2, z - 1/2; (ii) - x, - y + 1, - z + 1; (iii) x, - y + 1/2, z + 1/2.]
5-Cyclohexyl-2-methyl-3-(4-methylphenylsulfinyl)-1-benzofuran top
Crystal data top
C22H24O2SF(000) = 752
Mr = 352.47Dx = 1.262 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6233 reflections
a = 16.6086 (4) Åθ = 2.5–27.5°
b = 8.8344 (2) ŵ = 0.19 mm1
c = 13.0330 (3) ÅT = 173 K
β = 104.064 (1)°Block, colourless
V = 1854.97 (7) Å30.37 × 0.25 × 0.23 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4265 independent reflections
Radiation source: rotating anode3545 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.3°
φ and ω scansh = 2120
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 911
Tmin = 0.934, Tmax = 0.958l = 1616
16901 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.128H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.6552P]
where P = (Fo2 + 2Fc2)/3
4265 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C22H24O2SV = 1854.97 (7) Å3
Mr = 352.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.6086 (4) ŵ = 0.19 mm1
b = 8.8344 (2) ÅT = 173 K
c = 13.0330 (3) Å0.37 × 0.25 × 0.23 mm
β = 104.064 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4265 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3545 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.958Rint = 0.028
16901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.06Δρmax = 0.59 e Å3
4265 reflectionsΔρmin = 0.31 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13691 (3)0.27171 (5)0.44504 (3)0.03485 (14)
O10.03313 (7)0.67453 (14)0.40263 (9)0.0342 (3)
O20.15932 (9)0.21178 (14)0.55463 (10)0.0447 (3)
C10.10429 (9)0.45997 (18)0.45194 (11)0.0287 (3)
C20.13345 (9)0.57018 (17)0.53478 (11)0.0272 (3)
C30.19160 (9)0.57274 (18)0.63229 (11)0.0280 (3)
H30.22360.48540.65770.034*
C40.20187 (9)0.70563 (18)0.69176 (12)0.0298 (3)
C50.15399 (10)0.8332 (2)0.65225 (14)0.0360 (4)
H50.16170.92330.69320.043*
C60.09584 (10)0.8331 (2)0.55585 (14)0.0369 (4)
H60.06390.92030.52990.044*
C70.08702 (9)0.69938 (18)0.49981 (12)0.0302 (3)
C80.04472 (9)0.52723 (19)0.37593 (12)0.0315 (3)
C90.26367 (10)0.71423 (18)0.79833 (12)0.0323 (3)
H90.26200.81990.82530.039*
C100.35226 (10)0.6834 (3)0.79134 (14)0.0493 (5)
H10A0.36790.75700.74230.059*
H10B0.35550.58060.76220.059*
C110.41355 (11)0.6952 (3)0.89943 (15)0.0522 (5)
H11A0.46990.66870.89240.063*
H11B0.41490.80080.92510.063*
C120.38954 (12)0.5904 (2)0.97924 (15)0.0497 (5)
H12A0.39490.48400.95800.060*
H12B0.42800.60601.04950.060*
C130.30210 (13)0.6187 (3)0.98700 (14)0.0520 (5)
H13A0.29850.72071.01710.062*
H13B0.28700.54351.03550.062*
C140.24081 (11)0.6080 (2)0.87911 (13)0.0437 (4)
H14A0.18450.63340.88670.052*
H14B0.23960.50260.85300.052*
C150.00704 (11)0.4748 (2)0.27292 (12)0.0409 (4)
H15A0.01080.52560.21540.061*
H15B0.06540.49890.26840.061*
H15C0.00080.36510.26680.061*
C160.23179 (11)0.31164 (18)0.40764 (12)0.0326 (3)
C170.22949 (12)0.31441 (19)0.30040 (12)0.0373 (4)
H170.17880.29680.24930.045*
C180.30144 (13)0.3429 (2)0.26885 (13)0.0431 (4)
H180.29970.34670.19550.052*
C190.37674 (12)0.3662 (2)0.34233 (15)0.0454 (4)
C200.37743 (12)0.3619 (2)0.44926 (15)0.0463 (4)
H200.42820.37780.50050.056*
C210.30568 (11)0.3349 (2)0.48239 (13)0.0398 (4)
H210.30710.33230.55570.048*
C220.45564 (15)0.3941 (3)0.3071 (2)0.0705 (7)
H22A0.50170.40990.36930.106*
H22B0.44890.48430.26200.106*
H22C0.46750.30640.26720.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0461 (3)0.0245 (2)0.0314 (2)0.00455 (17)0.00458 (16)0.00145 (14)
O10.0289 (5)0.0360 (6)0.0353 (6)0.0024 (5)0.0031 (4)0.0061 (5)
O20.0633 (8)0.0338 (7)0.0361 (6)0.0014 (6)0.0104 (6)0.0089 (5)
C10.0304 (7)0.0267 (8)0.0276 (7)0.0033 (6)0.0042 (5)0.0009 (6)
C20.0270 (7)0.0236 (7)0.0314 (7)0.0021 (6)0.0080 (6)0.0018 (6)
C30.0284 (7)0.0230 (7)0.0314 (7)0.0005 (6)0.0053 (6)0.0007 (6)
C40.0264 (7)0.0278 (8)0.0347 (7)0.0033 (6)0.0067 (6)0.0024 (6)
C50.0351 (8)0.0258 (8)0.0471 (9)0.0009 (7)0.0099 (7)0.0061 (7)
C60.0334 (8)0.0275 (8)0.0486 (9)0.0079 (7)0.0080 (7)0.0026 (7)
C70.0255 (7)0.0303 (8)0.0343 (7)0.0008 (6)0.0064 (6)0.0050 (6)
C80.0288 (7)0.0343 (9)0.0307 (7)0.0048 (6)0.0063 (6)0.0038 (6)
C90.0332 (8)0.0261 (8)0.0355 (8)0.0032 (6)0.0047 (6)0.0063 (6)
C100.0301 (9)0.0803 (15)0.0372 (9)0.0076 (9)0.0075 (7)0.0024 (9)
C110.0316 (9)0.0774 (16)0.0443 (10)0.0060 (9)0.0027 (7)0.0053 (10)
C120.0531 (11)0.0478 (12)0.0410 (9)0.0060 (9)0.0026 (8)0.0034 (8)
C130.0555 (12)0.0668 (15)0.0329 (9)0.0076 (10)0.0092 (8)0.0018 (9)
C140.0402 (9)0.0577 (12)0.0342 (8)0.0097 (8)0.0113 (7)0.0046 (8)
C150.0354 (8)0.0531 (11)0.0302 (8)0.0069 (8)0.0001 (6)0.0045 (7)
C160.0446 (9)0.0230 (8)0.0289 (7)0.0044 (7)0.0064 (6)0.0006 (6)
C170.0531 (10)0.0277 (8)0.0279 (7)0.0052 (7)0.0035 (7)0.0029 (6)
C180.0641 (12)0.0358 (10)0.0314 (8)0.0111 (9)0.0158 (8)0.0008 (7)
C190.0499 (10)0.0419 (11)0.0472 (10)0.0136 (9)0.0174 (8)0.0010 (8)
C200.0422 (10)0.0512 (12)0.0418 (9)0.0091 (9)0.0033 (7)0.0013 (8)
C210.0468 (10)0.0422 (10)0.0274 (7)0.0066 (8)0.0030 (7)0.0011 (7)
C220.0610 (14)0.088 (2)0.0710 (15)0.0125 (13)0.0325 (12)0.0018 (13)
Geometric parameters (Å, º) top
S1—O21.4834 (12)C11—H11B0.9900
S1—C11.7582 (16)C12—C131.501 (3)
S1—C161.7940 (18)C12—H12A0.9900
O1—C81.373 (2)C12—H12B0.9900
O1—C71.3792 (19)C13—C141.525 (2)
C1—C81.355 (2)C13—H13A0.9900
C1—C21.447 (2)C13—H13B0.9900
C2—C71.391 (2)C14—H14A0.9900
C2—C31.397 (2)C14—H14B0.9900
C3—C41.394 (2)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.403 (2)C15—H15C0.9800
C4—C91.515 (2)C16—C211.384 (2)
C5—C61.386 (2)C16—C171.389 (2)
C5—H50.9500C17—C181.378 (3)
C6—C71.378 (2)C17—H170.9500
C6—H60.9500C18—C191.393 (3)
C8—C151.482 (2)C18—H180.9500
C9—C101.521 (2)C19—C201.391 (3)
C9—C141.526 (2)C19—C221.510 (3)
C9—H91.0000C20—C211.383 (3)
C10—C111.528 (2)C20—H200.9500
C10—H10A0.9900C21—H210.9500
C10—H10B0.9900C22—H22A0.9800
C11—C121.516 (3)C22—H22B0.9800
C11—H11A0.9900C22—H22C0.9800
O2—S1—C1107.26 (7)C13—C12—H12A109.4
O2—S1—C16107.48 (8)C11—C12—H12A109.4
C1—S1—C1697.46 (7)C13—C12—H12B109.4
C8—O1—C7106.50 (12)C11—C12—H12B109.4
C8—C1—C2107.63 (14)H12A—C12—H12B108.0
C8—C1—S1123.82 (12)C12—C13—C14111.56 (15)
C2—C1—S1128.54 (11)C12—C13—H13A109.3
C7—C2—C3119.37 (14)C14—C13—H13A109.3
C7—C2—C1104.43 (13)C12—C13—H13B109.3
C3—C2—C1136.19 (15)C14—C13—H13B109.3
C4—C3—C2118.92 (14)H13A—C13—H13B108.0
C4—C3—H3120.5C13—C14—C9112.06 (15)
C2—C3—H3120.5C13—C14—H14A109.2
C3—C4—C5119.37 (15)C9—C14—H14A109.2
C3—C4—C9121.06 (14)C13—C14—H14B109.2
C5—C4—C9119.57 (14)C9—C14—H14B109.2
C6—C5—C4122.67 (16)H14A—C14—H14B107.9
C6—C5—H5118.7C8—C15—H15A109.5
C4—C5—H5118.7C8—C15—H15B109.5
C7—C6—C5116.24 (15)H15A—C15—H15B109.5
C7—C6—H6121.9C8—C15—H15C109.5
C5—C6—H6121.9H15A—C15—H15C109.5
C6—C7—O1125.79 (14)H15B—C15—H15C109.5
C6—C7—C2123.42 (15)C21—C16—C17120.55 (16)
O1—C7—C2110.78 (14)C21—C16—S1121.67 (12)
C1—C8—O1110.65 (13)C17—C16—S1117.76 (13)
C1—C8—C15133.23 (17)C18—C17—C16119.32 (16)
O1—C8—C15116.11 (14)C18—C17—H17120.3
C4—C9—C10112.70 (13)C16—C17—H17120.3
C4—C9—C14112.02 (13)C17—C18—C19121.36 (16)
C10—C9—C14109.74 (15)C17—C18—H18119.3
C4—C9—H9107.4C19—C18—H18119.3
C10—C9—H9107.4C20—C19—C18118.16 (18)
C14—C9—H9107.4C20—C19—C22120.8 (2)
C9—C10—C11111.72 (15)C18—C19—C22121.02 (18)
C9—C10—H10A109.3C21—C20—C19121.29 (17)
C11—C10—H10A109.3C21—C20—H20119.4
C9—C10—H10B109.3C19—C20—H20119.4
C11—C10—H10B109.3C20—C21—C16119.31 (15)
H10A—C10—H10B107.9C20—C21—H21120.3
C12—C11—C10111.32 (17)C16—C21—H21120.3
C12—C11—H11A109.4C19—C22—H22A109.5
C10—C11—H11A109.4C19—C22—H22B109.5
C12—C11—H11B109.4H22A—C22—H22B109.5
C10—C11—H11B109.4C19—C22—H22C109.5
H11A—C11—H11B108.0H22A—C22—H22C109.5
C13—C12—C11111.39 (17)H22B—C22—H22C109.5
O2—S1—C1—C8146.67 (14)C7—O1—C8—C15179.73 (13)
C16—S1—C1—C8102.36 (14)C3—C4—C9—C1060.1 (2)
O2—S1—C1—C233.43 (16)C5—C4—C9—C10120.06 (18)
C16—S1—C1—C277.54 (14)C3—C4—C9—C1464.24 (19)
C8—C1—C2—C70.07 (16)C5—C4—C9—C14115.60 (17)
S1—C1—C2—C7179.84 (12)C4—C9—C10—C11179.09 (17)
C8—C1—C2—C3179.21 (16)C14—C9—C10—C1155.3 (2)
S1—C1—C2—C30.9 (3)C9—C10—C11—C1255.9 (3)
C7—C2—C3—C40.4 (2)C10—C11—C12—C1355.0 (2)
C1—C2—C3—C4179.61 (16)C11—C12—C13—C1454.7 (2)
C2—C3—C4—C50.2 (2)C12—C13—C14—C955.4 (2)
C2—C3—C4—C9179.61 (13)C4—C9—C14—C13178.94 (15)
C3—C4—C5—C60.4 (2)C10—C9—C14—C1355.1 (2)
C9—C4—C5—C6179.46 (15)O2—S1—C16—C2121.67 (17)
C4—C5—C6—C70.1 (3)C1—S1—C16—C2189.13 (15)
C5—C6—C7—O1179.92 (14)O2—S1—C16—C17156.54 (13)
C5—C6—C7—C20.8 (2)C1—S1—C16—C1792.67 (14)
C8—O1—C7—C6179.88 (15)C21—C16—C17—C181.0 (3)
C8—O1—C7—C20.67 (16)S1—C16—C17—C18179.22 (13)
C3—C2—C7—C61.0 (2)C16—C17—C18—C191.2 (3)
C1—C2—C7—C6179.60 (15)C17—C18—C19—C200.8 (3)
C3—C2—C7—O1179.80 (12)C17—C18—C19—C22178.7 (2)
C1—C2—C7—O10.37 (16)C18—C19—C20—C210.2 (3)
C2—C1—C8—O10.49 (17)C22—C19—C20—C21179.3 (2)
S1—C1—C8—O1179.43 (10)C19—C20—C21—C160.0 (3)
C2—C1—C8—C15179.27 (16)C17—C16—C21—C200.4 (3)
S1—C1—C8—C150.6 (3)S1—C16—C21—C20178.54 (14)
C7—O1—C8—C10.72 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.952.483.140 (2)127
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H24O2S
Mr352.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)16.6086 (4), 8.8344 (2), 13.0330 (3)
β (°) 104.064 (1)
V3)1854.97 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.37 × 0.25 × 0.23
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.934, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
16901, 4265, 3545
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.06
No. of reflections4265
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.952.483.140 (2)127
Symmetry code: (i) x, y+1/2, z1/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o205.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o768.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds