metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(di­chloridozinc)-μ-4,4′-bis­­(1H-imidazol-1-yl)bi­phenyl-κ2N3:N3′] 0.25-hydrate]

aKey Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
*Correspondence e-mail: nwuxg@sina.com

(Received 5 February 2012; accepted 4 March 2012; online 14 March 2012)

In the title one-dimensional coordination polymer, {[ZnCl2(C18H14N4)]·0.25H2O}n, the ZnII atom is coordinated by two chloride ions and two 4,4′-bis­(1H-imidazol-1-yl)biphenyl ligands, generating a distorted tetra­hedral ZnCl2N2 geometry. The dihedral angle between the benzene rings of the ligand is 51.0 (1)° and the dihedral angles between the benzene rings and their attached imidazole rings are 18.7 (2) and 45.9 (1)°. The bridging ligand leads to [10-1] polymeric chains in the crystal and the disordered water mol­ecule (occupancy 0.25) forms O—H⋯Cl hydrogen bonds.

Related literature

For background to coordination polymers containing imidazole-derived ligands, see: Li et al. (2010[Li, Z. X., Zeng, Y. F., Ma, H. & Bu, X. H. (2010). Chem. Commun. 46, 8540-8542.], 2011[Li, Z. X., Chu, X., Cui, G. H., Liu, Y., Li, L. & Xue, G. L. (2011). CrystEngComm, 13, 1984-1989.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C18H14N4)]·0.25H2O

  • Mr = 427.11

  • Monoclinic, P 21 /n

  • a = 8.1565 (16) Å

  • b = 12.554 (3) Å

  • c = 18.411 (4) Å

  • β = 101.08 (3)°

  • V = 1850.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.687, Tmax = 0.737

  • 15655 measured reflections

  • 3256 independent reflections

  • 2622 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.092

  • S = 1.16

  • 3256 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.021 (3)
Zn1—N3i 2.024 (3)
Zn1—Cl2 2.2368 (13)
Zn1—Cl1 2.2370 (12)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯Cl2ii 0.85 2.55 3.270 (14) 143
O1W—H1B⋯Cl1iii 0.85 2.19 3.038 (14) 179
Symmetry codes: (ii) -x+1, -y+2, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, imidazole has been well used in crystal engineering, and a large number of imidazole-containing flexible ligands have been extensively studied. However, to our knowledge, the research on imidazole ligands bearing rigid spacers is less developed (Li et al., 2010; Li et al., 2011).

Single-crystal X-ray diffraction analysis reveals that the title compound (I) crystallizes in the monoclinic space group P21/n. For the title compound, the geometry of the ZnII ion is bound by two imidazole rings of individual L ligands, and two chlorine anions, which illustrates a slightly distorted tetrahedral coordination environment (Fig 1). Notably, as shown in Fig. 2, the four-coordinate ZnII center is bridged by the ligand L to form an infinite one-dimensional architecture.

Related literature top

For background to coordination polymers containing imidazole-derived ligands, see: Li et al. (2010, 2011).

Experimental top

A mixture of CH3OH and H2O (1:1, 8 ml), as a buffer layer, was carefully layered over a solution of ZnCl2 (0.02 mmol) in H2O (6 ml). Then a solution of 4,4'-bis(1H-imidazol-1-yl)phenyl (L, 0.06 mmol) in CH3OH (6 ml) was layered over the buffer layer, and the resultant reaction was left to stand at room temperature. After ca three weeks, colorless block single crystals appeared at the boundary. Yield: ~25% (based on L).

Refinement top

The dispalcement parameters for the water O atom were very large at full occupancy. When refined, its fractional occupancy converged to close to 0.25 and was then set at this value. C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq (C).

Structure description top

In recent years, imidazole has been well used in crystal engineering, and a large number of imidazole-containing flexible ligands have been extensively studied. However, to our knowledge, the research on imidazole ligands bearing rigid spacers is less developed (Li et al., 2010; Li et al., 2011).

Single-crystal X-ray diffraction analysis reveals that the title compound (I) crystallizes in the monoclinic space group P21/n. For the title compound, the geometry of the ZnII ion is bound by two imidazole rings of individual L ligands, and two chlorine anions, which illustrates a slightly distorted tetrahedral coordination environment (Fig 1). Notably, as shown in Fig. 2, the four-coordinate ZnII center is bridged by the ligand L to form an infinite one-dimensional architecture.

For background to coordination polymers containing imidazole-derived ligands, see: Li et al. (2010, 2011).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing for (I).
catena-Poly[[(dichloridozinc)-µ-4,4'-bis(1H- imidazol-1-yl)biphenyl-κ2N3:N3'] 0.25-hydrate] top
Crystal data top
[ZnCl2(C18H14N4)]·0.25H2OF(000) = 866
Mr = 427.11Dx = 1.533 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.1565 (16) ÅCell parameters from 15648 reflections
b = 12.554 (3) Åθ = 3.0–27.6°
c = 18.411 (4) ŵ = 1.63 mm1
β = 101.08 (3)°T = 293 K
V = 1850.0 (6) Å3Block, colorless
Z = 40.25 × 0.22 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3256 independent reflections
Radiation source: fine-focus sealed tube2622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1414
Tmin = 0.687, Tmax = 0.737l = 2121
15655 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0291P)2 + 1.2964P]
where P = (Fo2 + 2Fc2)/3
3256 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[ZnCl2(C18H14N4)]·0.25H2OV = 1850.0 (6) Å3
Mr = 427.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1565 (16) ŵ = 1.63 mm1
b = 12.554 (3) ÅT = 293 K
c = 18.411 (4) Å0.25 × 0.22 × 0.20 mm
β = 101.08 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
3256 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2622 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.737Rint = 0.058
15655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.16Δρmax = 0.35 e Å3
3256 reflectionsΔρmin = 0.31 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N30.1785 (4)0.2607 (2)0.64336 (16)0.0383 (8)
C160.2231 (5)0.3586 (3)0.6299 (2)0.0405 (10)
H160.25700.40970.66630.049*
N40.2135 (4)0.3755 (2)0.55687 (16)0.0380 (8)
C130.2497 (5)0.4730 (3)0.5231 (2)0.0370 (9)
C140.3472 (6)0.5486 (3)0.5650 (2)0.0570 (12)
H140.39390.53470.61430.068*
C150.3752 (6)0.6452 (3)0.5337 (2)0.0566 (12)
H150.43870.69640.56300.068*
C100.3122 (5)0.6681 (3)0.4604 (2)0.0385 (9)
Zn10.67056 (5)1.30302 (3)0.24360 (2)0.03635 (15)
N10.5135 (4)1.2116 (2)0.28937 (16)0.0371 (8)
N20.4081 (4)1.0778 (2)0.34273 (17)0.0385 (8)
C10.5385 (5)1.1127 (3)0.3145 (2)0.0411 (10)
H10.63371.07280.31280.049*
C20.3587 (5)1.2400 (3)0.3021 (2)0.0430 (10)
H20.30731.30550.29000.052*
C30.2931 (5)1.1594 (3)0.3345 (2)0.0448 (10)
H30.18971.15850.34880.054*
C40.3885 (4)0.9745 (3)0.3733 (2)0.0361 (9)
C50.4253 (5)0.8852 (3)0.3368 (2)0.0429 (10)
H50.46600.89180.29310.051*
C60.4018 (5)0.7850 (3)0.3650 (2)0.0413 (10)
H60.42730.72450.34020.050*
C70.3404 (5)0.7745 (3)0.4297 (2)0.0384 (9)
C80.3060 (5)0.8666 (3)0.4660 (2)0.0481 (11)
H80.26700.86090.51010.058*
C90.3285 (5)0.9661 (3)0.4380 (2)0.0471 (10)
H90.30331.02690.46250.056*
C180.1364 (6)0.2126 (3)0.5758 (2)0.0503 (11)
H180.09960.14270.56800.060*
C170.1562 (6)0.2820 (3)0.5223 (2)0.0520 (12)
H170.13520.26900.47160.062*
C120.1883 (5)0.4928 (3)0.4495 (2)0.0505 (11)
H120.12390.44170.42050.061*
C110.2221 (5)0.5887 (3)0.4187 (2)0.0503 (11)
H110.18320.60010.36840.060*
Cl10.56577 (14)1.46719 (8)0.22217 (6)0.0567 (3)
Cl20.91696 (13)1.29605 (10)0.32170 (6)0.0563 (3)
O1W0.0484 (16)0.9183 (11)0.5755 (7)0.080 (4)*0.25
H1B0.05260.95070.61640.120*0.25
H1A0.07310.85300.58310.120*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.045 (2)0.0354 (18)0.0334 (19)0.0009 (15)0.0035 (15)0.0016 (15)
C160.043 (2)0.042 (2)0.035 (2)0.004 (2)0.0025 (19)0.0000 (19)
N40.044 (2)0.0363 (18)0.0319 (19)0.0018 (15)0.0035 (15)0.0015 (15)
C130.040 (2)0.037 (2)0.032 (2)0.0002 (18)0.0032 (18)0.0035 (18)
C140.085 (3)0.054 (3)0.028 (2)0.017 (3)0.001 (2)0.003 (2)
C150.078 (3)0.046 (3)0.041 (3)0.020 (2)0.001 (2)0.001 (2)
C100.039 (2)0.039 (2)0.037 (2)0.0005 (18)0.0054 (18)0.0047 (18)
Zn10.0407 (3)0.0323 (2)0.0346 (3)0.0028 (2)0.00384 (19)0.0020 (2)
N10.0362 (19)0.036 (2)0.0378 (19)0.0013 (15)0.0044 (15)0.0014 (15)
N20.0329 (18)0.0384 (18)0.044 (2)0.0008 (15)0.0069 (15)0.0023 (15)
C10.035 (2)0.039 (2)0.051 (3)0.0049 (19)0.011 (2)0.002 (2)
C20.039 (2)0.038 (2)0.050 (3)0.0075 (19)0.003 (2)0.005 (2)
C30.034 (2)0.047 (2)0.054 (3)0.003 (2)0.009 (2)0.003 (2)
C40.028 (2)0.039 (2)0.040 (2)0.0021 (17)0.0032 (17)0.0047 (19)
C50.046 (2)0.046 (3)0.039 (2)0.001 (2)0.014 (2)0.002 (2)
C60.045 (2)0.036 (2)0.044 (2)0.0053 (19)0.011 (2)0.0004 (18)
C70.033 (2)0.042 (2)0.037 (2)0.0034 (18)0.0002 (18)0.0035 (18)
C80.055 (3)0.050 (3)0.043 (2)0.005 (2)0.019 (2)0.001 (2)
C90.057 (3)0.038 (2)0.049 (3)0.001 (2)0.018 (2)0.003 (2)
C180.070 (3)0.039 (2)0.039 (3)0.008 (2)0.003 (2)0.000 (2)
C170.077 (3)0.046 (3)0.029 (2)0.013 (2)0.002 (2)0.005 (2)
C120.065 (3)0.042 (2)0.040 (3)0.012 (2)0.004 (2)0.001 (2)
C110.062 (3)0.049 (3)0.034 (2)0.006 (2)0.005 (2)0.010 (2)
Cl10.0701 (8)0.0351 (6)0.0578 (7)0.0074 (5)0.0061 (6)0.0028 (5)
Cl20.0412 (6)0.0771 (8)0.0463 (6)0.0007 (6)0.0021 (5)0.0011 (6)
Geometric parameters (Å, º) top
N3—C161.319 (5)N2—C41.435 (5)
N3—C181.365 (5)C1—H10.9300
N3—Zn1i2.024 (3)C2—C31.338 (5)
C16—N41.349 (5)C2—H20.9300
C16—H160.9300C3—H30.9300
N4—C171.374 (5)C4—C51.370 (5)
N4—C131.429 (5)C4—C91.375 (5)
C13—C121.373 (5)C5—C61.388 (5)
C13—C141.376 (5)C5—H50.9300
C14—C151.380 (6)C6—C71.385 (5)
C14—H140.9300C6—H60.9300
C15—C101.379 (5)C7—C81.391 (5)
C15—H150.9300C8—C91.377 (5)
C10—C111.381 (5)C8—H80.9300
C10—C71.486 (5)C9—H90.9300
Zn1—N12.021 (3)C18—C171.349 (5)
Zn1—N3ii2.024 (3)C18—H180.9300
Zn1—Cl22.2368 (13)C17—H170.9300
Zn1—Cl12.2370 (12)C12—C111.381 (5)
N1—C11.326 (4)C12—H120.9300
N1—C21.375 (5)C11—H110.9300
N2—C11.344 (5)O1W—H1B0.8500
N2—C31.377 (5)O1W—H1A0.8499
C16—N3—C18105.7 (3)C3—C2—H2125.1
C16—N3—Zn1i126.7 (3)N1—C2—H2125.1
C18—N3—Zn1i127.5 (3)C2—C3—N2106.8 (3)
N3—C16—N4111.6 (3)C2—C3—H3126.6
N3—C16—H16124.2N2—C3—H3126.6
N4—C16—H16124.2C5—C4—C9120.7 (4)
C16—N4—C17106.1 (3)C5—C4—N2119.7 (3)
C16—N4—C13126.3 (3)C9—C4—N2119.6 (4)
C17—N4—C13127.6 (3)C4—C5—C6119.9 (4)
C12—C13—C14119.4 (4)C4—C5—H5120.1
C12—C13—N4121.1 (3)C6—C5—H5120.1
C14—C13—N4119.4 (3)C7—C6—C5120.5 (4)
C13—C14—C15119.7 (4)C7—C6—H6119.8
C13—C14—H14120.1C5—C6—H6119.8
C15—C14—H14120.1C6—C7—C8118.3 (4)
C10—C15—C14122.1 (4)C6—C7—C10121.4 (4)
C10—C15—H15118.9C8—C7—C10120.2 (4)
C14—C15—H15118.9C9—C8—C7121.3 (4)
C15—C10—C11116.9 (4)C9—C8—H8119.4
C15—C10—C7120.3 (4)C7—C8—H8119.4
C11—C10—C7122.8 (3)C4—C9—C8119.4 (4)
N1—Zn1—N3ii106.86 (12)C4—C9—H9120.3
N1—Zn1—Cl2105.84 (9)C8—C9—H9120.3
N3ii—Zn1—Cl2112.85 (10)C17—C18—N3109.7 (4)
N1—Zn1—Cl1110.21 (9)C17—C18—H18125.2
N3ii—Zn1—Cl1106.34 (10)N3—C18—H18125.2
Cl2—Zn1—Cl1114.52 (5)C18—C17—N4106.9 (3)
C1—N1—C2105.6 (3)C18—C17—H17126.6
C1—N1—Zn1127.6 (3)N4—C17—H17126.6
C2—N1—Zn1126.9 (3)C13—C12—C11119.9 (4)
C1—N2—C3106.8 (3)C13—C12—H12120.0
C1—N2—C4127.0 (3)C11—C12—H12120.0
C3—N2—C4126.2 (3)C12—C11—C10121.8 (4)
N1—C1—N2111.1 (3)C12—C11—H11119.1
N1—C1—H1124.5C10—C11—H11119.1
N2—C1—H1124.5H1B—O1W—H1A110.4
C3—C2—N1109.8 (4)
C18—N3—C16—N40.7 (4)C1—N2—C4—C545.5 (5)
Zn1i—N3—C16—N4179.6 (2)C3—N2—C4—C5132.2 (4)
N3—C16—N4—C171.0 (4)C1—N2—C4—C9136.4 (4)
N3—C16—N4—C13178.8 (3)C3—N2—C4—C946.0 (5)
C16—N4—C13—C12159.4 (4)C9—C4—C5—C60.1 (6)
C17—N4—C13—C1217.9 (6)N2—C4—C5—C6178.0 (3)
C16—N4—C13—C1420.2 (6)C4—C5—C6—C70.3 (6)
C17—N4—C13—C14162.4 (4)C5—C6—C7—C81.0 (6)
C12—C13—C14—C153.1 (7)C5—C6—C7—C10179.2 (4)
N4—C13—C14—C15176.6 (4)C15—C10—C7—C6129.7 (4)
C13—C14—C15—C101.8 (7)C11—C10—C7—C651.0 (6)
C14—C15—C10—C111.5 (7)C15—C10—C7—C850.1 (6)
C14—C15—C10—C7177.8 (4)C11—C10—C7—C8129.3 (4)
N3ii—Zn1—N1—C170.1 (3)C6—C7—C8—C91.3 (6)
Cl2—Zn1—N1—C150.4 (3)C10—C7—C8—C9178.9 (4)
Cl1—Zn1—N1—C1174.8 (3)C5—C4—C9—C80.2 (6)
N3ii—Zn1—N1—C2111.1 (3)N2—C4—C9—C8178.4 (4)
Cl2—Zn1—N1—C2128.4 (3)C7—C8—C9—C41.0 (6)
Cl1—Zn1—N1—C24.0 (3)C16—N3—C18—C170.1 (5)
C2—N1—C1—N20.4 (4)Zn1i—N3—C18—C17179.0 (3)
Zn1—N1—C1—N2178.6 (2)N3—C18—C17—N40.5 (5)
C3—N2—C1—N10.4 (4)C16—N4—C17—C180.9 (5)
C4—N2—C1—N1178.5 (3)C13—N4—C17—C18178.6 (4)
C1—N1—C2—C30.2 (4)C14—C13—C12—C111.2 (6)
Zn1—N1—C2—C3178.8 (3)N4—C13—C12—C11178.5 (4)
N1—C2—C3—N20.1 (5)C13—C12—C11—C102.3 (7)
C1—N2—C3—C20.3 (4)C15—C10—C11—C123.6 (6)
C4—N2—C3—C2178.4 (3)C7—C10—C11—C12175.8 (4)
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···Cl2iii0.852.553.270 (14)143
O1W—H1B···Cl1iv0.852.193.038 (14)179
Symmetry codes: (iii) x+1, y+2, z+1; (iv) x1/2, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C18H14N4)]·0.25H2O
Mr427.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.1565 (16), 12.554 (3), 18.411 (4)
β (°) 101.08 (3)
V3)1850.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.687, 0.737
No. of measured, independent and
observed [I > 2σ(I)] reflections
15655, 3256, 2622
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.092, 1.16
No. of reflections3256
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.31

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N12.021 (3)Zn1—Cl22.2368 (13)
Zn1—N3i2.024 (3)Zn1—Cl12.2370 (12)
Symmetry code: (i) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···Cl2ii0.852.553.270 (14)143
O1W—H1B···Cl1iii0.852.193.038 (14)179
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x1/2, y+5/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (grant No. 21073142) and the Key Laboratory Foundation of the Education Committee of Shaanxi Province (grant No. 09JS089)

References

First citationLi, Z. X., Chu, X., Cui, G. H., Liu, Y., Li, L. & Xue, G. L. (2011). CrystEngComm, 13, 1984–1989.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z. X., Zeng, Y. F., Ma, H. & Bu, X. H. (2010). Chem. Commun. 46, 8540–8542.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds