organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(adamantan-1-aminium) carbonate

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa
*Correspondence e-mail: demetrius.levendis@wits.ac.za

(Received 8 March 2012; accepted 19 March 2012; online 24 March 2012)

In the title compound, 2C10H18N+·CO32−, the adamantan-1-aminium cation forms three N—H⋯O hydrogen bonds to three carbonate ions, resulting in a layer parallel to (001) with the adamantane groups located on its surface so that adjacent layers form only C—H⋯H—C contacts. The carbonate anions occupy special positions of 32 symmetry, whereas the adamantan-1-aminium cations occupy special positions of 3 symmetry.

Related literature

For related structures, see: de Vries et al. (2011[Vries, E. J. C. de, Gamble, C. & Nowakowska, M. (2011). Acta Cryst. E67, o1339.]); Mullica et al. (1999[Mullica, D. F., Scott, T. G., Farmer, J. M. & Kautz, J. A. (1999). J. Chem. Crystallogr. 29, 845-848.]); He & Wen (2006[He, Y.-H. & Wen, Y.-H. (2006). Acta Cryst. E62, o1312-o1313.]); Liu et al. (2009[Liu, J.-F., Xian, H.-D., Li, H.-Q. & Zhao, G.-L. (2009). Z. Kristallogr. 224, 69-70.]); Zhao et al. (2003[Zhao, G.-L., Feng, Y.-L., Hu, X.-C. & Kong, L.-K. (2003). Chin. J. Struct. Chem. 22, 321.]). For applications of adamantane–ammonium salts in virology, see: Hoffmann (1973[Hoffmann, C. E. (1973). Selective Inhibitors of Viral Functions, edited by W. A. Carter, p. 199. Cleveland, USA: CRC Press.]); Dolin et al. (1982[Dolin, R., Reichman, R. C., Madore, H. P., Maynard, R., Lindon, P. M. & Weber-Jones, J. (1982). N. Engl. J. Med. 307, 580-584.]); Bright et al. (2005[Bright, R. A., Medina, M. J., Xu, X. Y., Gilda, P. O., Wallis, T. R., Davis, X. H. M., Povinelli, L., Cox, N. J. & Klimov, A. I. (2005). Lancet, 366, 1175-1181.]); Betakova (2007[Betakova, T. (2007). Curr. Pharm. Des. 13, 3231-3235.]). For applications of amines for the capture of CO2 from the atmosphere, see: Yang et al. (2008[Yang, H., Xu, Z., Fan, M., Gupta, R., Bland, A. E. & Wright, I. J. (2008). Environ. Sci. 20, 14-27.]).

[Scheme 1]

Experimental

Crystal data
  • 2C10H18N+·CO32−

  • Mr = 364.52

  • Trigonal, [P \overline 3c 1]

  • a = 6.4340 (6) Å

  • c = 25.474 (2) Å

  • V = 913.25 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.30 × 0.22 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 3187 measured reflections

  • 629 independent reflections

  • 493 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.08

  • 629 reflections

  • 45 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.999 (16) 1.778 (15) 2.764 (1) 168.7 (18)
Symmetry code: (i) -y+1, x-y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker 2005[Bruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

It has been reported that 1-aminoadamantane hydrochloride (marketed as Symmetrel) is effective in the prevention and treatment of the influenza (A) virus (Hoffmann, 1973; Dolin et al., 1982; Bright et al., 2005). However recent studies suggest that the virus is becoming increasingly resistant to this anti-influenza drug (Betakova, 2007).

In an attempt to crystallize pure 1-aminoadamantane from ethanol we obtained instead adamantan-1-aminium carbonate, illustrated in Fig. 1, suggesting that the amine had captured atmospheric CO2. We report the structure here. It is known that organic amines can trap CO2 as the ammonium carbonate salt and this property is being explored as a way to capture carbon dioxide from the atmosphere (Yang et al., 2008).

Each carbonate ion of the title compound forms hydrogen bonds to six adamantane-ammonium ions, as shown in Fig. 2, forming a two-dimensional layer of adamantan-1-aminium carbonates parallel to (001). The hydrophobic adamantane layers interact with the neighbouring layers of adamantane-ammonium molecules via C—H···H–C contacts (see Fig. 3).

It is noted here that the structure of adamantan-1-aminium bicarbonate (Liu et al., 2009) reported in the literature is isomorphous to adamantan-1-aminium nitrate (Zhao et al., 2003). The former structure has unusually short H···H intermolecular contacts between NH3+ group H atom and bicarbonate H atom of 1.50 Å In addition the geometry of the hydrogen carbonate ion is very similar to that of the nitrate ion. A re-investigation of these structures is warranted.

Related literature top

For related structures, see: de Vries et al. (2011); Mullica et al. (1999); He & Wen (2006); Liu et al. (2009); Zhao et al. (2003). For applications of adamantane–ammonium salts in virology, see: Hoffmann (1973); Dolin et al. (1982); Bright et al. (2005); Betakova (2007). For applications of amines for the capture of CO2 from the atmosphere, see: Yang et al. (2008).

Experimental top

Crystals were grown by slow evaporation of an ethanol solution of the title compound, 0.500 g in 10 ml of ethanol, and afforded colourless plates after three days under ambient conditions. Crystals decompose, with an emission of gas bubbles (presumably CO2), at 423–428 K.

Refinement top

The N-bound H atom was placed according to the observed electron density and was allowed to refine freely. The remaining H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 1.00 (methine) and 0.99 Å (methylene CH2) and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

It has been reported that 1-aminoadamantane hydrochloride (marketed as Symmetrel) is effective in the prevention and treatment of the influenza (A) virus (Hoffmann, 1973; Dolin et al., 1982; Bright et al., 2005). However recent studies suggest that the virus is becoming increasingly resistant to this anti-influenza drug (Betakova, 2007).

In an attempt to crystallize pure 1-aminoadamantane from ethanol we obtained instead adamantan-1-aminium carbonate, illustrated in Fig. 1, suggesting that the amine had captured atmospheric CO2. We report the structure here. It is known that organic amines can trap CO2 as the ammonium carbonate salt and this property is being explored as a way to capture carbon dioxide from the atmosphere (Yang et al., 2008).

Each carbonate ion of the title compound forms hydrogen bonds to six adamantane-ammonium ions, as shown in Fig. 2, forming a two-dimensional layer of adamantan-1-aminium carbonates parallel to (001). The hydrophobic adamantane layers interact with the neighbouring layers of adamantane-ammonium molecules via C—H···H–C contacts (see Fig. 3).

It is noted here that the structure of adamantan-1-aminium bicarbonate (Liu et al., 2009) reported in the literature is isomorphous to adamantan-1-aminium nitrate (Zhao et al., 2003). The former structure has unusually short H···H intermolecular contacts between NH3+ group H atom and bicarbonate H atom of 1.50 Å In addition the geometry of the hydrogen carbonate ion is very similar to that of the nitrate ion. A re-investigation of these structures is warranted.

For related structures, see: de Vries et al. (2011); Mullica et al. (1999); He & Wen (2006); Liu et al. (2009); Zhao et al. (2003). For applications of adamantane–ammonium salts in virology, see: Hoffmann (1973); Dolin et al. (1982); Bright et al. (2005); Betakova (2007). For applications of amines for the capture of CO2 from the atmosphere, see: Yang et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus and XPREP (Bruker 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. The atoms C2f to C4f are generated by the symmetry (1-y,x-y,z); C2g to C4g by (1-x+y, 1-x,z); O1a by (-y,x-y,z) and O2b by (-x+y,-x,z).
[Figure 2] Fig. 2. Intermolecular N—H···O hydrogen bonded (dashed lines) layers along [001] showing only the C-NH3 and CO3 groups for clarity.
[Figure 3] Fig. 3. A view down the b axis of the unit cell of the title compound showing the hydrogen bonded layers. Notice that the carbonate ions occupy sites with 32 symmetry whereas cations occupy the sites of 3 symmetry.
Bis(adamantan-1-aminium) carbonate top
Crystal data top
2C10H18N+·CO32Dx = 1.326 Mg m3
Mr = 364.52Mo Kα radiation, λ = 0.71069 Å
Trigonal, P3c1Cell parameters from 819 reflections
Hall symbol: -P 3 2"cθ = 3.2–25.8°
a = 6.4340 (6) ŵ = 0.09 mm1
c = 25.474 (2) ÅT = 173 K
V = 913.25 (14) Å3Prism, colourless
Z = 20.30 × 0.22 × 0.08 mm
F(000) = 400
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.062
Graphite monochromatorθmax = 26.4°, θmin = 1.6°
φ and ω scansh = 85
3187 measured reflectionsk = 28
629 independent reflectionsl = 3131
493 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.010P]
where P = (Fo2 + 2Fc2)/3
629 reflections(Δ/σ)max < 0.001
45 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
2C10H18N+·CO32Z = 2
Mr = 364.52Mo Kα radiation
Trigonal, P3c1µ = 0.09 mm1
a = 6.4340 (6) ÅT = 173 K
c = 25.474 (2) Å0.30 × 0.22 × 0.08 mm
V = 913.25 (14) Å3
Data collection top
Bruker APEXII CCD
diffractometer
493 reflections with I > 2σ(I)
3187 measured reflectionsRint = 0.062
629 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.22 e Å3
629 reflectionsΔρmin = 0.18 e Å3
45 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66670.33330.16486 (9)0.0236 (6)
C20.9213 (2)0.5034 (2)0.14518 (6)0.0278 (4)
H2A1.0320.45050.15840.033*
H2B0.9770.66780.15830.033*
C30.9215 (2)0.5033 (3)0.08498 (6)0.0309 (4)
H31.08770.6140.07190.037*
C40.8365 (3)0.2482 (3)0.06502 (6)0.0346 (4)
H4A0.8380.24740.02620.042*
H4B0.94640.19320.07770.042*
C5000.250.0219 (7)
N10.66670.33330.22372 (8)0.0278 (5)
O100.1993 (2)0.250.0343 (4)
H10.732 (4)0.502 (3)0.2358 (7)0.060 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0198 (8)0.0198 (8)0.0312 (12)0.0099 (4)00
C20.0195 (8)0.0205 (7)0.0415 (9)0.0087 (6)0.0018 (6)0.0014 (6)
C30.0217 (8)0.0262 (8)0.0404 (9)0.0085 (6)0.0061 (6)0.0039 (6)
C40.0317 (9)0.0350 (9)0.0397 (8)0.0185 (8)0.0055 (6)0.0016 (7)
C50.0214 (10)0.0214 (10)0.0228 (15)0.0107 (5)00
N10.0253 (7)0.0253 (7)0.0328 (11)0.0127 (3)00
O10.0299 (8)0.0221 (6)0.0536 (10)0.0149 (4)0.0091 (7)0.0045 (3)
Geometric parameters (Å, º) top
C1—N11.500 (3)C3—C41.534 (2)
C1—C21.5295 (14)C3—H31
C2—C31.5335 (19)C4—H4A0.99
C2—H2A0.99C4—H4B0.99
C2—H2B0.99C5—O11.2820 (13)
C3—C4i1.532 (2)N1—H10.999 (16)
N1—C1—C2109.13 (9)C2—C3—C4109.40 (12)
C2ii—C1—C2109.81 (9)C2—C3—H3109.5
C1—C2—C3109.18 (12)C4—C3—H3109.5
C1—C2—H2A109.8C3ii—C4—C3109.57 (13)
C3—C2—H2A109.8C3—C4—H4A109.8
C1—C2—H2B109.8C3—C4—H4B109.8
C3—C2—H2B109.8H4A—C4—H4B108.2
H2A—C2—H2B108.3O1iii—C5—O1120
C4i—C3—C2109.29 (11)C1—N1—H1107.9 (11)
C4i—C3—C4109.58 (14)
N1—C1—C2—C3179.92 (8)C1—C2—C3—C459.84 (12)
C2ii—C1—C2—C360.34 (13)C4i—C3—C4—C3ii59.76 (18)
C2i—C1—C2—C360.50 (13)C2—C3—C4—C3ii60.04 (15)
C1—C2—C3—C4i60.13 (13)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) y, xy, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1iv0.999 (16)1.778 (15)2.7644 (11)168.7 (18)
Symmetry code: (iv) y+1, xy+1, z.

Experimental details

Crystal data
Chemical formula2C10H18N+·CO32
Mr364.52
Crystal system, space groupTrigonal, P3c1
Temperature (K)173
a, c (Å)6.4340 (6), 25.474 (2)
V3)913.25 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.22 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3187, 629, 493
Rint0.062
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.08
No. of reflections629
No. of parameters45
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SAINT-Plus and XPREP (Bruker 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.999 (16)1.778 (15)2.7644 (11)168.7 (18)
Symmetry code: (i) y+1, xy+1, z.
 

Acknowledgements

The University of the Witwatersrand and the Mol­ecular Sciences Institute are acknowledged for providing the infrastructure required for this work.

References

First citationBetakova, T. (2007). Curr. Pharm. Des. 13, 3231–3235.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBright, R. A., Medina, M. J., Xu, X. Y., Gilda, P. O., Wallis, T. R., Davis, X. H. M., Povinelli, L., Cox, N. J. & Klimov, A. I. (2005). Lancet, 366, 1175–1181.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolin, R., Reichman, R. C., Madore, H. P., Maynard, R., Lindon, P. M. & Weber-Jones, J. (1982). N. Engl. J. Med. 307, 580–584.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHe, Y.-H. & Wen, Y.-H. (2006). Acta Cryst. E62, o1312–o1313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoffmann, C. E. (1973). Selective Inhibitors of Viral Functions, edited by W. A. Carter, p. 199. Cleveland, USA: CRC Press.  Google Scholar
First citationLiu, J.-F., Xian, H.-D., Li, H.-Q. & Zhao, G.-L. (2009). Z. Kristallogr. 224, 69–70.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMullica, D. F., Scott, T. G., Farmer, J. M. & Kautz, J. A. (1999). J. Chem. Crystallogr. 29, 845–848.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVries, E. J. C. de, Gamble, C. & Nowakowska, M. (2011). Acta Cryst. E67, o1339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, H., Xu, Z., Fan, M., Gupta, R., Bland, A. E. & Wright, I. J. (2008). Environ. Sci. 20, 14–27.  CrossRef CAS Google Scholar
First citationZhao, G.-L., Feng, Y.-L., Hu, X.-C. & Kong, L.-K. (2003). Chin. J. Struct. Chem. 22, 321.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds