organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Benzyl-3-(4-fluoro­phen­yl)-2-propyl­amino-5,6,7,8-tetra­hydro­pyrido[4′,3′:4,5]thieno[2,3-d]pyrimidin-4(3H)-one

aHubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, People's Republic of China, and bCollege of Chemistry and Life Science, China Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: chenhong3736@sina.com

(Received 7 January 2012; accepted 8 March 2012; online 17 March 2012)

In the title compound, C25H25FN4OS, the thienopyrimidine fused-ring system is close to planar (r.m.s. deviation = 0.0089 Å), with a maximum deviation of 0.0261 (17) Å for the N atom adjacent to the benzene ring. This thienopyrimidine fused-ring system forms dihedral angles of 64.73 (3) and 81.56 (5)° with the adjacent benzyl and fluoro­phenyl rings, respectively. Inter­molecular N—H⋯F and C—H⋯F hydrogen bonding, as well as C—F⋯π inter­actions [F⋯centroid = 3.449 (3) Å; C—F⋯centroid = 91.87 (15)°], help to stabilize the crystal structure.

Related literature

For the biological and pharmaceutical properties of compounds containing the fused thienopyrimidine system, see: Amr et al. (2010[Amr, A. E. G., Sherif, M. H., Assy, M. G., Al-Omar, M. A. & Ragab, I. (2010). Eur. J. Med. Chem. 45, 5935-5942.]); Huang et al. (2009[Huang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009). Bioorg. Med. Chem. Lett. 19, 831-833.]); Mavrova et al. (2010[Mavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856-5861.]). For similar crystal structures, see: Xie et al. (2008)[Xie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434.]; Chen et al. (2011[Chen, H., Hu, H.-J., Yan, K. & Dai, Q.-H. (2011). Acta Cryst. E67, o2228.]).

[Scheme 1]

Experimental

Crystal data
  • C25H25FN4OS

  • Mr = 448.55

  • Orthorhombic, I b c a

  • a = 17.921 (7) Å

  • b = 18.427 (7) Å

  • c = 27.114 (10) Å

  • V = 8954 (6) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.26 × 0.25 × 0.23 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.960

  • 46089 measured reflections

  • 5152 independent reflections

  • 4234 reflections with I > 2σ(I)

  • Rint = 0.107

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.194

  • S = 1.05

  • 5152 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24B⋯F1i 0.97 2.66 3.258 (5) 121
C25—H25A⋯F1i 0.96 2.56 3.096 (5) 116
N4—H4A⋯F1i 0.86 2.65 3.423 (3) 151
Symmetry code: (i) [-x+{\script{5\over 2}}, y, -z+1].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of heterocycles containing the thienopyrimidine system have proved to show significant antifungal, antibacterical, anticonvulsant and angiotensin antagonistic activities (Amr et al. 2010; Huang et al. 2009; Mavrova et al. 2010). Recently, we have focused on the synthesis of fused heterocyclic systems containing thienopyrimidine via aza-wittig reaction under mild conditions. Some X-ray crystal structures of fused pyrimidinone derivatives have been reported (Chen et al., 2011; Xie et al., 2008). The title compound has potential use as a precursor for obtaining bioactive molecules with fluorescence properties. Herein, we report its crystal structure (Fig. 1).

In the crystal structure of the title compound, C25H25FN4OS, the thienopyrimidine fused-ring system is close to coplanar (r.m.s deviation = 0.0089 Å) with a maximum deviation of -0.0261 (17) Å for atom N(3). This ring system forms diherdral angles of 64.73 (3) and 81.56 (5)° with the adjacent 6-membered rings C1—C6 and C17—C22, respectively. Most bond lengths in the system fell in the range of single and double bonds, for example, the bond lengths of C(9)—C(10), C(13)—C(14) and C(16)—O(1) were in accordance with the double bond distances. Intermolecular N—H···F (N4—H4A···F1i with symmetry code: (i) 3/2 - x, y, -z) and C—H···F hydrogen bonding (C24—H24B···F1i and C25—H25A···F1i), as well as C—F···π interactions (C20—F1···Cg1 with Cg1 centroids of the C17—C18—C19—C20—C21 ring), helps to stabilize the crystal structure.

Related literature top

For the biological and pharmaceutical properties of compounds containing the fused thienopyrimidine system, see: Amr et al. (2010); Huang et al. (2009); Mavrova et al. (2010). For similar crystal structures, see: Xie et al. (2008); Chen et al. (2011).

Experimental top

1-fluoro-4-isocyanatobenzene (2 mmol) under nitrogen atmosphere was added to a solution of iminophosphorane (2 mmol) in anhydrous CH2Cl2 (10 ml) at room temperature. When the reaction mixture was left unstirred for 12 h at 273–278 k, iminophosphorane was consumed (TLC monitored). The solvent was removed under reduced pressure and ether/petroleum ether (volume ratio 1:2, 20 ml) was added to precipitate triphenylphosphine oxide. Removal of the solvent gave carbodiimide, which was used directly without further purification. Propan-1-amine (2 mmol) was added to the solution of carbodiimide in anhydrous dichloromethane (10 ml). After the reaction mixture was left unstirred for 5–6 h, the solvent was removed and anhydrous EtOH (10 ml) with several drops of EtONa (in EtOH) was added to the mixture. The mixture was stirred for another 6–8 h at room temperature. The solution was condensed and the residual was recrystallized from EtOH to give the expected title compound as white crystals, 0.832 g (87%), M.p. 431–432 K; 1H NMR (CDCl3, 600 MHz) δ: 7.37–7.25 (m, 9H, Ar—H), 4.06 (br, 1H, NH), 3.72 (s, 2H, Ar—CH2), 3.59 (s, 2H, NCH2-thiophene), 3.31 (m, 2H, NHCH2), 2.98 (t, J = 5.1 Hz, 2H, NCH2CH2), 2.82 (t, J = 5.1 Hz, 2H, NCH2CH2), 1.50–1.48 (m, 2H, CH2CH3), 0.84 (t, J = 6.6 Hz, 3H, CH2CH3); IR (KBr) v: 3373 (N—H), 1673 (C=O), 1540, 1378, 696 cm-1; EI—MS m/z (%): 448 (M+, 15), 357 (16), 329 (100), 287 (26), 91 (72). Anal. calcd for C25H25FN4OS: C 66.94, H 5.62, N 12.49; found: C 66.71, H 5.50, N 12.23.

Refinement top

All H atoms were positioned geometrically [C—H = 0.93, 0.96, 0.97 Å and N—H = 0.86 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).

Structure description top

Derivatives of heterocycles containing the thienopyrimidine system have proved to show significant antifungal, antibacterical, anticonvulsant and angiotensin antagonistic activities (Amr et al. 2010; Huang et al. 2009; Mavrova et al. 2010). Recently, we have focused on the synthesis of fused heterocyclic systems containing thienopyrimidine via aza-wittig reaction under mild conditions. Some X-ray crystal structures of fused pyrimidinone derivatives have been reported (Chen et al., 2011; Xie et al., 2008). The title compound has potential use as a precursor for obtaining bioactive molecules with fluorescence properties. Herein, we report its crystal structure (Fig. 1).

In the crystal structure of the title compound, C25H25FN4OS, the thienopyrimidine fused-ring system is close to coplanar (r.m.s deviation = 0.0089 Å) with a maximum deviation of -0.0261 (17) Å for atom N(3). This ring system forms diherdral angles of 64.73 (3) and 81.56 (5)° with the adjacent 6-membered rings C1—C6 and C17—C22, respectively. Most bond lengths in the system fell in the range of single and double bonds, for example, the bond lengths of C(9)—C(10), C(13)—C(14) and C(16)—O(1) were in accordance with the double bond distances. Intermolecular N—H···F (N4—H4A···F1i with symmetry code: (i) 3/2 - x, y, -z) and C—H···F hydrogen bonding (C24—H24B···F1i and C25—H25A···F1i), as well as C—F···π interactions (C20—F1···Cg1 with Cg1 centroids of the C17—C18—C19—C20—C21 ring), helps to stabilize the crystal structure.

For the biological and pharmaceutical properties of compounds containing the fused thienopyrimidine system, see: Amr et al. (2010); Huang et al. (2009); Mavrova et al. (2010). For similar crystal structures, see: Xie et al. (2008); Chen et al. (2011).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Reaction scheme.
7-Benzyl-3-(4-fluorophenyl)-2-propylamino-5,6,7,8- tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one top
Crystal data top
C25H25FN4OSF(000) = 3776
Mr = 448.55Dx = 1.331 Mg m3
Orthorhombic, IbcaMelting point: 432 K
Hall symbol: -I 2b 2cMo Kα radiation, λ = 0.71073 Å
a = 17.921 (7) Åθ = 2.2–27.5°
b = 18.427 (7) ŵ = 0.18 mm1
c = 27.114 (10) ÅT = 296 K
V = 8954 (6) Å3Block, white
Z = 160.26 × 0.25 × 0.23 mm
Data collection top
Bruker SMART CCD
diffractometer
5152 independent reflections
Radiation source: fine-focus sealed tube4234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
CCD Profile fitting scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.955, Tmax = 0.960k = 2323
46089 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.090P)2 + 9.9439P]
where P = (Fo2 + 2Fc2)/3
5152 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C25H25FN4OSV = 8954 (6) Å3
Mr = 448.55Z = 16
Orthorhombic, IbcaMo Kα radiation
a = 17.921 (7) ŵ = 0.18 mm1
b = 18.427 (7) ÅT = 296 K
c = 27.114 (10) Å0.26 × 0.25 × 0.23 mm
Data collection top
Bruker SMART CCD
diffractometer
5152 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4234 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.960Rint = 0.107
46089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 1.05Δρmax = 0.58 e Å3
5152 reflectionsΔρmin = 0.30 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.87109 (4)0.17415 (4)0.30237 (2)0.0591 (2)
C10.46974 (17)0.04644 (18)0.32327 (13)0.0698 (8)
H10.44180.00660.31320.084*
C20.50154 (17)0.09137 (18)0.28892 (11)0.0674 (8)
H20.49480.08200.25550.081*
C30.54325 (15)0.15022 (16)0.30340 (10)0.0571 (6)
H30.56400.18050.27960.068*
C40.55497 (13)0.16516 (14)0.35321 (9)0.0496 (6)
C50.52218 (15)0.11933 (16)0.38753 (10)0.0587 (7)
H50.52900.12820.42100.070*
C60.47947 (17)0.06071 (18)0.37275 (12)0.0673 (8)
H60.45730.03090.39620.081*
C70.60106 (14)0.22989 (15)0.36911 (11)0.0583 (7)
H7A0.59690.26690.34380.070*
H7B0.57920.24950.39900.070*
C80.72121 (13)0.19589 (15)0.33405 (10)0.0530 (6)
H8A0.71810.23450.30980.064*
H8B0.69900.15260.32000.064*
C90.80136 (13)0.18162 (14)0.34679 (9)0.0495 (6)
C100.82718 (13)0.17246 (13)0.39342 (9)0.0452 (5)
C110.77549 (13)0.17373 (15)0.43661 (9)0.0522 (6)
H11A0.78110.21910.45430.063*
H11B0.78770.13430.45890.063*
C120.69484 (14)0.16574 (15)0.41885 (9)0.0520 (6)
H12A0.68630.11650.40760.062*
H12B0.66080.17560.44580.062*
C130.90652 (12)0.16038 (12)0.39418 (9)0.0452 (5)
C140.93774 (13)0.15967 (14)0.34782 (9)0.0492 (6)
C151.05433 (13)0.13502 (14)0.37363 (9)0.0513 (6)
C160.95394 (12)0.14756 (13)0.43557 (9)0.0445 (5)
C171.07929 (12)0.11374 (13)0.46200 (9)0.0444 (5)
C181.11037 (14)0.16664 (13)0.49144 (10)0.0507 (6)
H181.09940.21530.48590.061*
C191.15808 (14)0.14701 (16)0.52937 (10)0.0574 (6)
H191.17940.18190.54980.069*
C201.17280 (15)0.07522 (17)0.53586 (10)0.0605 (7)
C211.14149 (17)0.02195 (16)0.50825 (13)0.0688 (8)
H211.15180.02660.51470.083*
C221.09393 (16)0.04143 (14)0.47039 (12)0.0615 (7)
H221.07200.00600.45070.074*
C231.15905 (18)0.1213 (2)0.31582 (13)0.0810 (10)
H23A1.16250.17100.30430.097*
H23B1.12560.09550.29380.097*
C241.2338 (2)0.0875 (2)0.31314 (14)0.0900 (11)
H24A1.25480.09630.28070.108*
H24B1.26620.11040.33720.108*
C251.2322 (3)0.0086 (2)0.32243 (17)0.1213 (17)
H25A1.21070.00050.35420.182*
H25B1.28220.01020.32160.182*
H25C1.20280.01490.29750.182*
N10.68111 (11)0.21671 (11)0.37846 (8)0.0519 (5)
N21.01070 (11)0.14831 (13)0.33586 (8)0.0560 (5)
N31.02934 (10)0.13358 (11)0.42237 (7)0.0471 (5)
N41.12699 (12)0.12111 (16)0.36574 (9)0.0667 (7)
H4A1.15540.11190.39050.080*
O10.93579 (10)0.14699 (11)0.47917 (6)0.0568 (5)
F11.22046 (12)0.05586 (13)0.57255 (7)0.0979 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0455 (4)0.0870 (5)0.0447 (4)0.0112 (3)0.0047 (3)0.0065 (3)
C10.0575 (16)0.0736 (19)0.078 (2)0.0005 (14)0.0060 (15)0.0112 (16)
C20.0616 (16)0.090 (2)0.0500 (15)0.0039 (16)0.0082 (13)0.0146 (14)
C30.0490 (13)0.0763 (17)0.0460 (13)0.0092 (12)0.0013 (11)0.0003 (12)
C40.0362 (11)0.0627 (14)0.0499 (13)0.0181 (10)0.0067 (10)0.0054 (11)
C50.0524 (14)0.0802 (18)0.0435 (13)0.0193 (13)0.0041 (11)0.0007 (12)
C60.0564 (16)0.0786 (19)0.0668 (18)0.0092 (14)0.0029 (14)0.0103 (15)
C70.0418 (12)0.0654 (16)0.0677 (17)0.0201 (12)0.0108 (12)0.0123 (13)
C80.0432 (12)0.0642 (15)0.0516 (14)0.0114 (11)0.0092 (11)0.0023 (11)
C90.0403 (12)0.0592 (14)0.0489 (13)0.0082 (10)0.0050 (10)0.0013 (11)
C100.0392 (11)0.0506 (12)0.0457 (12)0.0101 (9)0.0050 (9)0.0048 (10)
C110.0420 (12)0.0700 (16)0.0447 (13)0.0140 (11)0.0056 (10)0.0060 (11)
C120.0425 (12)0.0669 (15)0.0465 (13)0.0120 (11)0.0024 (10)0.0080 (11)
C130.0380 (11)0.0518 (12)0.0457 (12)0.0073 (9)0.0039 (9)0.0040 (10)
C140.0401 (11)0.0596 (14)0.0478 (13)0.0083 (10)0.0062 (10)0.0014 (11)
C150.0398 (12)0.0647 (15)0.0493 (13)0.0093 (11)0.0002 (10)0.0035 (11)
C160.0363 (11)0.0488 (12)0.0484 (13)0.0071 (9)0.0037 (9)0.0081 (10)
C170.0348 (10)0.0525 (13)0.0458 (12)0.0037 (9)0.0066 (9)0.0040 (10)
C180.0453 (12)0.0495 (13)0.0572 (15)0.0005 (10)0.0047 (11)0.0053 (11)
C190.0449 (13)0.0731 (17)0.0542 (15)0.0050 (12)0.0077 (11)0.0152 (13)
C200.0452 (13)0.088 (2)0.0485 (14)0.0082 (13)0.0105 (11)0.0052 (13)
C210.0661 (17)0.0546 (15)0.086 (2)0.0117 (13)0.0186 (16)0.0080 (15)
C220.0564 (15)0.0500 (14)0.0780 (19)0.0051 (12)0.0196 (14)0.0104 (13)
C230.0612 (18)0.112 (3)0.070 (2)0.0229 (18)0.0134 (16)0.0164 (19)
C240.083 (2)0.121 (3)0.066 (2)0.025 (2)0.0101 (18)0.0016 (19)
C250.179 (5)0.092 (3)0.094 (3)0.036 (3)0.002 (3)0.014 (2)
N10.0415 (10)0.0570 (12)0.0572 (12)0.0142 (9)0.0088 (9)0.0070 (9)
N20.0419 (10)0.0796 (15)0.0465 (11)0.0110 (10)0.0011 (9)0.0005 (10)
N30.0370 (9)0.0595 (12)0.0448 (10)0.0102 (8)0.0067 (8)0.0066 (9)
N40.0412 (11)0.1052 (19)0.0538 (13)0.0170 (12)0.0007 (9)0.0013 (13)
O10.0460 (9)0.0815 (13)0.0428 (9)0.0111 (9)0.0057 (7)0.0078 (8)
F10.0855 (13)0.1396 (19)0.0686 (12)0.0214 (13)0.0338 (10)0.0128 (11)
Geometric parameters (Å, º) top
S1—C141.737 (2)C13—C161.427 (3)
S1—C91.741 (3)C14—N21.363 (3)
C1—C21.370 (5)C15—N21.312 (3)
C1—C61.378 (5)C15—N41.344 (3)
C1—H10.9300C15—N31.395 (3)
C2—C31.374 (4)C16—O11.226 (3)
C2—H20.9300C16—N31.421 (3)
C3—C41.394 (4)C17—C181.377 (3)
C3—H30.9300C17—C221.377 (3)
C4—C51.387 (4)C17—N31.446 (3)
C4—C71.513 (4)C18—C191.385 (4)
C5—C61.383 (4)C18—H180.9300
C5—H50.9300C19—C201.360 (4)
C6—H60.9300C19—H190.9300
C7—N11.477 (3)C20—F11.359 (3)
C7—H7A0.9700C20—C211.356 (4)
C7—H7B0.9700C21—C221.382 (4)
C8—N11.454 (3)C21—H210.9300
C8—C91.501 (3)C22—H220.9300
C8—H8A0.9700C23—N41.471 (4)
C8—H8B0.9700C23—C241.479 (5)
C9—C101.357 (3)C23—H23A0.9700
C10—C131.439 (3)C23—H23B0.9700
C10—C111.493 (3)C24—C251.476 (6)
C11—C121.531 (3)C24—H24A0.9700
C11—H11A0.9700C24—H24B0.9700
C11—H11B0.9700C25—H25A0.9600
C12—N11.464 (3)C25—H25B0.9600
C12—H12A0.9700C25—H25C0.9600
C12—H12B0.9700N4—H4A0.8600
C13—C141.376 (3)
C14—S1—C990.85 (12)C13—C14—S1111.54 (18)
C2—C1—C6119.6 (3)N2—C15—N4119.3 (2)
C2—C1—H1120.2N2—C15—N3123.5 (2)
C6—C1—H1120.2N4—C15—N3117.3 (2)
C3—C2—C1120.6 (3)O1—C16—N3119.6 (2)
C3—C2—H2119.7O1—C16—C13127.0 (2)
C1—C2—H2119.7N3—C16—C13113.5 (2)
C2—C3—C4121.0 (3)C18—C17—C22120.8 (2)
C2—C3—H3119.5C18—C17—N3120.1 (2)
C4—C3—H3119.5C22—C17—N3119.0 (2)
C5—C4—C3117.8 (3)C17—C18—C19119.7 (2)
C5—C4—C7121.3 (2)C17—C18—H18120.2
C3—C4—C7120.9 (3)C19—C18—H18120.2
C6—C5—C4121.0 (3)C20—C19—C18118.0 (2)
C6—C5—H5119.5C20—C19—H19121.0
C4—C5—H5119.5C18—C19—H19121.0
C1—C6—C5120.1 (3)F1—C20—C21118.3 (3)
C1—C6—H6120.0F1—C20—C19118.2 (3)
C5—C6—H6120.0C21—C20—C19123.5 (2)
N1—C7—C4116.7 (2)C20—C21—C22118.5 (3)
N1—C7—H7A108.1C20—C21—H21120.7
C4—C7—H7A108.1C22—C21—H21120.7
N1—C7—H7B108.1C21—C22—C17119.5 (2)
C4—C7—H7B108.1C21—C22—H22120.3
H7A—C7—H7B107.3C17—C22—H22120.3
N1—C8—C9109.2 (2)N4—C23—C24113.5 (3)
N1—C8—H8A109.8N4—C23—H23A108.9
C9—C8—H8A109.8C24—C23—H23A108.9
N1—C8—H8B109.8N4—C23—H23B108.9
C9—C8—H8B109.8C24—C23—H23B108.9
H8A—C8—H8B108.3H23A—C23—H23B107.7
C10—C9—C8124.2 (2)C25—C24—C23112.9 (4)
C10—C9—S1112.95 (18)C25—C24—H24A109.0
C8—C9—S1122.80 (18)C23—C24—H24A109.0
C9—C10—C13111.7 (2)C25—C24—H24B109.0
C9—C10—C11121.1 (2)C23—C24—H24B109.0
C13—C10—C11127.2 (2)H24A—C24—H24B107.8
C10—C11—C12109.7 (2)C24—C25—H25A109.5
C10—C11—H11A109.7C24—C25—H25B109.5
C12—C11—H11A109.7H25A—C25—H25B109.5
C10—C11—H11B109.7C24—C25—H25C109.5
C12—C11—H11B109.7H25A—C25—H25C109.5
H11A—C11—H11B108.2H25B—C25—H25C109.5
N1—C12—C11109.4 (2)C8—N1—C12111.55 (19)
N1—C12—H12A109.8C8—N1—C7112.4 (2)
C11—C12—H12A109.8C12—N1—C7113.4 (2)
N1—C12—H12B109.8C15—N2—C14114.5 (2)
C11—C12—H12B109.8C15—N3—C16122.68 (19)
H12A—C12—H12B108.2C15—N3—C17120.66 (19)
C14—C13—C16118.3 (2)C16—N3—C17116.58 (19)
C14—C13—C10113.0 (2)C15—N4—C23121.6 (2)
C16—C13—C10128.7 (2)C15—N4—H4A119.2
N2—C14—C13127.5 (2)C23—N4—H4A119.2
N2—C14—S1120.96 (19)
C6—C1—C2—C30.3 (5)N3—C17—C18—C19179.9 (2)
C1—C2—C3—C40.8 (4)C17—C18—C19—C200.4 (4)
C2—C3—C4—C51.0 (4)C18—C19—C20—F1179.0 (2)
C2—C3—C4—C7179.9 (2)C18—C19—C20—C212.2 (5)
C3—C4—C5—C60.2 (4)F1—C20—C21—C22179.0 (3)
C7—C4—C5—C6179.3 (2)C19—C20—C21—C222.2 (5)
C2—C1—C6—C51.1 (4)C20—C21—C22—C170.5 (5)
C4—C5—C6—C10.9 (4)C18—C17—C22—C211.2 (4)
C5—C4—C7—N187.2 (3)N3—C17—C22—C21179.9 (3)
C3—C4—C7—N193.7 (3)N4—C23—C24—C2567.6 (5)
N1—C8—C9—C1014.6 (4)C9—C8—N1—C1249.8 (3)
N1—C8—C9—S1166.08 (19)C9—C8—N1—C7178.5 (2)
C14—S1—C9—C100.9 (2)C11—C12—N1—C869.8 (3)
C14—S1—C9—C8179.7 (2)C11—C12—N1—C7162.1 (2)
C8—C9—C10—C13179.4 (2)C4—C7—N1—C865.3 (3)
S1—C9—C10—C131.3 (3)C4—C7—N1—C1262.4 (3)
C8—C9—C10—C112.0 (4)N4—C15—N2—C14178.2 (3)
S1—C9—C10—C11177.38 (19)N3—C15—N2—C141.0 (4)
C9—C10—C11—C1215.1 (3)C13—C14—N2—C151.7 (4)
C13—C10—C11—C12163.3 (2)S1—C14—N2—C15177.2 (2)
C10—C11—C12—N148.8 (3)N2—C15—N3—C160.9 (4)
C9—C10—C13—C141.0 (3)N4—C15—N3—C16179.8 (2)
C11—C10—C13—C14177.5 (2)N2—C15—N3—C17175.8 (2)
C9—C10—C13—C16179.1 (2)N4—C15—N3—C173.5 (4)
C11—C10—C13—C160.5 (4)O1—C16—N3—C15178.5 (2)
C16—C13—C14—N20.4 (4)C13—C16—N3—C152.2 (3)
C10—C13—C14—N2178.7 (2)O1—C16—N3—C174.7 (3)
C16—C13—C14—S1178.59 (18)C13—C16—N3—C17174.7 (2)
C10—C13—C14—S10.3 (3)C18—C17—N3—C15101.6 (3)
C9—S1—C14—N2179.4 (2)C22—C17—N3—C1579.7 (3)
C9—S1—C14—C130.3 (2)C18—C17—N3—C1681.5 (3)
C14—C13—C16—O1179.2 (2)C22—C17—N3—C1697.2 (3)
C10—C13—C16—O12.8 (4)N2—C15—N4—C230.8 (5)
C14—C13—C16—N31.5 (3)N3—C15—N4—C23180.0 (3)
C10—C13—C16—N3176.5 (2)C24—C23—N4—C15165.6 (3)
C22—C17—C18—C191.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24B···F1i0.972.663.258 (5)121
C25—H25A···F1i0.962.563.096 (5)116
N4—H4A···F1i0.862.653.423 (3)151
Symmetry code: (i) x+5/2, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H25FN4OS
Mr448.55
Crystal system, space groupOrthorhombic, Ibca
Temperature (K)296
a, b, c (Å)17.921 (7), 18.427 (7), 27.114 (10)
V3)8954 (6)
Z16
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.26 × 0.25 × 0.23
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
46089, 5152, 4234
Rint0.107
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.194, 1.05
No. of reflections5152
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.30

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24B···F1i0.972.663.258 (5)120.6
C25—H25A···F1i0.962.563.096 (5)115.6
N4—H4A···F1i0.862.653.423 (3)150.5
Symmetry code: (i) x+5/2, y, z+1.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (project No. 21102084), the Key Project of Hubei Provincial Department of Education, China (project No. D20091301) and the Doctoral Start-up Foundation of China Three Gorges University (project No. KJ2009B004).

References

First citationAmr, A. E. G., Sherif, M. H., Assy, M. G., Al-Omar, M. A. & Ragab, I. (2010). Eur. J. Med. Chem. 45, 5935–5942.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H., Hu, H.-J., Yan, K. & Dai, Q.-H. (2011). Acta Cryst. E67, o2228.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009). Bioorg. Med. Chem. Lett. 19, 831–833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856–5861.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds