metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Tetra­kis[N-(adamantan-1-yl)pyridine-4-carboxamide]­di­chlorido­manganese(II)–N-(adamantan-1-yl)pyridine-4-carboxamide (1/2)

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wangyc33@yahoo.com.cn

(Received 31 December 2011; accepted 7 March 2012; online 14 March 2012)

The asymmetric unit of the title compound, [MnCl2(C16H20N2O)4]·2C16H20N2O, is composed of two coordinating N-(adamantan-1-yl)pyridine-4-carboxamide mol­ecules, one Cl anion, an MnII ion, lying on an inversion centre, and one free N-(adamantan-1-yl)pyridine-4-carboxamide mol­ecule. The distorted octa­hedral Mn environment comprises two terminal Cl atoms and four monodentate N atoms from four organic ligands. All the carbamoyl N atoms are involved in inter­molecular N—H⋯O hydrogen-bonding inter­actions which link the mol­ecules into a chain along the a axis.

Related literature

For the structures of related amino compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]). For the ferroelectric properties of related amino derivatives, see: Fu et al. (2011a[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011a). J. Am. Chem. Soc. 133, 12780-12786.],b[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011b). Angew. Chem. Int. Ed. 50, 11947-11951.],c[Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011c). Adv. Mater. 23, 5658-5662.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C16H20N2O)4]·2C16H20N2O

  • Mr = 1663.88

  • Triclinic, [P \overline 1]

  • a = 11.189 (4) Å

  • b = 11.571 (4) Å

  • c = 16.921 (6) Å

  • α = 86.122 (9)°

  • β = 83.605 (9)°

  • γ = 84.094 (10)°

  • V = 2162.0 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.90, Tmax = 1.00

  • 18634 measured reflections

  • 9700 independent reflections

  • 6263 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.164

  • S = 1.05

  • 9700 reflections

  • 529 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O1i 0.86 2.18 3.024 (4) 168
N2—H2B⋯O3ii 0.86 2.25 3.064 (4) 157
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Amino compounds attracted more attention as phase transition dielectric materials for its application in memory storage (Fu et al. 2007; Fu & Xiong 2008; Fu et al. 2008; Fu et al. 2009). With the purpose of obtaining phase transition crystals of amino compounds, various amines have been studied and we have elaborated a series of new materials with this organic molecules (Fu et al., 2011a, b, c). In this study, we describe the crystal structure of the title compound, trans-tetrakis{N-(adamantan-1-yl)pyridine-4-carboxamide}dichloridomanganese(II)–N-(adamantan-1-yl)pyridine-4-carboxamide (1/2).

The asymmetric unit is composed of two coordinated N-(adamantan-1-yl)pyridine-4-carboxamide molecules, one Cl- anion, half MnII ion and one free N-(adamantan-1-yl)pyridine-4-carboxamide molecule. The Mn atom lies on an inversion center. The distorted octahedral Mn environment contains two terminal Cl atoms and four monodentate N atoms from four organic ligand. The geometric parameters of the title compound are in the normal range.

In the crystal structure, all the carbamoyl N atoms (N2 and N4) are involved in intermolecular N—H···O H-bonding interactions with the O1 and O3 atoms, respectively. These hydrogen bonds link the molecular units into a one-dimensional chain along the a-axis(Table 1 and Fig.2).

Related literature top

For the structures of related amino compounds, see: Fu et al. (2007, 2008, 2009); Fu & Xiong (2008). For the ferroelectric properties of related amino derivatives, see: Fu et al. (2011a,b,c).

Experimental top

MnCl2.6H2O (2 mmol) and N-(adamantan-1-yl)pyridine-4-carboxamide (2 mmol) were dissolved in 70% methanol aqueous solution, and then 2 ml HCl was added. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of the solution at room temperature after two weeks.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C-H = 0.93 Å (aromatic), C-H = 0.97 Å (methylene), C-H = 0.98 Å (methine) and N-H = 0.86 Å (N), with Uiso(H) = 1.2Ueq(C and N).

Structure description top

Amino compounds attracted more attention as phase transition dielectric materials for its application in memory storage (Fu et al. 2007; Fu & Xiong 2008; Fu et al. 2008; Fu et al. 2009). With the purpose of obtaining phase transition crystals of amino compounds, various amines have been studied and we have elaborated a series of new materials with this organic molecules (Fu et al., 2011a, b, c). In this study, we describe the crystal structure of the title compound, trans-tetrakis{N-(adamantan-1-yl)pyridine-4-carboxamide}dichloridomanganese(II)–N-(adamantan-1-yl)pyridine-4-carboxamide (1/2).

The asymmetric unit is composed of two coordinated N-(adamantan-1-yl)pyridine-4-carboxamide molecules, one Cl- anion, half MnII ion and one free N-(adamantan-1-yl)pyridine-4-carboxamide molecule. The Mn atom lies on an inversion center. The distorted octahedral Mn environment contains two terminal Cl atoms and four monodentate N atoms from four organic ligand. The geometric parameters of the title compound are in the normal range.

In the crystal structure, all the carbamoyl N atoms (N2 and N4) are involved in intermolecular N—H···O H-bonding interactions with the O1 and O3 atoms, respectively. These hydrogen bonds link the molecular units into a one-dimensional chain along the a-axis(Table 1 and Fig.2).

For the structures of related amino compounds, see: Fu et al. (2007, 2008, 2009); Fu & Xiong (2008). For the ferroelectric properties of related amino derivatives, see: Fu et al. (2011a,b,c).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis showing the hydrogen bonding chain (dashed line). H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
trans-Tetrakis[N-(adamantan-1-yl)pyridine-4- carboxamide]dichloridomanganese(II)–N-(adamantan-1-yl)pyridine- 4-carboxamide (1/2) top
Crystal data top
[MnCl2(C16H20N2O)4]·2C16H20N2OZ = 1
Mr = 1663.88F(000) = 887
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.189 (4) ÅCell parameters from 9701 reflections
b = 11.571 (4) Åθ = 3.2–27.5°
c = 16.921 (6) ŵ = 0.28 mm1
α = 86.122 (9)°T = 298 K
β = 83.605 (9)°Block, colorless
γ = 84.094 (10)°0.30 × 0.25 × 0.15 mm
V = 2162.0 (13) Å3
Data collection top
Rigaku Mercury2
diffractometer
9700 independent reflections
Radiation source: fine-focus sealed tube6263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD profile fitting scansh = 1314
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.90, Tmax = 1.00l = 2121
18634 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
9700 reflections(Δ/σ)max = 0.001
529 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[MnCl2(C16H20N2O)4]·2C16H20N2Oγ = 84.094 (10)°
Mr = 1663.88V = 2162.0 (13) Å3
Triclinic, P1Z = 1
a = 11.189 (4) ÅMo Kα radiation
b = 11.571 (4) ŵ = 0.28 mm1
c = 16.921 (6) ÅT = 298 K
α = 86.122 (9)°0.30 × 0.25 × 0.15 mm
β = 83.605 (9)°
Data collection top
Rigaku Mercury2
diffractometer
9700 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
6263 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 1.00Rint = 0.056
18634 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
9700 reflectionsΔρmin = 0.38 e Å3
529 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00001.00000.00000.02697 (18)
Cl10.10718 (7)1.06669 (7)0.12815 (5)0.0346 (2)
O20.2281 (2)0.4241 (2)0.01989 (17)0.0571 (8)
O10.5058 (2)0.7112 (2)0.19793 (14)0.0396 (6)
N10.1600 (2)0.9277 (2)0.06876 (15)0.0308 (6)
N30.0941 (2)0.8243 (2)0.01766 (16)0.0323 (6)
N40.3668 (2)0.5025 (2)0.11487 (16)0.0353 (7)
H4B0.39240.56540.13830.042*
N20.4189 (2)0.8268 (2)0.29637 (15)0.0348 (7)
H2B0.35920.87710.30960.042*
C120.7255 (4)0.6679 (4)0.4100 (3)0.0627 (12)
H12A0.78140.64700.44970.075*
H12B0.75610.62800.36220.075*
C270.5991 (3)0.3238 (3)0.2344 (2)0.0491 (10)
H27A0.66140.34440.27790.059*
C260.4925 (3)0.3603 (3)0.0703 (2)0.0463 (10)
H26A0.43240.34190.02600.056*
H26B0.54910.42340.05260.056*
C280.5115 (4)0.2239 (4)0.2630 (2)0.0566 (11)
H28A0.47390.24720.30760.068*
H28B0.55520.15710.28080.068*
C60.4266 (3)0.7862 (3)0.22306 (19)0.0300 (7)
C30.3321 (3)0.8378 (3)0.17077 (18)0.0277 (7)
C290.4154 (3)0.1916 (3)0.1958 (2)0.0504 (10)
H29A0.35930.12740.21430.060*
C150.5432 (3)0.8246 (3)0.4959 (2)0.0488 (10)
H15A0.51170.86520.54390.059*
C190.2141 (3)0.6209 (3)0.04641 (19)0.0301 (7)
C230.4314 (3)0.3980 (3)0.13873 (18)0.0280 (7)
C100.5145 (3)0.6604 (3)0.3768 (2)0.0437 (9)
H10A0.43530.63650.39610.052*
H10B0.54440.61880.32960.052*
C70.5046 (3)0.7918 (3)0.35582 (19)0.0302 (7)
C50.1945 (3)0.9920 (3)0.12394 (18)0.0296 (7)
H5A0.15971.06820.12780.036*
C40.2785 (3)0.9511 (3)0.17497 (18)0.0293 (7)
H4A0.29930.99910.21220.035*
C10.2135 (3)0.8189 (3)0.06393 (19)0.0337 (8)
H1A0.19210.77320.02560.040*
C210.0561 (3)0.7270 (3)0.0209 (2)0.0337 (8)
H21A0.01250.72790.05730.040*
C130.6669 (4)0.8629 (4)0.4657 (2)0.0551 (11)
H13A0.66050.94620.45340.066*
H13B0.72150.84520.50650.066*
C320.6582 (3)0.2870 (3)0.1641 (3)0.0525 (11)
H32A0.70450.22160.18080.063*
H32B0.71280.35080.14500.063*
C110.5522 (4)0.6940 (4)0.5157 (2)0.0562 (11)
H11A0.60570.67420.55690.067*
H11B0.47310.67040.53540.067*
C140.7157 (3)0.7992 (4)0.3915 (2)0.0511 (10)
H14A0.79590.82300.37230.061*
C20.2988 (3)0.7711 (3)0.11291 (19)0.0343 (8)
H2A0.33350.69520.10730.041*
C180.2537 (3)0.7206 (3)0.0852 (2)0.0434 (9)
H18A0.32210.72200.12200.052*
C200.1131 (3)0.6260 (3)0.0092 (2)0.0348 (8)
H20A0.08420.56180.03840.042*
C240.3459 (3)0.2982 (3)0.1693 (2)0.0436 (9)
H24A0.30910.32240.21400.052*
H24B0.28210.27770.12760.052*
C220.2715 (3)0.5064 (3)0.0597 (2)0.0352 (8)
C90.4562 (3)0.8559 (3)0.43119 (19)0.0395 (8)
H9A0.37650.83350.45060.047*
H9B0.44940.93920.41880.047*
C80.6304 (3)0.8299 (3)0.3259 (2)0.0436 (9)
H8A0.62440.91310.31290.052*
H8B0.66240.79050.27820.052*
C300.4731 (4)0.1551 (3)0.1260 (3)0.0563 (11)
H30A0.41110.13500.08300.068*
H30B0.51560.08700.14190.068*
C250.5301 (3)0.4300 (3)0.2067 (2)0.0501 (10)
H25A0.49340.45570.25100.060*
H25B0.58580.49340.18840.060*
C310.5601 (4)0.2528 (4)0.0976 (2)0.0517 (11)
H31A0.59770.22810.05270.062*
C160.6009 (4)0.6307 (3)0.4413 (2)0.0534 (11)
H16A0.60740.54650.45410.064*
C170.1922 (3)0.8187 (3)0.0698 (2)0.0416 (9)
H17A0.22090.88460.09730.050*
O30.1737 (2)0.0581 (2)0.36458 (15)0.0453 (6)
C350.0769 (3)0.1917 (3)0.2992 (2)0.0357 (8)
N60.0146 (2)0.0022 (2)0.32917 (18)0.0391 (7)
H6A0.07650.02200.31190.047*
C340.1500 (3)0.2864 (3)0.3272 (2)0.0423 (9)
H34A0.19490.27920.36940.051*
C390.0263 (3)0.1255 (3)0.3506 (2)0.0329 (8)
C370.0227 (4)0.3182 (3)0.2058 (2)0.0549 (11)
H37A0.02190.32850.16400.066*
C380.0828 (3)0.0759 (3)0.3340 (2)0.0358 (8)
C440.0683 (3)0.3344 (3)0.3985 (2)0.0447 (9)
H44A0.15110.30430.40470.054*
H44B0.05830.41580.41090.054*
C360.0108 (3)0.2088 (3)0.2371 (2)0.0437 (9)
H36A0.04050.14840.21670.052*
N50.0936 (3)0.4090 (3)0.2317 (2)0.0607 (10)
C450.0186 (3)0.2659 (3)0.4557 (2)0.0421 (9)
H45A0.00180.27360.51060.051*
C410.0602 (3)0.1944 (3)0.2937 (2)0.0352 (8)
H41A0.14300.16390.29940.042*
H41B0.04490.18650.23910.042*
C430.0417 (3)0.3231 (3)0.3128 (2)0.0370 (8)
H43A0.09700.36710.27630.044*
C470.1747 (3)0.3028 (3)0.3602 (2)0.0405 (9)
H47A0.25820.33360.35370.049*
C420.1569 (3)0.1744 (3)0.3411 (2)0.0381 (8)
H42A0.17430.16650.28690.046*
H42B0.21210.13080.37670.046*
C460.1493 (3)0.3157 (3)0.4459 (2)0.0470 (10)
H46A0.20500.27410.48260.056*
H46B0.16030.39720.45780.056*
C400.0016 (3)0.1368 (3)0.4371 (2)0.0389 (8)
H40A0.05680.09360.47310.047*
H40B0.08030.10480.44440.047*
C330.1558 (4)0.3917 (3)0.2921 (3)0.0539 (11)
H33A0.20570.45380.31160.065*
C480.0884 (3)0.3711 (3)0.3031 (2)0.0430 (9)
H48A0.10520.36450.24870.052*
H48B0.10000.45280.31460.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0290 (4)0.0249 (4)0.0275 (4)0.0036 (3)0.0037 (3)0.0026 (3)
Cl10.0371 (5)0.0329 (4)0.0332 (4)0.0029 (4)0.0010 (3)0.0066 (3)
O20.0589 (18)0.0316 (14)0.0768 (19)0.0162 (13)0.0315 (15)0.0211 (14)
O10.0322 (13)0.0436 (15)0.0407 (13)0.0091 (11)0.0009 (11)0.0141 (11)
N10.0353 (16)0.0278 (15)0.0296 (14)0.0033 (12)0.0020 (12)0.0051 (12)
N30.0309 (15)0.0263 (15)0.0397 (15)0.0066 (12)0.0008 (12)0.0015 (12)
N40.0373 (16)0.0245 (15)0.0440 (16)0.0087 (13)0.0059 (13)0.0091 (12)
N20.0335 (16)0.0362 (16)0.0343 (15)0.0081 (13)0.0080 (12)0.0091 (13)
C120.054 (3)0.070 (3)0.066 (3)0.021 (2)0.027 (2)0.019 (2)
C270.045 (2)0.042 (2)0.056 (2)0.0140 (19)0.0217 (19)0.0065 (19)
C260.056 (2)0.047 (2)0.039 (2)0.022 (2)0.0076 (18)0.0015 (17)
C280.065 (3)0.062 (3)0.044 (2)0.019 (2)0.008 (2)0.012 (2)
C60.0283 (17)0.0305 (18)0.0313 (17)0.0041 (15)0.0023 (14)0.0032 (14)
C30.0234 (16)0.0311 (17)0.0278 (15)0.0008 (14)0.0002 (13)0.0024 (13)
C290.037 (2)0.042 (2)0.069 (3)0.0013 (18)0.002 (2)0.018 (2)
C150.055 (2)0.056 (3)0.038 (2)0.001 (2)0.0147 (18)0.0121 (18)
C190.0303 (18)0.0232 (17)0.0370 (17)0.0044 (14)0.0016 (14)0.0043 (14)
C230.0294 (17)0.0241 (16)0.0307 (16)0.0053 (14)0.0013 (13)0.0017 (13)
C100.051 (2)0.034 (2)0.049 (2)0.0042 (18)0.0156 (18)0.0031 (17)
C70.0293 (17)0.0270 (17)0.0350 (17)0.0023 (14)0.0086 (14)0.0048 (14)
C50.0337 (18)0.0202 (16)0.0350 (17)0.0016 (14)0.0042 (14)0.0035 (13)
C40.0308 (18)0.0272 (17)0.0306 (16)0.0022 (14)0.0040 (14)0.0064 (13)
C10.040 (2)0.0310 (18)0.0318 (17)0.0006 (15)0.0080 (15)0.0102 (14)
C210.0320 (19)0.0271 (18)0.0397 (18)0.0016 (15)0.0054 (15)0.0032 (15)
C130.056 (3)0.053 (3)0.062 (3)0.005 (2)0.028 (2)0.012 (2)
C320.030 (2)0.049 (2)0.079 (3)0.0117 (18)0.009 (2)0.012 (2)
C110.069 (3)0.058 (3)0.046 (2)0.008 (2)0.027 (2)0.005 (2)
C140.028 (2)0.061 (3)0.068 (3)0.0049 (19)0.0140 (19)0.011 (2)
C20.038 (2)0.0281 (18)0.0354 (18)0.0022 (15)0.0003 (15)0.0056 (14)
C180.038 (2)0.035 (2)0.056 (2)0.0116 (17)0.0150 (18)0.0144 (17)
C200.0322 (18)0.0266 (18)0.0439 (19)0.0030 (15)0.0048 (15)0.0046 (15)
C240.035 (2)0.038 (2)0.058 (2)0.0095 (17)0.0068 (18)0.0058 (18)
C220.037 (2)0.0245 (17)0.0439 (19)0.0073 (15)0.0026 (16)0.0069 (15)
C90.041 (2)0.044 (2)0.0347 (18)0.0004 (17)0.0073 (16)0.0096 (16)
C80.034 (2)0.047 (2)0.050 (2)0.0055 (17)0.0031 (17)0.0022 (18)
C300.058 (3)0.038 (2)0.073 (3)0.019 (2)0.015 (2)0.014 (2)
C250.054 (2)0.041 (2)0.054 (2)0.0116 (19)0.013 (2)0.0127 (19)
C310.060 (3)0.056 (3)0.045 (2)0.030 (2)0.009 (2)0.0064 (19)
C160.070 (3)0.034 (2)0.059 (3)0.005 (2)0.031 (2)0.0014 (19)
C170.044 (2)0.0290 (19)0.052 (2)0.0093 (17)0.0081 (18)0.0119 (16)
O30.0409 (15)0.0487 (16)0.0465 (15)0.0034 (12)0.0101 (12)0.0073 (12)
C350.0345 (19)0.0294 (18)0.0399 (19)0.0006 (15)0.0048 (15)0.0039 (15)
N60.0298 (16)0.0314 (16)0.0563 (19)0.0014 (13)0.0045 (14)0.0065 (14)
C340.046 (2)0.033 (2)0.045 (2)0.0001 (17)0.0025 (17)0.0042 (16)
C390.0320 (18)0.0269 (17)0.0404 (19)0.0037 (15)0.0049 (15)0.0035 (15)
C370.072 (3)0.042 (2)0.054 (2)0.007 (2)0.012 (2)0.004 (2)
C380.036 (2)0.0339 (19)0.0356 (18)0.0015 (16)0.0004 (15)0.0001 (15)
C440.045 (2)0.042 (2)0.049 (2)0.0068 (18)0.0095 (18)0.0053 (18)
C360.049 (2)0.033 (2)0.048 (2)0.0052 (17)0.0060 (18)0.0041 (17)
N50.081 (3)0.0349 (19)0.066 (2)0.0094 (19)0.005 (2)0.0002 (17)
C450.050 (2)0.045 (2)0.0308 (18)0.0020 (18)0.0056 (16)0.0054 (16)
C410.0315 (18)0.0359 (19)0.0362 (18)0.0010 (15)0.0021 (15)0.0013 (15)
C430.038 (2)0.0303 (19)0.0411 (19)0.0059 (16)0.0005 (16)0.0039 (15)
C470.0321 (19)0.039 (2)0.048 (2)0.0063 (16)0.0033 (16)0.0050 (17)
C420.0323 (19)0.038 (2)0.043 (2)0.0018 (16)0.0045 (16)0.0010 (16)
C460.050 (2)0.044 (2)0.043 (2)0.0007 (19)0.0069 (18)0.0059 (18)
C400.041 (2)0.036 (2)0.0382 (19)0.0004 (17)0.0040 (16)0.0036 (16)
C330.063 (3)0.031 (2)0.064 (3)0.000 (2)0.002 (2)0.0073 (19)
C480.049 (2)0.0302 (19)0.048 (2)0.0048 (17)0.0078 (18)0.0030 (17)
Geometric parameters (Å, º) top
Mn1—N12.298 (3)C32—H32B0.9700
Mn1—N1i2.298 (3)C11—C161.520 (5)
Mn1—N3i2.370 (3)C11—H11A0.9700
Mn1—N32.370 (3)C11—H11B0.9700
Mn1—Cl12.4885 (10)C14—C81.542 (5)
Mn1—Cl1i2.4885 (10)C14—H14A0.9800
O2—C221.230 (4)C2—H2A0.9300
O1—C61.236 (4)C18—C171.383 (4)
N1—C11.341 (4)C18—H18A0.9300
N1—C51.345 (4)C20—H20A0.9300
N3—C171.333 (4)C24—H24A0.9700
N3—C211.346 (4)C24—H24B0.9700
N4—C221.339 (4)C9—H9A0.9700
N4—C231.482 (4)C9—H9B0.9700
N4—H4B0.8600C8—H8A0.9700
N2—C61.347 (4)C8—H8B0.9700
N2—C71.475 (4)C30—C311.504 (6)
N2—H2B0.8600C30—H30A0.9700
C12—C141.526 (6)C30—H30B0.9700
C12—C161.529 (6)C25—H25A0.9700
C12—H12A0.9700C25—H25B0.9700
C12—H12B0.9700C31—H31A0.9800
C27—C281.525 (5)C16—H16A0.9800
C27—C321.528 (5)C17—H17A0.9300
C27—C251.537 (5)O3—C381.232 (4)
C27—H27A0.9800C35—C341.388 (5)
C26—C231.518 (4)C35—C361.387 (5)
C26—C311.539 (5)C35—C381.509 (5)
C26—H26A0.9700N6—C381.348 (4)
C26—H26B0.9700N6—C391.486 (4)
C28—C291.515 (5)N6—H6A0.8600
C28—H28A0.9700C34—C331.383 (5)
C28—H28B0.9700C34—H34A0.9300
C6—C31.504 (4)C39—C411.532 (4)
C3—C41.387 (4)C39—C421.533 (4)
C3—C21.391 (4)C39—C401.537 (5)
C29—C301.511 (6)C37—N51.329 (5)
C29—C241.540 (5)C37—C361.394 (5)
C29—H29A0.9800C37—H37A0.9300
C15—C131.520 (5)C44—C451.534 (5)
C15—C111.521 (5)C44—C431.530 (5)
C15—C91.545 (5)C44—H44A0.9700
C15—H15A0.9800C44—H44B0.9700
C19—C181.375 (4)C36—H36A0.9300
C19—C201.391 (4)N5—C331.335 (5)
C19—C221.524 (4)C45—C401.536 (5)
C23—C241.523 (4)C45—C461.538 (5)
C23—C251.540 (4)C45—H45A0.9800
C10—C161.536 (5)C41—C431.533 (4)
C10—C71.533 (4)C41—H41A0.9700
C10—H10A0.9700C41—H41B0.9700
C10—H10B0.9700C43—C481.526 (5)
C7—C91.536 (4)C43—H43A0.9800
C7—C81.540 (4)C47—C481.528 (5)
C5—C41.374 (4)C47—C421.530 (5)
C5—H5A0.9300C47—C461.529 (5)
C4—H4A0.9300C47—H47A0.9800
C1—C21.382 (4)C42—H42A0.9700
C1—H1A0.9300C42—H42B0.9700
C21—C201.381 (4)C46—H46A0.9700
C21—H21A0.9300C46—H46B0.9700
C13—C141.520 (5)C40—H40A0.9700
C13—H13A0.9700C40—H40B0.9700
C13—H13B0.9700C33—H33A0.9300
C32—C311.524 (5)C48—H48A0.9700
C32—H32A0.9700C48—H48B0.9700
N1—Mn1—N1i180.000 (1)C21—C20—H20A120.2
N1—Mn1—N3i86.06 (9)C19—C20—H20A120.2
N1i—Mn1—N3i93.94 (9)C23—C24—C29110.2 (3)
N1—Mn1—N393.94 (9)C23—C24—H24A109.6
N1i—Mn1—N386.06 (9)C29—C24—H24A109.6
N3i—Mn1—N3180.0C23—C24—H24B109.6
N1—Mn1—Cl188.08 (7)C29—C24—H24B109.6
N1i—Mn1—Cl191.92 (7)H24A—C24—H24B108.1
N3i—Mn1—Cl189.34 (7)O2—C22—N4124.3 (3)
N3—Mn1—Cl190.66 (7)O2—C22—C19118.7 (3)
N1—Mn1—Cl1i91.92 (7)N4—C22—C19117.0 (3)
N1i—Mn1—Cl1i88.08 (7)C7—C9—C15109.5 (3)
N3i—Mn1—Cl1i90.66 (7)C7—C9—H9A109.8
N3—Mn1—Cl1i89.34 (7)C15—C9—H9A109.8
Cl1—Mn1—Cl1i180.0C7—C9—H9B109.8
C1—N1—C5116.7 (3)C15—C9—H9B109.8
C1—N1—Mn1123.8 (2)H9A—C9—H9B108.2
C5—N1—Mn1119.1 (2)C7—C8—C14109.3 (3)
C17—N3—C21116.0 (3)C7—C8—H8A109.8
C17—N3—Mn1118.8 (2)C14—C8—H8A109.8
C21—N3—Mn1125.1 (2)C7—C8—H8B109.8
C22—N4—C23125.0 (3)C14—C8—H8B109.8
C22—N4—H4B117.5H8A—C8—H8B108.3
C23—N4—H4B117.5C31—C30—C29109.9 (3)
C6—N2—C7125.2 (3)C31—C30—H30A109.7
C6—N2—H2B117.4C29—C30—H30A109.7
C7—N2—H2B117.4C31—C30—H30B109.7
C14—C12—C16109.4 (3)C29—C30—H30B109.7
C14—C12—H12A109.8H30A—C30—H30B108.2
C16—C12—H12A109.8C27—C25—C23109.9 (3)
C14—C12—H12B109.8C27—C25—H25A109.7
C16—C12—H12B109.8C23—C25—H25A109.7
H12A—C12—H12B108.3C27—C25—H25B109.7
C28—C27—C32109.6 (3)C23—C25—H25B109.7
C28—C27—C25109.7 (3)H25A—C25—H25B108.2
C32—C27—C25108.6 (3)C30—C31—C32110.9 (3)
C28—C27—H27A109.6C30—C31—C26109.9 (3)
C32—C27—H27A109.6C32—C31—C26108.2 (3)
C25—C27—H27A109.6C30—C31—H31A109.3
C23—C26—C31109.9 (3)C32—C31—H31A109.3
C23—C26—H26A109.7C26—C31—H31A109.3
C31—C26—H26A109.7C11—C16—C12109.9 (3)
C23—C26—H26B109.7C11—C16—C10109.6 (3)
C31—C26—H26B109.7C12—C16—C10109.2 (3)
H26A—C26—H26B108.2C11—C16—H16A109.4
C29—C28—C27109.7 (3)C12—C16—H16A109.4
C29—C28—H28A109.7C10—C16—H16A109.4
C27—C28—H28A109.7N3—C17—C18123.7 (3)
C29—C28—H28B109.7N3—C17—H17A118.1
C27—C28—H28B109.7C18—C17—H17A118.1
H28A—C28—H28B108.2C34—C35—C36117.3 (3)
O1—C6—N2123.6 (3)C34—C35—C38117.7 (3)
O1—C6—C3120.1 (3)C36—C35—C38124.8 (3)
N2—C6—C3116.3 (3)C38—N6—C39126.9 (3)
C4—C3—C2117.4 (3)C38—N6—H6A116.5
C4—C3—C6123.4 (3)C39—N6—H6A116.5
C2—C3—C6119.1 (3)C33—C34—C35119.7 (4)
C28—C29—C30110.1 (3)C33—C34—H34A120.2
C28—C29—C24108.8 (3)C35—C34—H34A120.2
C30—C29—C24109.2 (3)N6—C39—C41109.9 (3)
C28—C29—H29A109.5N6—C39—C42106.9 (3)
C30—C29—H29A109.5C41—C39—C42109.4 (3)
C24—C29—H29A109.5N6—C39—C40111.9 (3)
C13—C15—C11110.3 (3)C41—C39—C40109.9 (3)
C13—C15—C9109.4 (3)C42—C39—C40108.8 (3)
C11—C15—C9109.5 (3)N5—C37—C36124.4 (4)
C13—C15—H15A109.2N5—C37—H37A117.8
C11—C15—H15A109.2C36—C37—H37A117.8
C9—C15—H15A109.2O3—C38—N6124.2 (3)
C18—C19—C20116.8 (3)O3—C38—C35119.5 (3)
C18—C19—C22125.3 (3)N6—C38—C35116.3 (3)
C20—C19—C22117.9 (3)C45—C44—C43109.3 (3)
N4—C23—C26111.3 (3)C45—C44—H44A109.8
N4—C23—C24111.0 (3)C43—C44—H44A109.8
C26—C23—C24110.2 (3)C45—C44—H44B109.8
N4—C23—C25107.8 (3)C43—C44—H44B109.8
C26—C23—C25108.0 (3)H44A—C44—H44B108.3
C24—C23—C25108.4 (3)C35—C36—C37118.7 (4)
C16—C10—C7109.7 (3)C35—C36—H36A120.7
C16—C10—H10A109.7C37—C36—H36A120.7
C7—C10—H10A109.7C37—N5—C33116.3 (4)
C16—C10—H10B109.7C44—C45—C40109.9 (3)
C7—C10—H10B109.7C44—C45—C46109.1 (3)
H10A—C10—H10B108.2C40—C45—C46109.7 (3)
N2—C7—C10112.4 (3)C44—C45—H45A109.3
N2—C7—C9106.7 (3)C40—C45—H45A109.3
C10—C7—C9108.8 (3)C46—C45—H45A109.3
N2—C7—C8110.5 (3)C43—C41—C39109.5 (3)
C10—C7—C8109.7 (3)C43—C41—H41A109.8
C9—C7—C8108.6 (3)C39—C41—H41A109.8
N1—C5—C4123.5 (3)C43—C41—H41B109.8
N1—C5—H5A118.3C39—C41—H41B109.8
C4—C5—H5A118.3H41A—C41—H41B108.2
C5—C4—C3119.7 (3)C48—C43—C41109.7 (3)
C5—C4—H4A120.2C48—C43—C44109.7 (3)
C3—C4—H4A120.2C41—C43—C44109.2 (3)
N1—C1—C2123.5 (3)C48—C43—H43A109.4
N1—C1—H1A118.3C41—C43—H43A109.4
C2—C1—H1A118.3C44—C43—H43A109.4
N3—C21—C20123.7 (3)C48—C47—C42109.4 (3)
N3—C21—H21A118.1C48—C47—C46109.4 (3)
C20—C21—H21A118.1C42—C47—C46110.1 (3)
C14—C13—C15109.0 (3)C48—C47—H47A109.3
C14—C13—H13A109.9C42—C47—H47A109.3
C15—C13—H13A109.9C46—C47—H47A109.3
C14—C13—H13B109.9C47—C42—C39109.7 (3)
C15—C13—H13B109.9C47—C42—H42A109.7
H13A—C13—H13B108.3C39—C42—H42A109.7
C31—C32—C27109.1 (3)C47—C42—H42B109.7
C31—C32—H32A109.9C39—C42—H42B109.7
C27—C32—H32A109.9H42A—C42—H42B108.2
C31—C32—H32B109.9C47—C46—C45108.9 (3)
C27—C32—H32B109.9C47—C46—H46A109.9
H32A—C32—H32B108.3C45—C46—H46A109.9
C16—C11—C15109.4 (3)C47—C46—H46B109.9
C16—C11—H11A109.8C45—C46—H46B109.9
C15—C11—H11A109.8H46A—C46—H46B108.3
C16—C11—H11B109.8C45—C40—C39109.1 (3)
C15—C11—H11B109.8C45—C40—H40A109.9
H11A—C11—H11B108.2C39—C40—H40A109.9
C13—C14—C12110.4 (4)C45—C40—H40B109.9
C13—C14—C8109.8 (3)C39—C40—H40B109.9
C12—C14—C8109.0 (3)H40A—C40—H40B108.3
C13—C14—H14A109.2N5—C33—C34123.6 (4)
C12—C14—H14A109.2N5—C33—H33A118.2
C8—C14—H14A109.2C34—C33—H33A118.2
C1—C2—C3119.3 (3)C43—C48—C47109.5 (3)
C1—C2—H2A120.4C43—C48—H48A109.8
C3—C2—H2A120.4C47—C48—H48A109.8
C19—C18—C17120.2 (3)C43—C48—H48B109.8
C19—C18—H18A119.9C47—C48—H48B109.8
C17—C18—H18A119.9H48A—C48—H48B108.2
C21—C20—C19119.5 (3)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O1ii0.862.183.024 (4)168
N2—H2B···O3iii0.862.253.064 (4)157
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[MnCl2(C16H20N2O)4]·2C16H20N2O
Mr1663.88
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.189 (4), 11.571 (4), 16.921 (6)
α, β, γ (°)86.122 (9), 83.605 (9), 84.094 (10)
V3)2162.0 (13)
Z1
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.90, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
18634, 9700, 6263
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.164, 1.05
No. of reflections9700
No. of parameters529
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.38

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O1i0.862.183.024 (4)168.0
N2—H2B···O3ii0.862.253.064 (4)156.8
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the Excellent Doctor Foundation of SEU, People's Republic of China.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011c). Adv. Mater. 23, 5658–5662.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011a). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011b). Angew. Chem. Int. Ed. 50, 11947–11951.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds