metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ4-benzene-1,3,5-tri­carboxyl­ato)bis­­(N,N-di­methyl­acetamide)­terbium(III)]

aThe Department of Physics-Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
*Correspondence e-mail: lk@hpu.edu.cn

(Received 23 February 2012; accepted 8 March 2012; online 14 March 2012)

The title compound, [Tb(C9H3O6)(C4H9NO)2], shows a rare-earth three-dimensional metal-organic framework structure. In this complex of an eight-coordinated Tb3+ ion, the asymmetric unit contains one benzene-1,3,5-tricarb­oxy­lic ligand and two coordinated dimethyl­acetamide mol­ecules. Each Tb3+ ion is coordinated by six O atoms from four carboxyl­ate groups of the benzene-1,3,5-tricarb­oxy­lic ligands and two O atoms from two terminal dimethyl­acetamide mol­ecules.

Related literature

For metal-organic framework compounds with adsorption, catalytic and fluorescence properties, see: Sun et al. (2006[Sun, D. F., Ma, S. Q., Ke, Y. X., Collins, D. J. & Zhou, H.-C. (2006). J. Am. Chem. Soc. 128, 3896-3897.]); Ravon et al. (2008[Ravon, U., Domine, M. E. & Gaudillere, C. (2008). New J. Chem. 32, 937-940.]); Allendorf et al. (2009[Allendorf, M. D., Bauer, C. A. & Bhakta, R. K. (2009). Chem. Soc. Rev. 38, 1330-1352.]). For isotypic rare earth complexes, see: Thirumurugan & Natarajan (2004[Thirumurugan, A. & Natarajan, S. (2004). Dalton Trans. pp. 2923-2928.]) and for rare earth coordination polymers, see: Guo et al. (2006[Guo, X. D., Zhu, G., Li, Z. Y., Chen, Y., Li, X. T. & Qiu, S. L. (2006). Inorg. Chem. 45, 4065-4070.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb(C9H3O6)(C4H9NO)2]

  • Mr = 540.28

  • Monoclinic, P 21 /n

  • a = 10.8924 (6) Å

  • b = 16.7740 (9) Å

  • c = 10.9631 (6) Å

  • β = 102.254 (1)°

  • V = 1957.42 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.66 mm−1

  • T = 273 K

  • 0.60 × 0.40 × 0.40 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.218, Tmax = 0.322

  • 10235 measured reflections

  • 3433 independent reflections

  • 2385 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.066

  • S = 0.89

  • 3433 reflections

  • 259 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 1.52 e Å−3

  • Δρmin = −0.79 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic framework design and construction is currently a flourishing field of research owing to the intriguing molecular topologies and the potentially exploitable adsorption (Sun et al., 2006), catalytic (Ravon et al., 2008) and fluorescence (Allendorf et al., 2009) properties of these types of compounds. As functional metal centers, rare earth metals are attracting more attention from synthetic chemists for their unusual coordination properties and special chemical characteristics arising from interactions with the 4f electrons and the propensity to form isostructural complexes (Thirumurugan et al., 2004). Many coordination polymers utilizing the rare earth elements have been synthesized (Guo et al., 2006). The title compound shows a rare-earth three-dimensional metal-organic framework structure. In this complex of an eight-coordinated Tb3+ ion, the asymmetric unit contains one benzene-1,3,5-tricarboxylic ligand and two coordinated dimethylacetamide molecules.

Each Tb3+ is coordinated with six oxygen atoms from four carboxylate groups of the benzene-1,3,5-tricarboxylic ligands and two oxygen atoms from two terminal dimethylacetamide molecules, (Figure 1).

Related literature top

For metal-organic framework compounds with adsorption, catalytic and fluorescence properties, see: Sun et al. (2006); Ravon et al. (2008); Allendorf et al. (2009). For isotypic rare earth complexes, see: Thirumurugan & Natarajan (2004) and for rare earth coordination polymers, see: Guo et al. (2006).

Experimental top

All reagents were of analytical grade. A mixture of terbium nitrate (40 mg, 0.10 mmol) and benzene-1,3,5-tricarboxylate acid (10 mg, 0.05 mmol) was dissolved in N,N'-dimethylacetamide (25 ml) at room temperature. This mixture was placed at 60 °C for 3 days giving rise to colourless rod crystals.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.96 Å (methly C) and with Uiso(H) = 1.2Ueq(C). ISOR restraints were placed on atoms C13 N1 N2 and C14. The position of all methyl hydrogens was checked on a final difference map and shown to be satisfactory.

Structure description top

Metal-organic framework design and construction is currently a flourishing field of research owing to the intriguing molecular topologies and the potentially exploitable adsorption (Sun et al., 2006), catalytic (Ravon et al., 2008) and fluorescence (Allendorf et al., 2009) properties of these types of compounds. As functional metal centers, rare earth metals are attracting more attention from synthetic chemists for their unusual coordination properties and special chemical characteristics arising from interactions with the 4f electrons and the propensity to form isostructural complexes (Thirumurugan et al., 2004). Many coordination polymers utilizing the rare earth elements have been synthesized (Guo et al., 2006). The title compound shows a rare-earth three-dimensional metal-organic framework structure. In this complex of an eight-coordinated Tb3+ ion, the asymmetric unit contains one benzene-1,3,5-tricarboxylic ligand and two coordinated dimethylacetamide molecules.

Each Tb3+ is coordinated with six oxygen atoms from four carboxylate groups of the benzene-1,3,5-tricarboxylic ligands and two oxygen atoms from two terminal dimethylacetamide molecules, (Figure 1).

For metal-organic framework compounds with adsorption, catalytic and fluorescence properties, see: Sun et al. (2006); Ravon et al. (2008); Allendorf et al. (2009). For isotypic rare earth complexes, see: Thirumurugan & Natarajan (2004) and for rare earth coordination polymers, see: Guo et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. Coordination environment of Tb in the complex with hydrogen atoms removed for the clarity. Displacement ellipsoids are drawn at the 30% probability level.
Poly[(µ4-benzene-1,3,5-tricarboxylato)bis(N,N- dimethylacetamide)terbium(III)] top
Crystal data top
[Tb(C9H3O6)(C4H9NO)2]F(000) = 1064
Mr = 540.28Dx = 1.833 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.8924 (6) ÅCell parameters from 2246 reflections
b = 16.7740 (9) Åθ = 2.3–22.4°
c = 10.9631 (6) ŵ = 3.66 mm1
β = 102.254 (1)°T = 273 K
V = 1957.42 (18) Å3Rod, colourless
Z = 40.60 × 0.40 × 0.40 mm
Data collection top
Bruker APEXII CCD
diffractometer
3433 independent reflections
Radiation source: fine-focus sealed tube2385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.3°
phi and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
k = 1719
Tmin = 0.218, Tmax = 0.322l = 1313
10235 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0188P)2]
where P = (Fo2 + 2Fc2)/3
3433 reflections(Δ/σ)max = 0.002
259 parametersΔρmax = 1.52 e Å3
24 restraintsΔρmin = 0.79 e Å3
Crystal data top
[Tb(C9H3O6)(C4H9NO)2]V = 1957.42 (18) Å3
Mr = 540.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8924 (6) ŵ = 3.66 mm1
b = 16.7740 (9) ÅT = 273 K
c = 10.9631 (6) Å0.60 × 0.40 × 0.40 mm
β = 102.254 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3433 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2385 reflections with I > 2σ(I)
Tmin = 0.218, Tmax = 0.322Rint = 0.055
10235 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03424 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 0.89Δρmax = 1.52 e Å3
3433 reflectionsΔρmin = 0.79 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.65099 (3)0.112365 (17)0.08321 (3)0.02780 (11)
C10.6570 (6)0.2120 (4)0.1214 (6)0.0390 (17)
C20.6452 (6)0.2784 (4)0.2122 (6)0.0344 (16)
C30.7451 (6)0.3279 (3)0.2632 (6)0.0337 (16)
H30.82270.31940.24280.040*
C40.7325 (5)0.3896 (4)0.3438 (5)0.0283 (14)
C50.6154 (5)0.4017 (3)0.3746 (5)0.0326 (16)
H50.60650.44230.42980.039*
C60.5112 (6)0.3539 (4)0.3241 (6)0.0324 (16)
C70.5287 (6)0.2932 (4)0.2434 (6)0.0372 (17)
H70.46070.26100.20870.045*
C80.8415 (6)0.4454 (4)0.3953 (6)0.0311 (15)
C90.3875 (6)0.3652 (4)0.3574 (6)0.0303 (16)
C100.5469 (7)0.2846 (5)0.2411 (8)0.062 (2)
C110.5890 (9)0.2864 (5)0.3628 (8)0.097 (3)
H11A0.63230.23770.37270.145*
H11B0.64460.33070.36330.145*
H11C0.51720.29180.43020.145*
C120.4520 (11)0.3475 (6)0.0923 (11)0.138 (5)
H12A0.44800.29350.06470.208*
H12B0.36880.36940.11350.208*
H12C0.50230.37860.02670.208*
C130.4954 (11)0.4249 (6)0.2661 (10)0.131 (4)
H13A0.51560.41760.34640.196*
H13B0.55190.46300.21890.196*
H13C0.41070.44400.27670.196*
C140.6376 (9)0.0207 (8)0.3242 (9)0.094 (4)
C150.5893 (11)0.0955 (5)0.2590 (11)0.131 (5)
H15A0.60590.14340.30060.197*
H15B0.50050.09070.26400.197*
H15C0.63210.09770.17300.197*
C160.6552 (11)0.1129 (6)0.4926 (10)0.140 (5)
H16A0.60420.15190.46270.211*
H16B0.73880.13340.48490.211*
H16C0.62000.10130.57870.211*
C170.7101 (10)0.0352 (7)0.4836 (10)0.141 (5)
H17A0.64520.05440.55050.211*
H17B0.78200.02010.51590.211*
H17C0.73320.07640.42240.211*
N10.5073 (8)0.3492 (5)0.1998 (8)0.091 (2)
N20.6593 (8)0.0410 (5)0.4200 (8)0.098 (3)
O10.7562 (4)0.2041 (3)0.0827 (4)0.0467 (13)
O20.5632 (4)0.1690 (3)0.0810 (4)0.0504 (13)
O30.3021 (4)0.3156 (2)0.3202 (4)0.0395 (12)
O40.3703 (4)0.4242 (2)0.4224 (4)0.0410 (12)
O50.8182 (4)0.5022 (2)0.4600 (4)0.0447 (12)
O60.9428 (4)0.4319 (2)0.3650 (4)0.0344 (11)
O70.5483 (4)0.2215 (3)0.1834 (5)0.0544 (14)
O80.6406 (5)0.0438 (3)0.2719 (5)0.0551 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.01970 (16)0.02548 (17)0.04074 (19)0.00104 (17)0.01207 (13)0.00197 (17)
C10.034 (4)0.037 (4)0.049 (5)0.005 (3)0.016 (4)0.011 (3)
C20.026 (4)0.033 (4)0.046 (4)0.007 (3)0.011 (3)0.009 (3)
C30.023 (4)0.031 (4)0.052 (4)0.000 (3)0.020 (3)0.007 (3)
C40.022 (3)0.028 (3)0.036 (4)0.000 (3)0.007 (3)0.003 (3)
C50.030 (4)0.033 (4)0.038 (4)0.001 (3)0.015 (3)0.006 (3)
C60.029 (4)0.033 (4)0.039 (4)0.006 (3)0.016 (3)0.007 (3)
C70.028 (4)0.034 (4)0.049 (4)0.009 (3)0.009 (3)0.007 (3)
C80.023 (4)0.035 (4)0.036 (4)0.002 (3)0.009 (3)0.001 (3)
C90.025 (4)0.029 (4)0.040 (4)0.003 (3)0.013 (3)0.003 (3)
C100.036 (5)0.059 (6)0.078 (7)0.003 (4)0.014 (5)0.001 (5)
C110.092 (8)0.111 (8)0.079 (7)0.000 (6)0.002 (6)0.046 (6)
C120.152 (12)0.108 (9)0.145 (11)0.077 (8)0.008 (10)0.025 (8)
C130.145 (6)0.109 (5)0.126 (6)0.013 (4)0.001 (4)0.011 (4)
C140.058 (6)0.152 (10)0.068 (7)0.016 (7)0.005 (6)0.041 (7)
C150.163 (13)0.065 (8)0.179 (12)0.028 (7)0.066 (10)0.019 (7)
C160.156 (12)0.139 (10)0.125 (9)0.008 (9)0.027 (9)0.099 (8)
C170.126 (11)0.195 (13)0.117 (10)0.008 (9)0.058 (9)0.065 (9)
N10.099 (5)0.066 (4)0.095 (4)0.008 (4)0.011 (4)0.006 (4)
N20.093 (5)0.103 (5)0.094 (4)0.015 (4)0.013 (4)0.025 (4)
O10.025 (3)0.058 (3)0.062 (3)0.006 (2)0.021 (3)0.025 (2)
O20.041 (3)0.053 (3)0.063 (3)0.018 (3)0.025 (3)0.029 (3)
O30.026 (3)0.036 (3)0.061 (3)0.008 (2)0.019 (2)0.016 (2)
O40.024 (3)0.040 (3)0.064 (3)0.004 (2)0.022 (2)0.014 (2)
O50.026 (3)0.041 (3)0.068 (3)0.009 (2)0.014 (3)0.028 (2)
O60.018 (2)0.032 (3)0.054 (3)0.003 (2)0.010 (2)0.006 (2)
O70.034 (3)0.037 (3)0.095 (4)0.007 (2)0.020 (3)0.032 (3)
O80.055 (3)0.054 (3)0.062 (4)0.014 (3)0.024 (3)0.026 (3)
Geometric parameters (Å, º) top
Tb1—O5i2.271 (4)C11—H11A0.9600
Tb1—O72.299 (4)C11—H11B0.9600
Tb1—O6ii2.339 (4)C11—H11C0.9600
Tb1—O82.348 (5)C12—N11.433 (11)
Tb1—O22.406 (4)C12—H12A0.9600
Tb1—O4iii2.454 (4)C12—H12B0.9600
Tb1—O3iii2.456 (4)C12—H12C0.9600
Tb1—O12.471 (4)C13—N11.454 (10)
C1—O11.248 (7)C13—H13A0.9600
C1—O21.253 (7)C13—H13B0.9600
C1—C21.517 (8)C13—H13C0.9600
C2—C31.388 (8)C14—N21.175 (10)
C2—C71.405 (8)C14—O81.221 (11)
C3—C41.387 (7)C14—C151.589 (13)
C3—H30.9300C15—H15A0.9600
C4—C51.402 (7)C15—H15B0.9600
C4—C81.523 (8)C15—H15C0.9600
C5—C61.403 (8)C16—N21.440 (10)
C5—H50.9300C16—H16A0.9600
C6—C71.389 (8)C16—H16B0.9600
C6—C91.481 (8)C16—H16C0.9600
C7—H70.9300C17—N21.609 (11)
C8—O61.238 (6)C17—H17A0.9600
C8—O51.246 (6)C17—H17B0.9600
C9—O31.250 (7)C17—H17C0.9600
C9—O41.257 (6)O3—Tb1iv2.456 (4)
C10—O71.232 (9)O4—Tb1iv2.454 (4)
C10—N11.285 (10)O5—Tb1v2.271 (4)
C10—C111.500 (11)O6—Tb1vi2.338 (4)
O5i—Tb1—O7158.01 (15)C6—C9—Tb1iv179.1 (5)
O5i—Tb1—O6ii84.24 (14)O7—C10—N1120.8 (9)
O7—Tb1—O6ii77.77 (15)O7—C10—C11120.1 (8)
O5i—Tb1—O895.69 (17)N1—C10—C11119.1 (9)
O7—Tb1—O892.37 (18)C10—C11—H11A109.5
O6ii—Tb1—O876.59 (15)C10—C11—H11B109.5
O5i—Tb1—O284.73 (16)H11A—C11—H11B109.5
O7—Tb1—O279.21 (17)C10—C11—H11C109.5
O6ii—Tb1—O277.74 (14)H11A—C11—H11C109.5
O8—Tb1—O2154.14 (16)H11B—C11—H11C109.5
O5i—Tb1—O4iii76.21 (14)N1—C12—H12A109.5
O7—Tb1—O4iii125.67 (15)N1—C12—H12B109.5
O6ii—Tb1—O4iii144.63 (14)H12A—C12—H12B109.5
O8—Tb1—O4iii76.37 (16)N1—C12—H12C109.5
O2—Tb1—O4iii128.27 (16)H12A—C12—H12C109.5
O5i—Tb1—O3iii128.97 (14)H12B—C12—H12C109.5
O7—Tb1—O3iii72.82 (14)N1—C13—H13A109.5
O6ii—Tb1—O3iii139.07 (14)N1—C13—H13B109.5
O8—Tb1—O3iii76.85 (15)H13A—C13—H13B109.5
O2—Tb1—O3iii122.52 (15)N1—C13—H13C109.5
O4iii—Tb1—O3iii52.85 (13)H13A—C13—H13C109.5
O5i—Tb1—O194.68 (16)H13B—C13—H13C109.5
O7—Tb1—O187.62 (17)N2—C14—O8133.4 (13)
O6ii—Tb1—O1130.58 (13)N2—C14—C15108.7 (11)
O8—Tb1—O1151.84 (15)O8—C14—C15117.8 (9)
O2—Tb1—O153.07 (14)C14—C15—H15A109.5
O4iii—Tb1—O180.81 (14)C14—C15—H15B109.5
O3iii—Tb1—O176.26 (14)H15A—C15—H15B109.5
O1—C1—O2121.3 (6)C14—C15—H15C109.5
O1—C1—C2120.0 (6)H15A—C15—H15C109.5
O2—C1—C2118.5 (6)H15B—C15—H15C109.5
C3—C2—C7117.8 (6)N2—C16—H16A109.5
C3—C2—C1122.3 (5)N2—C16—H16B109.5
C7—C2—C1119.8 (6)H16A—C16—H16B109.5
C4—C3—C2121.9 (5)N2—C16—H16C109.5
C4—C3—H3119.1H16A—C16—H16C109.5
C2—C3—H3119.1H16B—C16—H16C109.5
C3—C4—C5118.7 (6)N2—C17—H17A109.5
C3—C4—C8121.3 (5)N2—C17—H17B109.5
C5—C4—C8120.0 (5)H17A—C17—H17B109.5
C4—C5—C6121.5 (5)N2—C17—H17C109.5
C4—C5—H5119.2H17A—C17—H17C109.5
C6—C5—H5119.2H17B—C17—H17C109.5
C7—C6—C5117.5 (5)C10—N1—C12120.3 (9)
C7—C6—C9120.4 (6)C10—N1—C13124.1 (10)
C5—C6—C9122.1 (5)C12—N1—C13114.8 (9)
C6—C7—C2122.6 (6)C14—N2—C16138.5 (11)
C6—C7—H7118.7C14—N2—C17108.0 (10)
C2—C7—H7118.7C16—N2—C17113.5 (9)
O6—C8—O5126.4 (6)C1—O1—Tb190.9 (4)
O6—C8—C4117.2 (6)C1—O2—Tb193.8 (4)
O5—C8—C4116.3 (5)C9—O3—Tb1iv93.0 (3)
O3—C9—O4121.3 (5)C9—O4—Tb1iv92.9 (4)
O3—C9—C6119.2 (5)C8—O5—Tb1v159.8 (4)
O4—C9—C6119.5 (6)C8—O6—Tb1vi150.0 (4)
O3—C9—Tb1iv60.7 (3)C10—O7—Tb1151.8 (5)
O4—C9—Tb1iv60.6 (3)C14—O8—Tb1147.0 (7)
O1—C1—C2—C35.5 (11)O2—Tb1—O1—C15.1 (4)
O2—C1—C2—C3178.8 (7)O4iii—Tb1—O1—C1160.2 (4)
O1—C1—C2—C7172.2 (6)O3iii—Tb1—O1—C1146.0 (4)
O2—C1—C2—C73.6 (10)O1—C1—O2—Tb19.5 (8)
C7—C2—C3—C40.7 (10)C2—C1—O2—Tb1166.2 (5)
C1—C2—C3—C4178.4 (6)O5i—Tb1—O2—C1105.0 (5)
C2—C3—C4—C50.3 (9)O7—Tb1—O2—C190.1 (5)
C2—C3—C4—C8177.6 (6)O6ii—Tb1—O2—C1169.7 (5)
C3—C4—C5—C61.2 (9)O8—Tb1—O2—C1162.8 (4)
C8—C4—C5—C6176.8 (6)O4iii—Tb1—O2—C137.2 (5)
C4—C5—C6—C70.8 (9)O3iii—Tb1—O2—C128.6 (5)
C4—C5—C6—C9179.0 (6)O1—Tb1—O2—C15.1 (4)
C5—C6—C7—C20.3 (10)O4—C9—O3—Tb1iv1.1 (6)
C9—C6—C7—C2177.9 (6)C6—C9—O3—Tb1iv179.0 (5)
C3—C2—C7—C61.1 (10)O3—C9—O4—Tb1iv1.1 (6)
C1—C2—C7—C6178.8 (6)C6—C9—O4—Tb1iv179.0 (5)
C3—C4—C8—O62.1 (9)O6—C8—O5—Tb1v6.1 (17)
C5—C4—C8—O6180.0 (5)C4—C8—O5—Tb1v177.0 (9)
C3—C4—C8—O5175.2 (6)O5—C8—O6—Tb1vi74.9 (11)
C5—C4—C8—O52.7 (9)C4—C8—O6—Tb1vi108.2 (8)
C7—C6—C9—O35.8 (9)N1—C10—O7—Tb1122.4 (11)
C5—C6—C9—O3172.3 (6)C11—C10—O7—Tb159.0 (15)
C7—C6—C9—O4174.3 (6)O5i—Tb1—O7—C10165.9 (11)
C5—C6—C9—O47.6 (9)O6ii—Tb1—O7—C10158.3 (12)
O7—C10—N1—C126.3 (13)O8—Tb1—O7—C1082.5 (12)
C11—C10—N1—C12172.2 (9)O2—Tb1—O7—C10122.1 (12)
O7—C10—N1—C13176.0 (8)O4iii—Tb1—O7—C107.6 (13)
C11—C10—N1—C132.6 (14)O3iii—Tb1—O7—C107.1 (12)
O8—C14—N2—C16177.2 (11)O1—Tb1—O7—C1069.3 (12)
C15—C14—N2—C160.4 (18)N2—C14—O8—Tb1160.2 (9)
O8—C14—N2—C174.1 (17)C15—C14—O8—Tb123.3 (16)
C15—C14—N2—C17179.2 (8)O5i—Tb1—O8—C146.7 (11)
O2—C1—O1—Tb19.3 (7)O7—Tb1—O8—C14152.8 (11)
C2—C1—O1—Tb1166.4 (6)O6ii—Tb1—O8—C1476.0 (11)
O5i—Tb1—O1—C185.0 (4)O2—Tb1—O8—C1483.0 (12)
O7—Tb1—O1—C173.1 (4)O4iii—Tb1—O8—C1481.0 (11)
O6ii—Tb1—O1—C11.5 (5)O3iii—Tb1—O8—C14135.4 (11)
O8—Tb1—O1—C1163.7 (4)O1—Tb1—O8—C14117.8 (10)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z+1/2; (v) x+3/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Tb(C9H3O6)(C4H9NO)2]
Mr540.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)10.8924 (6), 16.7740 (9), 10.9631 (6)
β (°) 102.254 (1)
V3)1957.42 (18)
Z4
Radiation typeMo Kα
µ (mm1)3.66
Crystal size (mm)0.60 × 0.40 × 0.40
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.218, 0.322
No. of measured, independent and
observed [I > 2σ(I)] reflections
10235, 3433, 2385
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.066, 0.89
No. of reflections3433
No. of parameters259
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.52, 0.79

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

We thank the Open Research Fund of the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (No. 2011–08) and the Doctoral Fund of Henan Polytechnic University (No. B2011–030).

References

First citationAllendorf, M. D., Bauer, C. A. & Bhakta, R. K. (2009). Chem. Soc. Rev. 38, 1330–1352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, X. D., Zhu, G., Li, Z. Y., Chen, Y., Li, X. T. & Qiu, S. L. (2006). Inorg. Chem. 45, 4065–4070.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRavon, U., Domine, M. E. & Gaudillere, C. (2008). New J. Chem. 32, 937–940.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D. F., Ma, S. Q., Ke, Y. X., Collins, D. J. & Zhou, H.-C. (2006). J. Am. Chem. Soc. 128, 3896–3897.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationThirumurugan, A. & Natarajan, S. (2004). Dalton Trans. pp. 2923–2928.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds