metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­chlorido(3,5-di­nitro-2-oxidobenzo­ato-κ2O1,O2)(1,10-phenanthroline-κ2N,N′)chromium(III)

aCollege of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China, and bDepartment of Anatomy, College of Basic Medical Science, Xinxiang Medical College, Xinxiang 453003, People's Republic of China
*Correspondence e-mail: nysymzh@126.com

(Received 1 March 2012; accepted 2 March 2012; online 7 March 2012)

In the title compound, [Cr(C7H2N2O7)Cl(C12H8N2)(H2O)], the CrIII atom displays a distorted octa­hedral coordination geometry, with the chelating phenantroline and 3,5-dinitro­salicylate ligands in trans positions. In the crystal, mol­ecules are connected via O—H⋯O hydrogen bonds into a two-dimensional framework parallel to (100). In addition, there are ππ stacking inter­actions between phenanthroline ligands along the c axis, with a mean inter­planar distance of 3.456 (4) Å.

Related literature

For the structure of a similar MnIII complex, see: Tan & Tang (1996[Tan, X. S. & Tang, W. X. (1996). Polyhedron, 15, 2087-2091.]). For ππ stacking inter­actions in metal complexes, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C7H2N2O7)Cl(C12H8N2)(H2O)]

  • Mr = 511.78

  • Monoclinic, P 21 /c

  • a = 13.868 (7) Å

  • b = 16.158 (8) Å

  • c = 9.348 (5) Å

  • β = 105.947 (9)°

  • V = 2014.2 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 296 K

  • 0.19 × 0.15 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]) Tmin = 0.869, Tmax = 0.908

  • 10867 measured reflections

  • 3952 independent reflections

  • 2378 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.161

  • S = 1.04

  • 3952 reflections

  • 306 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

Cr1—O3 1.906 (3)
Cr1—O1 1.926 (3)
Cr1—O8 2.017 (4)
Cr1—N1 2.056 (4)
Cr1—N2 2.065 (3)
Cr1—Cl1 2.2705 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H1WB⋯O6i 0.83 (2) 1.94 (2) 2.759 (5) 168 (5)
O8—H1WA⋯O2ii 0.81 (2) 1.81 (3) 2.581 (4) 160 (5)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 1997[Bruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Herein we report a mononuclear chromium(III) coordination compound [Cr(C12H8N2)(C7H2N2O7)Cl(H2O)] (Fig. 1) obtained with the use of 3,5-dinitrosalicylic acid and 1,10-phenanthroline ligands. In the structure of title compound, the chromium atom is octahedrally coordinated by two N atoms from the phenanthroline ligand, two O atoms from the (C7H2N2O7)2- anion, one Cl ion and one water molecule. Bond lengths to the metal center are given in Table 1. The molecules are connected via O—H···O hydrogen bonds resulting in the formation of a two-dimensional supermolecular structure (Fig. 2). Moreover, there are ππ stacking interactions between phenanthroline ligands along the c axis due to the fact that these aromatic groups of phenanthroline ligands are parallel with each other. Such ππ stacking interactions between aromatic groups are rather popular in coordination compounds. Hydrogen bonds and ππ stacking interactions play a crucial role in stability of the crystal structure.

Related literature top

For the structure of a similar MnIII complex, see: Tan & Tang (1996). For ππ stacking interactions in metal complexes, see: Janiak (2000).

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. The title compound was synthesized from a mixture of CrCl3.6H2O (0.80 g, 3 mmol), 3,5-dinitrosalicylic acid (0.68 g, 3 mmol) and 1, 10-phenanthroline (0.60 g, 3 mmol), NaOH (0.08 g, 2 mmol) and ethanol (20 mL) by hydrothermal reaction. The mixture was stirred for half an hour, and then transferred into a Teflon-lined stainless steel autoclave (50 mL) and treated at 160 °C for 3 days. After the mixture was slowly cooled to room temperature, green block crystals suitable for X-ray structure determination were obtained.

Refinement top

The H atoms bonded to C were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2 times Ueq(C). The H atoms bonded to O atoms were located from Fourier difference maps and refined with distance restraints of O8—H1WA = 0.83 (2) Å, and O8—H1WB = 0.83 (2) Å.

Structure description top

Herein we report a mononuclear chromium(III) coordination compound [Cr(C12H8N2)(C7H2N2O7)Cl(H2O)] (Fig. 1) obtained with the use of 3,5-dinitrosalicylic acid and 1,10-phenanthroline ligands. In the structure of title compound, the chromium atom is octahedrally coordinated by two N atoms from the phenanthroline ligand, two O atoms from the (C7H2N2O7)2- anion, one Cl ion and one water molecule. Bond lengths to the metal center are given in Table 1. The molecules are connected via O—H···O hydrogen bonds resulting in the formation of a two-dimensional supermolecular structure (Fig. 2). Moreover, there are ππ stacking interactions between phenanthroline ligands along the c axis due to the fact that these aromatic groups of phenanthroline ligands are parallel with each other. Such ππ stacking interactions between aromatic groups are rather popular in coordination compounds. Hydrogen bonds and ππ stacking interactions play a crucial role in stability of the crystal structure.

For the structure of a similar MnIII complex, see: Tan & Tang (1996). For ππ stacking interactions in metal complexes, see: Janiak (2000).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing along the c axis. Hydrogen bonds are shown as dashed lines.
Aquachlorido(3,5-dinitro-2-oxidobenzoato-κ2O1,O2)(1,10- phenanthroline-κ2N,N')chromium(III) top
Crystal data top
[Cr(C7H2N2O7)Cl(C12H8N2)(H2O)]F(000) = 1036
Mr = 511.78Dx = 1.688 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1361 reflections
a = 13.868 (7) Åθ = 2.6–20.2°
b = 16.158 (8) ŵ = 0.76 mm1
c = 9.348 (5) ÅT = 296 K
β = 105.947 (9)°Block, green
V = 2014.2 (17) Å30.19 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3952 independent reflections
Radiation source: fine-focus sealed tube2378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
φ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1714
Tmin = 0.869, Tmax = 0.908k = 1918
10867 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0753P)2]
where P = (Fo2 + 2Fc2)/3
3952 reflections(Δ/σ)max < 0.001
306 parametersΔρmax = 0.48 e Å3
2 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cr(C7H2N2O7)Cl(C12H8N2)(H2O)]V = 2014.2 (17) Å3
Mr = 511.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.868 (7) ŵ = 0.76 mm1
b = 16.158 (8) ÅT = 296 K
c = 9.348 (5) Å0.19 × 0.15 × 0.13 mm
β = 105.947 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
3952 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2378 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.908Rint = 0.060
10867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0582 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.48 e Å3
3952 reflectionsΔρmin = 0.49 e Å3
306 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.71896 (5)0.01477 (4)0.02803 (8)0.0398 (2)
C10.8895 (3)0.0499 (3)0.1138 (5)0.0486 (12)
H1A0.89520.00710.12280.058*
C20.9520 (3)0.1014 (3)0.1671 (5)0.0549 (13)
H2A0.99850.07900.21130.066*
C30.9445 (3)0.1854 (3)0.1540 (5)0.0541 (13)
H3A0.98610.22030.18920.065*
C40.8750 (3)0.2183 (3)0.0885 (5)0.0466 (12)
C50.8148 (3)0.1623 (3)0.0363 (5)0.0373 (10)
C60.8586 (4)0.3049 (3)0.0718 (5)0.0538 (13)
H6A0.89860.34290.10380.065*
C70.7875 (4)0.3331 (3)0.0115 (5)0.0531 (13)
H7A0.77690.38980.00760.064*
C80.7280 (4)0.2774 (3)0.0467 (5)0.0451 (12)
C90.7416 (3)0.1913 (2)0.0324 (5)0.0372 (10)
C100.6547 (4)0.3003 (3)0.1147 (5)0.0540 (14)
H10A0.64130.35620.12410.065*
C110.6019 (4)0.2423 (3)0.1680 (5)0.0504 (12)
H11A0.55420.25840.21560.060*
C120.6203 (3)0.1593 (3)0.1502 (5)0.0463 (11)
H12A0.58400.12010.18660.056*
C130.5958 (3)0.1109 (3)0.1121 (5)0.0381 (10)
C140.6519 (3)0.1771 (2)0.0562 (4)0.0350 (10)
C150.7266 (3)0.1605 (2)0.0202 (5)0.0346 (10)
C160.7719 (3)0.2324 (3)0.0637 (5)0.0372 (10)
C170.7469 (3)0.3115 (3)0.0374 (5)0.0403 (10)
H17A0.77910.35640.06620.048*
C180.6729 (3)0.3229 (2)0.0326 (5)0.0413 (11)
C190.6267 (3)0.2570 (3)0.0788 (5)0.0398 (10)
H19A0.57720.26690.12650.048*
Cl10.83175 (9)0.00500 (7)0.25272 (14)0.0564 (4)
N10.8216 (3)0.0795 (2)0.0502 (4)0.0402 (9)
N20.6876 (3)0.1336 (2)0.0834 (4)0.0377 (8)
N30.8523 (3)0.2233 (2)0.1369 (4)0.0443 (9)
N40.6453 (3)0.4060 (2)0.0641 (5)0.0579 (11)
O10.6129 (2)0.03496 (17)0.0950 (3)0.0468 (8)
O20.5312 (2)0.13290 (17)0.1731 (3)0.0468 (8)
O30.7505 (2)0.08735 (17)0.0508 (3)0.0462 (8)
O40.8663 (3)0.1591 (2)0.1910 (5)0.0756 (12)
O50.9030 (3)0.2830 (2)0.1388 (6)0.0961 (16)
O60.5745 (3)0.4138 (2)0.1213 (4)0.0697 (11)
O70.6920 (4)0.4640 (2)0.0366 (5)0.0934 (16)
O80.6198 (2)0.0388 (2)0.1700 (4)0.0450 (8)
H1WB0.608 (3)0.0037 (19)0.222 (4)0.050 (15)*
H1WA0.565 (2)0.059 (3)0.180 (5)0.060 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0387 (4)0.0349 (4)0.0546 (5)0.0041 (3)0.0277 (3)0.0005 (3)
C10.040 (3)0.050 (3)0.063 (3)0.007 (2)0.027 (2)0.002 (2)
C20.039 (3)0.074 (4)0.061 (3)0.006 (2)0.029 (3)0.007 (3)
C30.039 (3)0.070 (4)0.057 (3)0.010 (3)0.020 (2)0.010 (3)
C40.036 (3)0.056 (3)0.047 (3)0.006 (2)0.010 (2)0.007 (2)
C50.034 (2)0.042 (2)0.036 (3)0.0025 (19)0.0100 (19)0.0016 (19)
C60.055 (3)0.045 (3)0.058 (3)0.011 (2)0.010 (3)0.006 (2)
C70.065 (3)0.035 (3)0.055 (3)0.002 (2)0.009 (3)0.003 (2)
C80.048 (3)0.042 (3)0.040 (3)0.004 (2)0.003 (2)0.004 (2)
C90.037 (3)0.037 (2)0.036 (2)0.0067 (19)0.007 (2)0.0013 (19)
C100.057 (3)0.046 (3)0.051 (3)0.018 (3)0.003 (3)0.013 (2)
C110.049 (3)0.056 (3)0.047 (3)0.016 (2)0.015 (2)0.012 (2)
C120.042 (3)0.057 (3)0.044 (3)0.009 (2)0.018 (2)0.004 (2)
C130.035 (2)0.042 (3)0.041 (3)0.004 (2)0.017 (2)0.001 (2)
C140.034 (2)0.037 (2)0.037 (3)0.0049 (19)0.0147 (19)0.0028 (18)
C150.030 (2)0.037 (2)0.038 (3)0.0050 (19)0.0117 (18)0.0013 (18)
C160.035 (2)0.041 (2)0.040 (3)0.0064 (19)0.018 (2)0.0002 (18)
C170.041 (3)0.035 (2)0.047 (3)0.005 (2)0.015 (2)0.0027 (19)
C180.045 (3)0.034 (2)0.047 (3)0.004 (2)0.016 (2)0.003 (2)
C190.033 (2)0.050 (3)0.039 (3)0.001 (2)0.015 (2)0.006 (2)
Cl10.0573 (8)0.0561 (7)0.0591 (8)0.0148 (6)0.0218 (6)0.0049 (6)
N10.036 (2)0.042 (2)0.047 (2)0.0067 (16)0.0185 (18)0.0006 (16)
N20.035 (2)0.040 (2)0.042 (2)0.0020 (16)0.0181 (17)0.0044 (16)
N30.040 (2)0.047 (2)0.052 (3)0.0023 (19)0.0230 (19)0.0071 (19)
N40.075 (3)0.040 (2)0.065 (3)0.001 (2)0.030 (3)0.007 (2)
O10.0442 (18)0.0342 (17)0.076 (2)0.0014 (14)0.0400 (17)0.0005 (15)
O20.0453 (19)0.0435 (17)0.064 (2)0.0039 (14)0.0364 (17)0.0067 (15)
O30.0492 (19)0.0367 (17)0.066 (2)0.0037 (14)0.0385 (17)0.0027 (14)
O40.088 (3)0.056 (2)0.113 (3)0.011 (2)0.078 (3)0.013 (2)
O50.090 (3)0.052 (2)0.182 (5)0.014 (2)0.096 (3)0.006 (3)
O60.070 (3)0.050 (2)0.103 (3)0.0038 (18)0.048 (2)0.0191 (19)
O70.136 (4)0.0358 (19)0.144 (4)0.017 (2)0.098 (3)0.008 (2)
O80.040 (2)0.0435 (19)0.058 (2)0.0070 (16)0.0245 (17)0.0070 (16)
Geometric parameters (Å, º) top
Cr1—O31.906 (3)C10—H10A0.9300
Cr1—O11.926 (3)C11—C121.383 (6)
Cr1—O82.017 (4)C11—H11A0.9300
Cr1—N12.056 (4)C12—N21.325 (5)
Cr1—N22.065 (3)C12—H12A0.9300
Cr1—Cl12.2705 (17)C13—O21.239 (5)
C1—N11.332 (5)C13—O11.268 (5)
C1—C21.389 (6)C13—C141.498 (6)
C1—H1A0.9300C14—C191.369 (5)
C2—C31.370 (7)C14—C151.437 (6)
C2—H2A0.9300C15—O31.281 (5)
C3—C41.382 (7)C15—C161.431 (5)
C3—H3A0.9300C16—C171.364 (6)
C4—C51.406 (6)C16—N31.467 (5)
C4—C61.434 (6)C17—C181.372 (6)
C5—N11.350 (5)C17—H17A0.9300
C5—C91.422 (6)C18—C191.372 (6)
C6—C71.343 (7)C18—N41.448 (5)
C6—H6A0.9300C19—H19A0.9300
C7—C81.425 (7)N3—O41.193 (4)
C7—H7A0.9300N3—O51.197 (5)
C8—C101.389 (7)N4—O71.207 (5)
C8—C91.415 (6)N4—O61.247 (5)
C9—N21.363 (5)O8—H1WB0.832 (19)
C10—C111.364 (7)O8—H1WA0.810 (19)
O3—Cr1—O192.39 (12)C10—C11—C12119.1 (5)
O3—Cr1—O889.04 (14)C10—C11—H11A120.4
O1—Cr1—O889.40 (14)C12—C11—H11A120.4
O3—Cr1—N192.74 (13)N2—C12—C11122.6 (5)
O1—Cr1—N1173.41 (13)N2—C12—H12A118.7
O8—Cr1—N186.54 (14)C11—C12—H12A118.7
O3—Cr1—N2171.05 (13)O2—C13—O1121.3 (4)
O1—Cr1—N294.24 (13)O2—C13—C14117.8 (4)
O8—Cr1—N285.03 (14)O1—C13—C14120.9 (4)
N1—Cr1—N280.24 (14)C19—C14—C15120.1 (4)
O3—Cr1—Cl193.60 (11)C19—C14—C13116.2 (4)
O1—Cr1—Cl191.96 (11)C15—C14—C13123.7 (4)
O8—Cr1—Cl1176.97 (11)O3—C15—C16121.7 (4)
N1—Cr1—Cl191.85 (11)O3—C15—C14123.3 (4)
N2—Cr1—Cl192.18 (10)C16—C15—C14115.0 (4)
N1—C1—C2122.1 (5)C17—C16—C15123.8 (4)
N1—C1—H1A118.9C17—C16—N3116.2 (4)
C2—C1—H1A118.9C15—C16—N3120.0 (4)
C3—C2—C1119.5 (5)C16—C17—C18118.2 (4)
C3—C2—H2A120.3C16—C17—H17A120.9
C1—C2—H2A120.3C18—C17—H17A120.9
C2—C3—C4120.0 (4)C19—C18—C17121.3 (4)
C2—C3—H3A120.0C19—C18—N4118.9 (4)
C4—C3—H3A120.0C17—C18—N4119.8 (4)
C3—C4—C5117.3 (4)C14—C19—C18121.5 (4)
C3—C4—C6125.1 (5)C14—C19—H19A119.2
C5—C4—C6117.6 (4)C18—C19—H19A119.2
N1—C5—C4122.7 (4)C1—N1—C5118.3 (4)
N1—C5—C9116.6 (4)C1—N1—Cr1128.3 (3)
C4—C5—C9120.7 (4)C5—N1—Cr1113.4 (3)
C7—C6—C4122.2 (5)C12—N2—C9118.4 (4)
C7—C6—H6A118.9C12—N2—Cr1129.4 (3)
C4—C6—H6A118.9C9—N2—Cr1112.0 (3)
C6—C7—C8121.1 (4)O4—N3—O5121.9 (4)
C6—C7—H7A119.5O4—N3—C16121.2 (4)
C8—C7—H7A119.5O5—N3—C16116.9 (4)
C10—C8—C9116.0 (4)O7—N4—O6122.9 (4)
C10—C8—C7125.4 (4)O7—N4—C18119.3 (4)
C9—C8—C7118.5 (4)O6—N4—C18117.7 (4)
N2—C9—C8122.7 (4)C13—O1—Cr1129.1 (3)
N2—C9—C5117.5 (4)C15—O3—Cr1127.7 (3)
C8—C9—C5119.8 (4)Cr1—O8—H1WB111 (3)
C11—C10—C8121.2 (4)Cr1—O8—H1WA125 (3)
C11—C10—H10A119.4H1WB—O8—H1WA103 (5)
C8—C10—H10A119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H1WB···O6i0.83 (2)1.94 (2)2.759 (5)168 (5)
O8—H1WA···O2ii0.81 (2)1.81 (3)2.581 (4)160 (5)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cr(C7H2N2O7)Cl(C12H8N2)(H2O)]
Mr511.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.868 (7), 16.158 (8), 9.348 (5)
β (°) 105.947 (9)
V3)2014.2 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.19 × 0.15 × 0.13
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.869, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
10867, 3952, 2378
Rint0.060
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.161, 1.04
No. of reflections3952
No. of parameters306
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.49

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cr1—O31.906 (3)Cr1—N12.056 (4)
Cr1—O11.926 (3)Cr1—N22.065 (3)
Cr1—O82.017 (4)Cr1—Cl12.2705 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H1WB···O6i0.832 (19)1.94 (2)2.759 (5)168 (5)
O8—H1WA···O2ii0.810 (19)1.81 (3)2.581 (4)160 (5)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z.
 

References

First citationBruker (1997). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, X. S. & Tang, W. X. (1996). Polyhedron, 15, 2087–2091.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds