organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Acetyl-1-(3-chloro­phen­yl)thio­urea

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and cDepartment of Chemistry, University of Gujrat, Gujrat, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 18 March 2012; accepted 21 March 2012; online 24 March 2012)

In the title compound, C9H9ClN2OS, the 3-chloro­phenyl and acetyl­thio­urea fragments are oriented at a dihedral angle of 62.68 (5)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. Mol­ecules are linked into dimers via a cyclic R22(8) motif of N—H⋯S hydrogen bonds. These dimers are further connected through C—H⋯S inter­actions, completing an R22(12) motif, into chains along [010].

Related literature

For related structures, see: Shahwar et al. (2012a[Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012a). Acta Cryst. E68, o1160.],b[Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Samiullah, (2012b). Acta Cryst. E68, o508.]).; For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9ClN2OS

  • Mr = 228.69

  • Monoclinic, C 2/c

  • a = 28.3980 (14) Å

  • b = 4.1768 (2) Å

  • c = 20.2635 (11) Å

  • β = 122.651 (2)°

  • V = 2023.69 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 296 K

  • 0.35 × 0.22 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.868, Tmax = 0.872

  • 7045 measured reflections

  • 1775 independent reflections

  • 1450 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.109

  • S = 1.11

  • 1775 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.96 2.648 (3) 136
N2—H2⋯S1i 0.86 2.56 3.4095 (18) 170
C9—H9A⋯S1ii 0.96 2.85 3.799 (3) 170
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (Fig. 1) has been synthesized as a continuation of our work to find new enzyme inhibitors.

The crystal structures of N-(2-methylphenylcarbamothioyl)acetamide (Shahwar et al., 2012a) and N-(phenylcarbamothioyl)acetamide (Shahwar et al., 2012b) have been reported which are related to the title compound.

In the title compound, the 3-chlorophenyl group A (C1–C6/Cl1) and the N-carbamothioylacetamide moiety B (N1/C7/S1/N2/C8/O1/C9) are planar with r. m. s. deviation of 0.0055 Å and 0.0060 Å, respectively. The dihedral angle between A/B is 62.68 (5)°. There exist intramolecular H–bonding of N—H···O type (Table 1, Fig. 1) with S(6) ring motif (Bernstein et al., 1995). The molecules are dimerized due to N—H···S type of hydrogen bonds with R22(8) ring motifs (Table 1, Fig. 2). The dimers are interlinked due to C—H···S H–bondings (Table 1, Fig. 2) and complete R22(12) ring motifs.

Related literature top

For related structures, see: Shahwar et al. (2012a,b).; For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by adding (0.1 mol, 7.13 ml) of acetylchloride dropwise to a stirred solution of KSCN (0.11 mol) in dry acetone (50 ml), followed by slow addition of 3-chloroaniline (0.1 mol) in dry acetone (25 ml). The mixture was refluxed for 5–10 min, then poured on ice cooled water, which resulted in crude precipitate. Recrystallization of the precipitate from ethyl acetate yielded colorless rods (m.p. 374 K).

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.96 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl groups and x = 1.2 for other H atoms.

Structure description top

The title compound (Fig. 1) has been synthesized as a continuation of our work to find new enzyme inhibitors.

The crystal structures of N-(2-methylphenylcarbamothioyl)acetamide (Shahwar et al., 2012a) and N-(phenylcarbamothioyl)acetamide (Shahwar et al., 2012b) have been reported which are related to the title compound.

In the title compound, the 3-chlorophenyl group A (C1–C6/Cl1) and the N-carbamothioylacetamide moiety B (N1/C7/S1/N2/C8/O1/C9) are planar with r. m. s. deviation of 0.0055 Å and 0.0060 Å, respectively. The dihedral angle between A/B is 62.68 (5)°. There exist intramolecular H–bonding of N—H···O type (Table 1, Fig. 1) with S(6) ring motif (Bernstein et al., 1995). The molecules are dimerized due to N—H···S type of hydrogen bonds with R22(8) ring motifs (Table 1, Fig. 2). The dimers are interlinked due to C—H···S H–bondings (Table 1, Fig. 2) and complete R22(12) ring motifs.

For related structures, see: Shahwar et al. (2012a,b).; For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted lines represent the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) showing molecules connected via N-H···O and C-H···S interactions.
3-Acetyl-1-(3-chlorophenyl)thiourea top
Crystal data top
C9H9ClN2OSF(000) = 944
Mr = 228.69Dx = 1.501 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1464 reflections
a = 28.3980 (14) Åθ = 2.1–25.1°
b = 4.1768 (2) ŵ = 0.55 mm1
c = 20.2635 (11) ÅT = 296 K
β = 122.651 (2)°Rod, colorless
V = 2023.69 (18) Å30.35 × 0.22 × 0.22 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1745 independent reflections
Radiation source: fine-focus sealed tube1450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.10 pixels mm-1θmax = 25.1°, θmin = 2.1°
ω scansh = 3327
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 43
Tmin = 0.868, Tmax = 0.872l = 1924
7045 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0527P)2 + 1.9073P]
where P = (Fo2 + 2Fc2)/3
1775 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H9ClN2OSV = 2023.69 (18) Å3
Mr = 228.69Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.3980 (14) ŵ = 0.55 mm1
b = 4.1768 (2) ÅT = 296 K
c = 20.2635 (11) Å0.35 × 0.22 × 0.22 mm
β = 122.651 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1745 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1450 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.872Rint = 0.029
7045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.11Δρmax = 0.23 e Å3
1775 reflectionsΔρmin = 0.23 e Å3
128 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.27943 (3)0.9289 (2)0.34233 (4)0.0593 (3)
S10.08011 (2)0.46913 (17)0.10724 (3)0.0436 (2)
O10.03091 (7)1.0496 (5)0.16023 (11)0.0610 (7)
N10.06728 (7)0.7792 (5)0.21108 (10)0.0383 (6)
N20.00930 (7)0.7704 (5)0.08375 (10)0.0353 (6)
C10.12315 (9)0.7158 (6)0.27507 (12)0.0334 (7)
C20.16843 (9)0.8388 (6)0.27522 (13)0.0375 (8)
C30.22127 (9)0.7785 (6)0.33950 (13)0.0375 (7)
C40.22942 (10)0.6054 (7)0.40248 (14)0.0461 (8)
C50.18373 (11)0.4900 (7)0.40138 (16)0.0520 (9)
C60.13025 (10)0.5409 (6)0.33725 (14)0.0422 (8)
C70.04606 (9)0.6845 (5)0.13794 (12)0.0328 (7)
C80.04474 (9)0.9441 (6)0.09596 (14)0.0395 (8)
C90.10196 (10)0.9910 (7)0.02487 (15)0.0480 (9)
H10.045910.886820.220870.0459*
H20.022920.705660.036500.0424*
H30.163400.958610.233190.0450*
H40.265370.566920.445260.0553*
H50.188830.376420.444240.0624*
H60.099470.457800.336220.0506*
H9A0.099421.107850.013900.0720*
H9B0.124381.109070.038770.0720*
H9C0.118870.786230.004020.0720*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0285 (4)0.0836 (6)0.0561 (5)0.0088 (3)0.0164 (3)0.0058 (4)
S10.0301 (4)0.0600 (4)0.0331 (4)0.0091 (3)0.0120 (3)0.0070 (3)
O10.0378 (11)0.0981 (16)0.0396 (11)0.0147 (10)0.0159 (9)0.0173 (10)
N10.0223 (10)0.0590 (13)0.0290 (10)0.0031 (9)0.0109 (8)0.0061 (9)
N20.0231 (9)0.0509 (12)0.0251 (10)0.0023 (8)0.0086 (8)0.0049 (8)
C10.0248 (11)0.0434 (13)0.0262 (12)0.0014 (9)0.0099 (9)0.0051 (9)
C20.0303 (13)0.0479 (14)0.0283 (12)0.0001 (10)0.0119 (10)0.0032 (10)
C30.0250 (12)0.0480 (14)0.0334 (12)0.0038 (10)0.0117 (10)0.0051 (10)
C40.0302 (13)0.0605 (16)0.0342 (14)0.0060 (11)0.0085 (11)0.0070 (12)
C50.0439 (16)0.0684 (18)0.0374 (14)0.0033 (13)0.0178 (13)0.0173 (13)
C60.0340 (14)0.0545 (15)0.0383 (14)0.0041 (11)0.0196 (11)0.0004 (11)
C70.0242 (12)0.0400 (13)0.0298 (12)0.0014 (9)0.0116 (10)0.0003 (10)
C80.0274 (13)0.0504 (15)0.0371 (14)0.0019 (10)0.0150 (11)0.0017 (11)
C90.0304 (14)0.0653 (17)0.0412 (14)0.0124 (12)0.0146 (12)0.0002 (12)
Geometric parameters (Å, º) top
Cl1—C31.739 (3)C3—C41.373 (4)
S1—C71.667 (3)C4—C51.373 (5)
O1—C81.222 (3)C5—C61.382 (4)
N1—C11.431 (3)C8—C91.493 (4)
N1—C71.324 (3)C2—H30.9300
N2—C71.394 (3)C4—H40.9300
N2—C81.367 (4)C5—H50.9300
N1—H10.8600C6—H60.9300
N2—H20.8600C9—H9A0.9600
C1—C61.374 (3)C9—H9B0.9600
C1—C21.383 (4)C9—H9C0.9600
C2—C31.379 (4)
C1—N1—C7124.9 (2)N1—C7—N2116.3 (2)
C7—N2—C8128.42 (19)O1—C8—C9122.5 (3)
C1—N1—H1118.00N2—C8—C9114.8 (2)
C7—N1—H1118.00O1—C8—N2122.7 (2)
C7—N2—H2116.00C1—C2—H3121.00
C8—N2—H2116.00C3—C2—H3121.00
N1—C1—C2120.5 (2)C3—C4—H4120.00
N1—C1—C6118.1 (3)C5—C4—H4120.00
C2—C1—C6121.3 (2)C4—C5—H5120.00
C1—C2—C3118.1 (2)C6—C5—H5120.00
Cl1—C3—C4118.6 (2)C1—C6—H6120.00
C2—C3—C4121.7 (3)C5—C6—H6120.00
Cl1—C3—C2119.68 (19)C8—C9—H9A109.00
C3—C4—C5119.1 (3)C8—C9—H9B109.00
C4—C5—C6120.7 (3)C8—C9—H9C109.00
C1—C6—C5119.2 (3)H9A—C9—H9B109.00
S1—C7—N1125.0 (2)H9A—C9—H9C109.00
S1—C7—N2118.65 (16)H9B—C9—H9C109.00
C7—N1—C1—C263.5 (3)C6—C1—C2—C30.6 (4)
C7—N1—C1—C6119.0 (3)N1—C1—C6—C5176.9 (2)
C1—N1—C7—S11.1 (4)C2—C1—C6—C50.6 (4)
C1—N1—C7—N2179.9 (2)C1—C2—C3—Cl1179.9 (2)
C8—N2—C7—S1179.9 (2)C1—C2—C3—C40.8 (4)
C8—N2—C7—N10.8 (4)Cl1—C3—C4—C5179.0 (2)
C7—N2—C8—O10.3 (4)C2—C3—C4—C50.1 (4)
C7—N2—C8—C9179.5 (2)C3—C4—C5—C61.3 (4)
N1—C1—C2—C3178.0 (2)C4—C5—C6—C11.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.962.648 (3)136
N2—H2···S1i0.862.563.4095 (18)170
C9—H9A···S1ii0.962.853.799 (3)170
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC9H9ClN2OS
Mr228.69
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)28.3980 (14), 4.1768 (2), 20.2635 (11)
β (°) 122.651 (2)
V3)2023.69 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.35 × 0.22 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.868, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
7045, 1745, 1450
Rint0.029
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.109, 1.11
No. of reflections1775
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.962.648 (3)136
N2—H2···S1i0.862.563.4095 (18)170
C9—H9A···S1ii0.962.853.799 (3)170
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012a). Acta Cryst. E68, o1160.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Samiullah, (2012b). Acta Cryst. E68, o508.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds