organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o922-o923

Di­methyl 2,6-di­methyl-4-(3-phenyl-1H-pyrazol-4-yl)-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cSchulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa 32000, Israel
*Correspondence e-mail: hkfun@usm.my

(Received 21 February 2012; accepted 24 February 2012; online 3 March 2012)

In the title compound, C20H21N3O4, the 1,4-dihydro­pyridine ring adopts a boat conformation. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. The pyrazole ring makes dihedral angles of 87.81 (7) and 45.09 (7)° with the mean plane of the 1,4-dihydro­pyridine ring and the phenyl ring, respectively. In the crystal, mol­ecules are linked by N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For a related structure and background references, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Vijesh, A. M., Isloor, A. M. & Malladi, S. (2011). Acta Cryst. E67, o1417-o1418.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N3O4

  • Mr = 367.40

  • Orthorhombic, P n a 21

  • a = 13.9632 (6) Å

  • b = 10.9908 (5) Å

  • c = 11.8465 (5) Å

  • V = 1818.04 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.38 × 0.22 × 0.14 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.987

  • 17004 measured reflections

  • 2788 independent reflections

  • 2687 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.03

  • 2788 reflections

  • 256 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O3 0.98 2.29 2.9114 (18) 121
N3—H1N3⋯N2i 0.93 (2) 2.14 (2) 3.0529 (17) 167 (2)
N1—H1N1⋯O3ii 0.84 (3) 2.01 (3) 2.8438 (16) 173 (2)
C5—H5A⋯O1iii 0.95 2.60 3.4895 (18) 157
C20—H20C⋯O1iv 0.98 2.38 3.3524 (19) 170
Symmetry codes: (i) [-x+1, -y+2, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of dihydropyridine/pyrazole derivatives, we have synthesized the title compound, (I), to study its crystal structure.

The molecular structure in shown in Fig. 1. The 1,4-dihydropyridine ring (N3/C10–C14) adopts a boat conformation with puckering parameters Q = 0.3273 (13) Å, Θ= 106.1 (2)° and Φ= 356.4 (2)°. An intramolecular C18—H18A···O3 hydrogen bond (Table 1) forms an S(6) ring motif (Bernstein et al., 1995). The 1H-pyrazole ring (N1/N2/C7–C9) makes dihedral angles of 87.81 (7) and 45.09 (7)° with the mean plane of the 1,4-dihydropyridine (N3/C10–C14) ring and benzene (C1–C6) ring, respectively. Bond lengths and angles are comparable to the related structure (Fun et al., 2011).

In the crystal structure (Fig. 2), the molecules are linked via intermolecular N3—H1N3···N2, N1—H1N1···O3, C5—H5A···O1 and C20—H20C···O1 hydrogen bonds (Table 1) into three-dimensional network.

Related literature top

For a related structure and background references, see: Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

3-Phenyl-1H-pyrazole-4-carbaldehyde (0.172 g, 1.0 mmol), methylacetoacetate (0.232 g, 2.0 mmol) and ammonium acetate (0.092 g, 1.2 mmol) in ethanol (7 ml) were refluxed for 5 h. After the completion of the reaction, the reaction mixture was concentrated and poured into crushed ice. The precipitated product was filtered and washed with water. The resulting solid was recrystallized from ethanol:water mixture as yellow blocks. Yield: 0.28 g, 76.21%. M.p.: 398–400 K.

Refinement top

N-bound H atoms was located from the difference map and refined freely, [N–H = 0.84 (3) and 0.93 (2) Å]. All the other H atoms were positioned geometrically [C–H = 0.95–1.00 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. Ten outliners 8 3 5, 6 0 - 7, 8 0 6, 8 1 6, 8 2 5, 8 1 5, 8 0 5, 6 0 4, 4 0 3 and 8 5 0 were omitted. Since there are not sufficent anomalous dispersion to determine the absolute structure, 2358 Freidel pairs were merged for the final refinement.

Structure description top

As part of our ongoing studies of dihydropyridine/pyrazole derivatives, we have synthesized the title compound, (I), to study its crystal structure.

The molecular structure in shown in Fig. 1. The 1,4-dihydropyridine ring (N3/C10–C14) adopts a boat conformation with puckering parameters Q = 0.3273 (13) Å, Θ= 106.1 (2)° and Φ= 356.4 (2)°. An intramolecular C18—H18A···O3 hydrogen bond (Table 1) forms an S(6) ring motif (Bernstein et al., 1995). The 1H-pyrazole ring (N1/N2/C7–C9) makes dihedral angles of 87.81 (7) and 45.09 (7)° with the mean plane of the 1,4-dihydropyridine (N3/C10–C14) ring and benzene (C1–C6) ring, respectively. Bond lengths and angles are comparable to the related structure (Fun et al., 2011).

In the crystal structure (Fig. 2), the molecules are linked via intermolecular N3—H1N3···N2, N1—H1N1···O3, C5—H5A···O1 and C20—H20C···O1 hydrogen bonds (Table 1) into three-dimensional network.

For a related structure and background references, see: Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Dimethyl 2,6-dimethyl-4-(3-phenyl-1H-pyrazol-4-yl)- 1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C20H21N3O4F(000) = 776
Mr = 367.40Dx = 1.342 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8800 reflections
a = 13.9632 (6) Åθ = 2.4–30.1°
b = 10.9908 (5) ŵ = 0.10 mm1
c = 11.8465 (5) ÅT = 100 K
V = 1818.04 (14) Å3Block, yellow
Z = 40.38 × 0.22 × 0.14 mm
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
2788 independent reflections
Radiation source: fine-focus sealed tube2687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.965, Tmax = 0.987k = 1415
17004 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.1941P]
where P = (Fo2 + 2Fc2)/3
2788 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C20H21N3O4V = 1818.04 (14) Å3
Mr = 367.40Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 13.9632 (6) ŵ = 0.10 mm1
b = 10.9908 (5) ÅT = 100 K
c = 11.8465 (5) Å0.38 × 0.22 × 0.14 mm
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
2788 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2687 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.987Rint = 0.030
17004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
2788 reflectionsΔρmin = 0.24 e Å3
256 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46234 (8)0.61784 (10)0.30293 (11)0.0235 (2)
O20.32205 (8)0.59619 (9)0.39414 (10)0.0205 (2)
O30.15716 (8)1.09597 (9)0.48010 (9)0.0191 (2)
O40.14156 (7)0.90479 (9)0.54372 (10)0.0178 (2)
N10.37507 (9)0.72586 (11)0.77599 (10)0.0156 (2)
N20.42080 (9)0.83459 (11)0.77451 (10)0.0175 (2)
N30.44724 (8)0.99042 (10)0.40046 (10)0.0142 (2)
C10.18445 (9)0.58580 (12)0.61291 (12)0.0156 (2)
H1A0.15510.66020.59140.019*
C20.13659 (10)0.47622 (13)0.59534 (13)0.0181 (3)
H2A0.07510.47640.56110.022*
C30.17821 (10)0.36647 (13)0.62751 (13)0.0186 (3)
H3A0.14540.29190.61520.022*
C40.26818 (10)0.36682 (12)0.67776 (12)0.0184 (3)
H4A0.29660.29220.70040.022*
C50.31710 (10)0.47597 (12)0.69520 (12)0.0154 (2)
H5A0.37860.47530.72950.018*
C60.27552 (9)0.58674 (11)0.66210 (11)0.0130 (2)
C70.32755 (9)0.70190 (11)0.67790 (11)0.0123 (2)
C80.40266 (10)0.87859 (12)0.67155 (12)0.0155 (2)
H8A0.42660.95420.64480.019*
C90.34428 (9)0.80077 (11)0.60694 (11)0.0120 (2)
C100.31482 (9)0.82217 (11)0.48536 (11)0.0114 (2)
H10A0.25720.77140.46840.014*
C110.39518 (9)0.78588 (11)0.40562 (11)0.0122 (2)
C120.46244 (9)0.86881 (12)0.37489 (11)0.0136 (2)
C130.35839 (9)1.03464 (11)0.43207 (11)0.0128 (2)
C140.28952 (9)0.95537 (11)0.46742 (11)0.0126 (2)
C150.39982 (10)0.66120 (12)0.36172 (12)0.0147 (2)
C160.31848 (13)0.47237 (13)0.35474 (17)0.0275 (3)
H16A0.26550.42970.39180.041*
H16B0.37900.43150.37270.041*
H16C0.30850.47170.27290.041*
C170.55479 (10)0.84310 (13)0.31417 (14)0.0191 (3)
H17A0.58580.77190.34800.029*
H17B0.59730.91370.32050.029*
H17C0.54150.82690.23440.029*
C180.35149 (10)1.17080 (12)0.42430 (12)0.0173 (2)
H18A0.29911.19950.47240.026*
H18B0.33901.19440.34590.026*
H18C0.41191.20720.44950.026*
C190.19231 (9)0.99557 (12)0.49572 (11)0.0134 (2)
C200.04439 (10)0.93544 (15)0.57625 (14)0.0215 (3)
H20A0.01140.86210.60270.032*
H20B0.01020.96900.51100.032*
H20C0.04580.99600.63700.032*
H1N30.4908 (15)1.047 (2)0.373 (2)0.025 (5)*
H1N10.3705 (16)0.689 (2)0.838 (2)0.032 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0253 (5)0.0200 (5)0.0252 (5)0.0015 (4)0.0071 (4)0.0072 (4)
O20.0264 (5)0.0108 (4)0.0242 (5)0.0030 (4)0.0078 (4)0.0029 (4)
O30.0224 (5)0.0171 (5)0.0176 (5)0.0067 (4)0.0022 (4)0.0028 (4)
O40.0129 (4)0.0163 (4)0.0243 (5)0.0002 (3)0.0041 (4)0.0003 (4)
N10.0178 (5)0.0164 (5)0.0126 (5)0.0043 (4)0.0023 (4)0.0031 (4)
N20.0193 (5)0.0176 (5)0.0156 (5)0.0068 (4)0.0020 (4)0.0010 (4)
N30.0147 (5)0.0125 (5)0.0153 (5)0.0017 (4)0.0018 (4)0.0008 (4)
C10.0145 (6)0.0155 (6)0.0168 (6)0.0001 (4)0.0005 (5)0.0018 (5)
C20.0140 (6)0.0207 (6)0.0197 (6)0.0030 (5)0.0012 (5)0.0009 (5)
C30.0208 (7)0.0160 (6)0.0190 (6)0.0044 (5)0.0025 (5)0.0021 (5)
C40.0225 (7)0.0125 (5)0.0201 (6)0.0004 (5)0.0003 (5)0.0019 (5)
C50.0153 (6)0.0150 (5)0.0157 (6)0.0000 (4)0.0008 (4)0.0022 (5)
C60.0139 (5)0.0129 (5)0.0122 (5)0.0014 (4)0.0005 (4)0.0009 (4)
C70.0112 (5)0.0128 (5)0.0129 (5)0.0004 (4)0.0005 (4)0.0011 (4)
C80.0169 (6)0.0150 (5)0.0146 (6)0.0045 (4)0.0009 (5)0.0006 (5)
C90.0127 (5)0.0109 (5)0.0124 (5)0.0008 (4)0.0007 (4)0.0004 (4)
C100.0127 (5)0.0104 (5)0.0111 (5)0.0011 (4)0.0007 (4)0.0002 (4)
C110.0144 (5)0.0115 (5)0.0107 (5)0.0016 (4)0.0006 (4)0.0003 (4)
C120.0150 (5)0.0140 (5)0.0120 (5)0.0022 (4)0.0001 (4)0.0008 (4)
C130.0159 (6)0.0118 (5)0.0109 (5)0.0001 (4)0.0002 (4)0.0005 (4)
C140.0144 (5)0.0114 (5)0.0120 (5)0.0009 (4)0.0003 (4)0.0013 (4)
C150.0182 (6)0.0130 (5)0.0130 (5)0.0010 (4)0.0002 (5)0.0010 (4)
C160.0344 (9)0.0131 (6)0.0350 (9)0.0061 (6)0.0101 (7)0.0078 (6)
C170.0171 (6)0.0190 (6)0.0211 (6)0.0014 (5)0.0059 (5)0.0008 (5)
C180.0214 (6)0.0107 (5)0.0199 (6)0.0008 (4)0.0021 (5)0.0017 (5)
C190.0149 (5)0.0149 (5)0.0103 (5)0.0004 (4)0.0001 (4)0.0009 (4)
C200.0124 (6)0.0252 (7)0.0270 (7)0.0012 (5)0.0041 (5)0.0059 (6)
Geometric parameters (Å, º) top
O1—C151.2142 (17)C7—C91.3936 (18)
O2—C151.3555 (17)C8—C91.4078 (18)
O2—C161.4396 (17)C8—H8A0.9500
O3—C191.2219 (16)C9—C101.5163 (18)
O4—C191.3494 (16)C10—C111.5200 (17)
O4—C201.4501 (16)C10—C141.5209 (17)
N1—N21.3551 (16)C10—H10A1.0000
N1—C71.3638 (16)C11—C121.3584 (17)
N1—H1N10.84 (3)C11—C151.4671 (17)
N2—C81.3363 (18)C12—C171.5034 (18)
N3—C131.3840 (17)C13—C141.3635 (17)
N3—C121.3868 (16)C13—C181.5024 (17)
N3—H1N30.93 (2)C14—C191.4663 (18)
C1—C21.3929 (19)C16—H16A0.9800
C1—C61.3989 (18)C16—H16B0.9800
C1—H1A0.9500C16—H16C0.9800
C2—C31.392 (2)C17—H17A0.9800
C2—H2A0.9500C17—H17B0.9800
C3—C41.390 (2)C17—H17C0.9800
C3—H3A0.9500C18—H18A0.9800
C4—C51.3958 (18)C18—H18B0.9800
C4—H4A0.9500C18—H18C0.9800
C5—C61.4045 (17)C20—H20A0.9800
C5—H5A0.9500C20—H20B0.9800
C6—C71.4713 (17)C20—H20C0.9800
C15—O2—C16115.74 (12)C12—C11—C15120.08 (11)
C19—O4—C20115.57 (11)C12—C11—C10120.06 (11)
N2—N1—C7112.86 (11)C15—C11—C10119.87 (11)
N2—N1—H1N1117.8 (16)C11—C12—N3118.84 (11)
C7—N1—H1N1128.1 (16)C11—C12—C17126.52 (12)
C8—N2—N1103.98 (11)N3—C12—C17114.64 (11)
C13—N3—C12122.32 (11)C14—C13—N3119.40 (11)
C13—N3—H1N3116.5 (13)C14—C13—C18127.59 (12)
C12—N3—H1N3117.8 (13)N3—C13—C18112.99 (11)
C2—C1—C6120.31 (12)C13—C14—C19122.05 (11)
C2—C1—H1A119.8C13—C14—C10119.61 (11)
C6—C1—H1A119.8C19—C14—C10118.23 (11)
C3—C2—C1120.53 (13)O1—C15—O2122.11 (12)
C3—C2—H2A119.7O1—C15—C11126.99 (13)
C1—C2—H2A119.7O2—C15—C11110.89 (11)
C4—C3—C2119.47 (13)O2—C16—H16A109.5
C4—C3—H3A120.3O2—C16—H16B109.5
C2—C3—H3A120.3H16A—C16—H16B109.5
C3—C4—C5120.53 (13)O2—C16—H16C109.5
C3—C4—H4A119.7H16A—C16—H16C109.5
C5—C4—H4A119.7H16B—C16—H16C109.5
C4—C5—C6120.09 (13)C12—C17—H17A109.5
C4—C5—H5A120.0C12—C17—H17B109.5
C6—C5—H5A120.0H17A—C17—H17B109.5
C1—C6—C5119.05 (11)C12—C17—H17C109.5
C1—C6—C7120.54 (11)H17A—C17—H17C109.5
C5—C6—C7120.40 (12)H17B—C17—H17C109.5
N1—C7—C9106.37 (11)C13—C18—H18A109.5
N1—C7—C6120.98 (11)C13—C18—H18B109.5
C9—C7—C6132.60 (12)H18A—C18—H18B109.5
N2—C8—C9112.72 (12)C13—C18—H18C109.5
N2—C8—H8A123.6H18A—C18—H18C109.5
C9—C8—H8A123.6H18B—C18—H18C109.5
C7—C9—C8104.06 (12)O3—C19—O4121.37 (12)
C7—C9—C10130.43 (12)O3—C19—C14127.54 (12)
C8—C9—C10125.40 (12)O4—C19—C14111.09 (11)
C9—C10—C11110.45 (10)O4—C20—H20A109.5
C9—C10—C14110.18 (10)O4—C20—H20B109.5
C11—C10—C14109.71 (10)H20A—C20—H20B109.5
C9—C10—H10A108.8O4—C20—H20C109.5
C11—C10—H10A108.8H20A—C20—H20C109.5
C14—C10—H10A108.8H20B—C20—H20C109.5
C7—N1—N2—C81.15 (16)C14—C10—C11—C15147.94 (11)
C6—C1—C2—C30.7 (2)C15—C11—C12—N3168.44 (12)
C1—C2—C3—C40.1 (2)C10—C11—C12—N311.42 (18)
C2—C3—C4—C50.5 (2)C15—C11—C12—C1711.6 (2)
C3—C4—C5—C60.1 (2)C10—C11—C12—C17168.57 (13)
C2—C1—C6—C51.1 (2)C13—N3—C12—C1115.16 (19)
C2—C1—C6—C7178.25 (13)C13—N3—C12—C17164.85 (12)
C4—C5—C6—C10.7 (2)C12—N3—C13—C1417.20 (19)
C4—C5—C6—C7178.63 (13)C12—N3—C13—C18163.94 (12)
N2—N1—C7—C90.79 (15)N3—C13—C14—C19176.37 (12)
N2—N1—C7—C6178.43 (12)C18—C13—C14—C195.0 (2)
C1—C6—C7—N1136.67 (13)N3—C13—C14—C107.47 (18)
C5—C6—C7—N143.99 (18)C18—C13—C14—C10171.21 (13)
C1—C6—C7—C946.4 (2)C9—C10—C14—C1392.04 (14)
C5—C6—C7—C9132.93 (16)C11—C10—C14—C1329.76 (16)
N1—N2—C8—C91.08 (16)C9—C10—C14—C1984.27 (14)
N1—C7—C9—C80.10 (14)C11—C10—C14—C19153.92 (11)
C6—C7—C9—C8177.35 (13)C16—O2—C15—O10.2 (2)
N1—C7—C9—C10176.07 (12)C16—O2—C15—C11179.37 (13)
C6—C7—C9—C101.2 (2)C12—C11—C15—O14.6 (2)
N2—C8—C9—C70.63 (16)C10—C11—C15—O1175.57 (14)
N2—C8—C9—C10177.05 (12)C12—C11—C15—O2174.55 (12)
C7—C9—C10—C1195.43 (16)C10—C11—C15—O25.31 (17)
C8—C9—C10—C1180.01 (15)C20—O4—C19—O30.85 (19)
C7—C9—C10—C14143.21 (14)C20—O4—C19—C14179.34 (11)
C8—C9—C10—C1441.35 (16)C13—C14—C19—O39.1 (2)
C9—C10—C11—C1289.73 (14)C10—C14—C19—O3174.67 (13)
C14—C10—C11—C1231.92 (16)C13—C14—C19—O4171.09 (12)
C9—C10—C11—C1590.41 (14)C10—C14—C19—O45.13 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O30.982.292.9114 (18)121
N3—H1N3···N2i0.93 (2)2.14 (2)3.0529 (17)167 (2)
N1—H1N1···O3ii0.84 (3)2.01 (3)2.8438 (16)173 (2)
C5—H5A···O1iii0.952.603.4895 (18)157
C20—H20C···O1iv0.982.383.3524 (19)170
Symmetry codes: (i) x+1, y+2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H21N3O4
Mr367.40
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)13.9632 (6), 10.9908 (5), 11.8465 (5)
V3)1818.04 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.38 × 0.22 × 0.14
Data collection
DiffractometerBruker SMART APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.965, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
17004, 2788, 2687
Rint0.030
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.03
No. of reflections2788
No. of parameters256
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O30.98002.29002.9114 (18)121
N3—H1N3···N2i0.93 (2)2.14 (2)3.0529 (17)167 (2)
N1—H1N1···O3ii0.84 (3)2.01 (3)2.8438 (16)173 (2)
C5—H5A···O1iii0.952.603.4895 (18)157
C20—H20C···O1iv0.982.383.3524 (19)170
Symmetry codes: (i) x+1, y+2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and SA thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). SA thanks the Malaysian government and USM for an award from the Academic Staff Training Scheme (ASTS). AMI is thankful to Director of National Institute of Technology Karnataka, Surathkal, India, for providing research facilities. AMI also thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, and the Government of India for a 'Young Scientist' award.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Vijesh, A. M., Isloor, A. M. & Malladi, S. (2011). Acta Cryst. E67, o1417–o1418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o922-o923
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds