organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-[3-cyano-1-(3,4-di­chloro­phen­yl)-1H-pyrazol-5-yl]acetamide

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 22 February 2012; accepted 23 February 2012; online 24 March 2012)

In the title compound, C12H7Cl3N4O, the dihedral angle between the pyrazole and benzene rings is 35.6 (3)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds generating C(4) chains propagating in [100].

Related literature

For background to the properties of N-pyrazoles, see: Liu et al. (2010[Liu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897-902.]); Zhao et al. (2010[Zhao, Q. Q., Li, Y. Q., Xiong, L. X. & Wang, Q. M. (2010). J. Agric. Food Chem. 58, 4992-4998.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7Cl3N4O

  • Mr = 329.57

  • Monoclinic, P 21 /n

  • a = 4.6280 (9) Å

  • b = 17.245 (3) Å

  • c = 17.468 (4) Å

  • β = 94.04 (3)°

  • V = 1390.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.827, Tmax = 0.937

  • 5687 measured reflections

  • 2564 independent reflections

  • 1880 reflections with I > 2σ(I)

  • Rint = 0.040

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.139

  • S = 1.01

  • 2564 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯Oi 0.86 1.95 2.743 (3) 153
Symmetry code: (i) x-1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

For background to the properties of N-pyrazoles, see: Liu et al. (2010); Zhao et al. (2010).

Experimental top

To a stirred solution of 5-amino-1-(3,4-dichlorophenyl)-1H-pyrazole-3-carbonitrile (5 mmol) in THF (20 ml) was added 2-chloroacetyl chloride (5 mmol) dropwise at 0-5°C. After the addition, the reaction mixture was allowed to raise to room temperature and stirred for 2 h. The crude product (I) precipitated and was filterd. Pure compound (I) was obtained by crystallization from ethanol. Colourless blocks of (I) were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93-0.97 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Structure description top

For background to the properties of N-pyrazoles, see: Liu et al. (2010); Zhao et al. (2010).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram for (I).
2-Chloro-N-[3-cyano-1-(3,4-dichlorophenyl)-1H-pyrazol-5-yl]acetamide top
Crystal data top
C12H7Cl3N4ODx = 1.574 Mg m3
Mr = 329.57Melting point: 473 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.6280 (9) ÅCell parameters from 25 reflections
b = 17.245 (3) Åθ = 9–13°
c = 17.468 (4) ŵ = 0.66 mm1
β = 94.04 (3)°T = 293 K
V = 1390.7 (5) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
F(000) = 664
Data collection top
Enraf–Nonius CAD-4
diffractometer
1880 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/2θ scansh = 05
Absorption correction: ψ scan
(North et al., 1968)
k = 2020
Tmin = 0.827, Tmax = 0.937l = 2121
5687 measured reflections3 standard reflections every 200 reflections
2564 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.090P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2564 reflectionsΔρmax = 0.31 e Å3
182 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (3)
Crystal data top
C12H7Cl3N4OV = 1390.7 (5) Å3
Mr = 329.57Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.6280 (9) ŵ = 0.66 mm1
b = 17.245 (3) ÅT = 293 K
c = 17.468 (4) Å0.30 × 0.20 × 0.10 mm
β = 94.04 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1880 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.040
Tmin = 0.827, Tmax = 0.9373 standard reflections every 200 reflections
5687 measured reflections intensity decay: 1%
2564 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.01Δρmax = 0.31 e Å3
2564 reflectionsΔρmin = 0.25 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.8240 (5)0.38138 (13)0.35313 (18)0.0813 (8)
Cl10.40136 (18)0.21696 (4)0.00295 (5)0.0641 (3)
C10.0120 (6)0.23735 (15)0.11596 (15)0.0438 (6)
H1A0.04190.18520.12660.053*
Cl20.3173 (2)0.39579 (5)0.03563 (5)0.0738 (3)
N10.3510 (5)0.24173 (12)0.22197 (12)0.0426 (5)
N20.4349 (5)0.16733 (12)0.21185 (13)0.0488 (6)
C20.1647 (6)0.27227 (15)0.05502 (15)0.0447 (6)
Cl30.69321 (17)0.53185 (4)0.41501 (5)0.0602 (3)
C30.1258 (7)0.35054 (16)0.04024 (15)0.0496 (7)
N30.8375 (9)0.01856 (18)0.2981 (2)0.0950 (11)
N40.3729 (4)0.34308 (13)0.31669 (13)0.0456 (6)
H4A0.19330.35620.31190.055*
C40.0724 (8)0.39217 (16)0.08606 (17)0.0582 (8)
H4B0.09900.44460.07620.070*
C50.2322 (7)0.35752 (15)0.14625 (16)0.0521 (7)
H5A0.36880.38570.17630.062*
C60.1850 (6)0.27986 (14)0.16112 (14)0.0412 (6)
C70.4522 (5)0.26933 (16)0.29174 (15)0.0425 (6)
C80.6121 (7)0.21299 (17)0.32747 (17)0.0541 (7)
H8A0.71160.21500.37560.065*
C90.5948 (7)0.15113 (15)0.27610 (16)0.0489 (7)
C100.7278 (8)0.07622 (19)0.28682 (18)0.0644 (9)
C110.5659 (6)0.39367 (15)0.34757 (15)0.0426 (6)
C120.4304 (6)0.46675 (15)0.37652 (18)0.0503 (7)
H12A0.30040.45340.41570.060*
H12B0.31710.49160.33460.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0337 (12)0.0558 (13)0.154 (3)0.0049 (10)0.0002 (13)0.0304 (15)
Cl10.0735 (6)0.0549 (5)0.0603 (5)0.0049 (4)0.0212 (4)0.0010 (3)
C10.0494 (16)0.0346 (13)0.0471 (15)0.0013 (12)0.0018 (12)0.0003 (11)
Cl20.0949 (7)0.0570 (5)0.0673 (5)0.0099 (4)0.0091 (5)0.0194 (4)
N10.0480 (13)0.0351 (11)0.0440 (12)0.0008 (10)0.0004 (10)0.0051 (9)
N20.0626 (15)0.0326 (11)0.0507 (13)0.0051 (10)0.0013 (11)0.0040 (10)
C20.0482 (15)0.0410 (14)0.0448 (14)0.0018 (12)0.0021 (12)0.0013 (11)
Cl30.0585 (5)0.0442 (4)0.0767 (5)0.0064 (3)0.0043 (4)0.0129 (3)
C30.0626 (19)0.0423 (15)0.0440 (15)0.0078 (13)0.0044 (13)0.0068 (11)
N30.138 (3)0.0591 (19)0.087 (2)0.036 (2)0.001 (2)0.0074 (16)
N40.0297 (11)0.0483 (13)0.0576 (13)0.0067 (9)0.0046 (10)0.0182 (11)
C40.080 (2)0.0360 (14)0.0583 (18)0.0048 (14)0.0049 (17)0.0047 (12)
C50.067 (2)0.0373 (14)0.0515 (16)0.0100 (13)0.0020 (14)0.0023 (12)
C60.0457 (14)0.0339 (13)0.0441 (14)0.0012 (11)0.0040 (12)0.0037 (10)
C70.0361 (14)0.0427 (14)0.0485 (15)0.0016 (11)0.0005 (12)0.0111 (12)
C80.0557 (18)0.0526 (17)0.0526 (16)0.0086 (14)0.0061 (14)0.0082 (13)
C90.0557 (17)0.0393 (14)0.0508 (16)0.0054 (13)0.0012 (13)0.0021 (12)
C100.086 (2)0.0515 (18)0.0538 (17)0.0120 (17)0.0060 (17)0.0009 (14)
C110.0333 (14)0.0406 (14)0.0535 (16)0.0032 (11)0.0002 (12)0.0024 (11)
C120.0385 (15)0.0445 (15)0.0673 (18)0.0007 (12)0.0006 (13)0.0132 (13)
Geometric parameters (Å, º) top
O—C111.210 (3)N4—C111.335 (3)
Cl1—C21.726 (3)N4—C71.402 (3)
C1—C21.374 (4)N4—H4A0.8600
C1—C61.375 (3)C4—C51.378 (4)
C1—H1A0.9300C4—H4B0.9300
Cl2—C31.728 (3)C5—C61.384 (4)
N1—N21.356 (3)C5—H5A0.9300
N1—C71.360 (3)C7—C81.348 (4)
N1—C61.427 (3)C8—C91.393 (4)
N2—C91.330 (3)C8—H8A0.9300
C2—C31.388 (4)C9—C101.438 (4)
Cl3—C121.754 (3)C11—C121.511 (4)
C3—C41.376 (4)C12—H12A0.9700
N3—C101.127 (4)C12—H12B0.9700
C2—C1—C6119.7 (2)C1—C6—C5121.0 (3)
C2—C1—H1A120.2C1—C6—N1118.8 (2)
C6—C1—H1A120.2C5—C6—N1120.1 (2)
N2—N1—C7111.4 (2)C8—C7—N1107.8 (2)
N2—N1—C6118.88 (19)C8—C7—N4131.1 (2)
C7—N1—C6129.7 (2)N1—C7—N4121.0 (2)
C9—N2—N1103.7 (2)C7—C8—C9104.4 (3)
C1—C2—C3120.3 (3)C7—C8—H8A127.8
C1—C2—Cl1118.9 (2)C9—C8—H8A127.8
C3—C2—Cl1120.9 (2)N2—C9—C8112.7 (2)
C4—C3—C2119.3 (3)N2—C9—C10120.4 (2)
C4—C3—Cl2119.7 (2)C8—C9—C10126.8 (3)
C2—C3—Cl2121.0 (2)N3—C10—C9177.1 (4)
C11—N4—C7122.4 (2)O—C11—N4123.1 (2)
C11—N4—H4A118.8O—C11—C12123.3 (2)
C7—N4—H4A118.8N4—C11—C12113.5 (2)
C3—C4—C5121.2 (3)C11—C12—Cl3111.68 (19)
C3—C4—H4B119.4C11—C12—H12A109.3
C5—C4—H4B119.4Cl3—C12—H12A109.3
C4—C5—C6118.6 (3)C11—C12—H12B109.3
C4—C5—H5A120.7Cl3—C12—H12B109.3
C6—C5—H5A120.7H12A—C12—H12B107.9
C7—N1—N2—C91.5 (3)N2—N1—C7—C81.7 (3)
C6—N1—N2—C9176.8 (2)C6—N1—C7—C8176.4 (3)
C6—C1—C2—C31.6 (4)N2—N1—C7—N4175.1 (2)
C6—C1—C2—Cl1177.7 (2)C6—N1—C7—N46.9 (4)
C1—C2—C3—C41.6 (4)C11—N4—C7—C851.2 (5)
Cl1—C2—C3—C4177.7 (2)C11—N4—C7—N1132.9 (3)
C1—C2—C3—Cl2179.5 (2)N1—C7—C8—C91.1 (3)
Cl1—C2—C3—Cl21.1 (4)N4—C7—C8—C9175.2 (3)
C2—C3—C4—C50.1 (5)N1—N2—C9—C80.8 (3)
Cl2—C3—C4—C5178.9 (2)N1—N2—C9—C10179.3 (3)
C3—C4—C5—C61.5 (5)C7—C8—C9—N20.2 (4)
C2—C1—C6—C50.1 (4)C7—C8—C9—C10179.7 (3)
C2—C1—C6—N1177.2 (2)N2—C9—C10—N3176 (8)
C4—C5—C6—C11.5 (4)C8—C9—C10—N34 (9)
C4—C5—C6—N1178.7 (3)C7—N4—C11—O3.5 (5)
N2—N1—C6—C135.1 (3)C7—N4—C11—C12175.1 (2)
C7—N1—C6—C1147.0 (3)O—C11—C12—Cl32.4 (4)
N2—N1—C6—C5142.2 (3)N4—C11—C12—Cl3179.0 (2)
C7—N1—C6—C535.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···Oi0.861.952.743 (3)153
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H7Cl3N4O
Mr329.57
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.6280 (9), 17.245 (3), 17.468 (4)
β (°) 94.04 (3)
V3)1390.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.827, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
5687, 2564, 1880
Rint0.040
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.139, 1.01
No. of reflections2564
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···Oi0.861.952.743 (3)153
Symmetry code: (i) x1, y, z.
 

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897–902.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Q. Q., Li, Y. Q., Xiong, L. X. & Wang, Q. M. (2010). J. Agric. Food Chem. 58, 4992–4998.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds