organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o924-o925

3,3′-[1,2-Phenyl­enebis(methyl­ene)]bis­­(1-octylbenzimidazolium) dibromide monohydrate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800-Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 February 2012; accepted 24 February 2012; online 3 March 2012)

In the title hydrated mol­ecular salt, C38H52N42+·2Br·H2O, the central benzene ring of the dication makes dihedral angles of 89.47 (13) and 72.69 (12)° with the pendant benzimidazol-3-ium rings. The conformations of the octyl side chains are completely different. In the crystal, the components are linked by O—H⋯Br, C—H⋯Br and C—H⋯O hydrogen bonds into a two-dimensional network lying parallel to the ac plane. Aromatic ππ stacking inter­actions are also observed [shortest centroid-to-centroid separation = 3.5047 (16) Å].

Related literature

For related structures, see: Haque et al. (2012[Haque, R. A., Iqbal, M. A., Budagumpi, S., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o573.]); Iqbal et al. (2012[Iqbal, M. A., Haque, R. A., Fun, H.-K. & Chia, T. S. (2012). Acta Cryst. E68, o466-o467.]); Haque et al. (2011[Haque, R. A., Iqbal, M. A., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1814-o1815.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C38H52N42+·2Br·H2O

  • Mr = 742.67

  • Triclinic, [P \overline 1]

  • a = 8.7203 (4) Å

  • b = 14.9342 (12) Å

  • c = 16.4090 (8) Å

  • α = 115.598 (3)°

  • β = 104.638 (2)°

  • γ = 92.358 (3)°

  • V = 1836.77 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.24 mm−1

  • T = 100 K

  • 0.42 × 0.32 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.451, Tmax = 0.614

  • 44354 measured reflections

  • 10659 independent reflections

  • 8816 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.161

  • S = 1.05

  • 10659 reflections

  • 416 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.62 e Å−3

  • Δρmin = −1.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯Br1 0.83 (5) 2.50 (5) 3.326 (3) 173 (4)
O1W—H2W1⋯Br2 0.83 (5) 2.52 (5) 3.343 (3) 177 (5)
C7—H7A⋯Br1 0.95 2.69 3.569 (3) 154
C15—H15A⋯Br1 0.99 2.92 3.672 (3) 134
C16—H16A⋯Br1 0.95 2.79 3.594 (3) 143
C2—H2A⋯Br2i 0.95 2.81 3.698 (3) 155
C4—H4A⋯O1Wii 0.95 2.49 3.218 (4) 133
C8—H8A⋯Br1iii 0.99 2.80 3.779 (3) 169
C8—H8B⋯Br2iii 0.99 2.71 3.655 (3) 159
C19—H19A⋯Br2iv 0.95 2.84 3.770 (3) 167
C21—H21A⋯Br2v 0.95 2.90 3.785 (3) 155
C31—H31A⋯Br2v 0.99 2.87 3.786 (3) 154
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+3, -y+1, -z+1; (iii) x+1, y, z; (iv) -x+2, -y+1, -z; (v) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing studies, we have previously reported crystal structures of ortho-xylyl linked bis-benzimidazolium salts with ethyl (Haque et al., 2012), propyl (Iqbal et al., 2012), and heptyl (Haque et al., 2011) substitutions. In this paper we describe single-crystal X-ray diffraction study of the title compound, (I) (Fig. 1).

Bond lengths and angles are comparable to the related structure (Haque et al., 2011). The central benzene (C9–C14) ring makes dihedral angles of 89.47 (13) and 72.69 (12)° with the terminal 1H-benzo[d]imidazol-3-ium (N1/N2/C1–C7) and (N3/N4/C16–C22) rings, respectively.

The crystal structure is shown in Fig. 2. The cations, anions and water molecules are linked by intermolecular O—H···Br, C—H···Br and C—H···O hydrogen bonds (Table 1) into a two-dimensional network parallel to the ac plane. ππ interactions of Cg1···Cg3 = 3.5622 (18) Å (symmetry code: 3 - x, 1 - y, 1 - z), Cg3···Cg3 = 3.7158 (18) Å (symmetry code: 3 - x, 1 - y, 1 - z), Cg2···Cg4 = 3.6206 (17) Å (symmetry code: 2 - x, 1 - y, -z) and Cg4···Cg4 = 3.5047 (16) Å (symmetry code: 2 - x, 1 - y, -z) further stabilized the structure. [Cg1, Cg2, Cg3 and Cg4 is the centroid of the N1/N2/C1/C6/C7, N3/N4/C16/C17/C22, C1–C6 and C17–C22 rings, respectively].

Related literature top

For related structures, see: Haque et al. (2012); Iqbal et al. (2012); Haque et al. (2011). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of benzimidazole (5.90 g, 50 mmol) and finely ground potassium hydroxide (4.50 g, 80 mmol) in 50 ml of DMSO was stirred at room temperature (27–28 °C) for 30 min. 1-Bromoctane (8.70 ml, 50 mmol) was added drop-wise into this consistently stirred mixture with further stirring for 2 h at the same temperature. The mixture was then poured into water (700 ml) and was extracted by chloroform (5 × 30 ml). The extract was dried by filtering through five plies of Whatman filter papers. This process was repeated twice to collect crystal a clear solution which was evaporated under reduced pressure to get N-octylbenzimidazole (1) as a thick yellowish fluid. Furthermore, a mixture of 1 (4.04 g, 20 mmol) and 1,2-bis(bromomethyl)benzene (2.64 g, 10 mmol) in 1,4-dioxane (50 ml) was refluxed at 100 °C for 18 h. After cooling the reaction mixture to room temperature, the desired compound (2.2Br) appeared as white crystalline powder. The salt was filtered and washed by fresh 1,4-dioxane (3 × 5 ml), dried at room temperature for 24 h. The product was collected as white crystalline powder (7.42 g, 97.76%). Saturated solution of 2.2Br in methanol (0.5 ml) was exposed to diethyl ether vapours (vapour diffusion) at room temperature to get colourless blocks of (I). Single crystals were also obtained by slow evaporation of saturated solution of 2.2Br in MeOH/CH3CN (70:30) and by evaporating saturated solution of title compound in d6-DMSO at room temperature.

Refinement top

The H atoms of the water molecule were located in a difference Fourier map and refined freely [O—H = 0.84 (5) and 0.83 (5) Å]. All the other H atoms were positioned geometrically [C—H = 0.95–0.99 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

As a part of our ongoing studies, we have previously reported crystal structures of ortho-xylyl linked bis-benzimidazolium salts with ethyl (Haque et al., 2012), propyl (Iqbal et al., 2012), and heptyl (Haque et al., 2011) substitutions. In this paper we describe single-crystal X-ray diffraction study of the title compound, (I) (Fig. 1).

Bond lengths and angles are comparable to the related structure (Haque et al., 2011). The central benzene (C9–C14) ring makes dihedral angles of 89.47 (13) and 72.69 (12)° with the terminal 1H-benzo[d]imidazol-3-ium (N1/N2/C1–C7) and (N3/N4/C16–C22) rings, respectively.

The crystal structure is shown in Fig. 2. The cations, anions and water molecules are linked by intermolecular O—H···Br, C—H···Br and C—H···O hydrogen bonds (Table 1) into a two-dimensional network parallel to the ac plane. ππ interactions of Cg1···Cg3 = 3.5622 (18) Å (symmetry code: 3 - x, 1 - y, 1 - z), Cg3···Cg3 = 3.7158 (18) Å (symmetry code: 3 - x, 1 - y, 1 - z), Cg2···Cg4 = 3.6206 (17) Å (symmetry code: 2 - x, 1 - y, -z) and Cg4···Cg4 = 3.5047 (16) Å (symmetry code: 2 - x, 1 - y, -z) further stabilized the structure. [Cg1, Cg2, Cg3 and Cg4 is the centroid of the N1/N2/C1/C6/C7, N3/N4/C16/C17/C22, C1–C6 and C17–C22 rings, respectively].

For related structures, see: Haque et al. (2012); Iqbal et al. (2012); Haque et al. (2011). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. Those H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
3,3'-[1,2-Phenylenebis(methylene)]bis(1-octylbenzimidazolium) dibromide monohydrate top
Crystal data top
C38H52N42+·2Br·H2OZ = 2
Mr = 742.67F(000) = 776
Triclinic, P1Dx = 1.343 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7203 (4) ÅCell parameters from 9861 reflections
b = 14.9342 (12) Åθ = 2.5–33.3°
c = 16.4090 (8) ŵ = 2.24 mm1
α = 115.598 (3)°T = 100 K
β = 104.638 (2)°Block, colourless
γ = 92.358 (3)°0.42 × 0.32 × 0.24 mm
V = 1836.77 (19) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
10659 independent reflections
Radiation source: fine-focus sealed tube8816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 30.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1112
Tmin = 0.451, Tmax = 0.614k = 2020
44354 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1139P)2 + 0.460P]
where P = (Fo2 + 2Fc2)/3
10659 reflections(Δ/σ)max < 0.001
416 parametersΔρmax = 2.62 e Å3
0 restraintsΔρmin = 1.68 e Å3
Crystal data top
C38H52N42+·2Br·H2Oγ = 92.358 (3)°
Mr = 742.67V = 1836.77 (19) Å3
Triclinic, P1Z = 2
a = 8.7203 (4) ÅMo Kα radiation
b = 14.9342 (12) ŵ = 2.24 mm1
c = 16.4090 (8) ÅT = 100 K
α = 115.598 (3)°0.42 × 0.32 × 0.24 mm
β = 104.638 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
10659 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
8816 reflections with I > 2σ(I)
Tmin = 0.451, Tmax = 0.614Rint = 0.047
44354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 2.62 e Å3
10659 reflectionsΔρmin = 1.68 e Å3
416 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.86202 (3)0.228144 (19)0.215445 (18)0.01929 (9)
Br20.53091 (3)0.518157 (19)0.194634 (17)0.01747 (9)
N11.3021 (3)0.32869 (16)0.42917 (15)0.0159 (4)
N21.4239 (3)0.31561 (16)0.32400 (14)0.0140 (4)
N31.0154 (2)0.33691 (15)0.05850 (14)0.0137 (4)
N40.7768 (3)0.34636 (15)0.01797 (14)0.0136 (4)
C11.4628 (3)0.37063 (18)0.47927 (17)0.0150 (5)
C21.5453 (3)0.4119 (2)0.57555 (18)0.0198 (5)
H2A1.49280.41720.62120.024*
C31.7092 (4)0.4446 (2)0.60039 (18)0.0215 (5)
H3A1.77080.47310.66520.026*
C41.7875 (3)0.4373 (2)0.53320 (19)0.0201 (5)
H4A1.90010.46070.55390.024*
C51.7050 (3)0.39691 (19)0.43801 (18)0.0173 (5)
H5A1.75740.39230.39250.021*
C61.5401 (3)0.36325 (18)0.41248 (16)0.0138 (4)
C71.2832 (3)0.29643 (19)0.33687 (18)0.0157 (5)
H7A1.18440.26460.28770.019*
C81.4578 (3)0.30028 (19)0.23524 (16)0.0157 (5)
H8A1.56930.28730.23980.019*
H8B1.45100.36310.22890.019*
C91.3448 (3)0.21446 (18)0.14737 (16)0.0139 (4)
C101.3942 (3)0.1203 (2)0.11448 (18)0.0183 (5)
H10A1.49340.11240.14910.022*
C111.3001 (3)0.0386 (2)0.03209 (19)0.0205 (5)
H11A1.33480.02480.01050.025*
C121.1557 (3)0.04955 (19)0.01872 (18)0.0184 (5)
H12A1.09080.00650.07500.022*
C131.1051 (3)0.14323 (19)0.01275 (17)0.0172 (5)
H13A1.00570.15030.02240.021*
C141.1991 (3)0.22640 (18)0.09525 (16)0.0138 (4)
C151.1448 (3)0.32824 (19)0.13064 (17)0.0153 (5)
H15A1.10690.33980.18590.018*
H15B1.23810.38160.15230.018*
C160.8599 (3)0.33075 (18)0.05340 (17)0.0146 (4)
H16A0.81500.31720.09480.018*
C171.0361 (3)0.35837 (17)0.01316 (16)0.0134 (4)
C181.1739 (3)0.37683 (19)0.03566 (18)0.0169 (5)
H18A1.27740.37280.00230.020*
C191.1505 (3)0.40147 (19)0.10989 (18)0.0184 (5)
H19A1.24090.41490.12780.022*
C200.9973 (3)0.40719 (19)0.15933 (18)0.0176 (5)
H20A0.98740.42410.20980.021*
C210.8599 (3)0.38897 (18)0.13704 (17)0.0160 (5)
H21A0.75630.39300.17050.019*
C220.8836 (3)0.36425 (17)0.06195 (17)0.0134 (4)
C231.1749 (3)0.3223 (2)0.47208 (19)0.0192 (5)
H23A1.06860.31310.42700.023*
H23B1.18870.38650.52980.023*
C241.1778 (4)0.2361 (2)0.4980 (2)0.0234 (6)
H24A1.29030.23490.52900.028*
H24B1.13580.17150.43940.028*
C251.0773 (4)0.2460 (2)0.56425 (19)0.0210 (5)
H25A1.12960.30500.62640.025*
H25B0.96990.25860.53790.025*
C261.0565 (4)0.1530 (2)0.57879 (19)0.0216 (5)
H26A0.98830.09660.51870.026*
H26B1.16310.13370.59460.026*
C270.9807 (4)0.1681 (2)0.65654 (19)0.0222 (5)
H27A0.88040.19540.64480.027*
H27B1.05520.21870.71800.027*
C280.9415 (3)0.0714 (2)0.66330 (18)0.0199 (5)
H28A0.85350.02530.60600.024*
H28B1.03720.03800.66370.024*
C290.8916 (4)0.0871 (2)0.75032 (19)0.0229 (5)
H29A0.79100.11560.74800.028*
H29B0.97610.13640.80790.028*
C300.8650 (4)0.0110 (2)0.7569 (2)0.0238 (6)
H30A0.83400.00250.81400.036*
H30B0.96470.03910.76000.036*
H30C0.77930.05940.70080.036*
C310.6030 (3)0.34999 (19)0.04349 (18)0.0159 (5)
H31A0.58530.40460.06190.019*
H31B0.56560.36630.01270.019*
C320.5035 (3)0.25096 (19)0.12457 (18)0.0177 (5)
H32A0.55430.22820.17610.021*
H32B0.39490.26290.14980.021*
C330.4862 (3)0.1670 (2)0.09634 (19)0.0215 (5)
H33A0.44560.19200.04060.026*
H33B0.59380.15010.07730.026*
C340.3727 (3)0.0710 (2)0.17547 (19)0.0219 (5)
H34A0.35520.02410.14940.026*
H34B0.26730.08860.19770.026*
C350.4358 (3)0.0177 (2)0.2595 (2)0.0230 (5)
H35A0.54450.00440.23650.028*
H35B0.44610.06300.28820.028*
C360.3284 (3)0.0821 (2)0.3359 (2)0.0237 (6)
H36A0.30690.12400.30570.028*
H36B0.22410.06780.36450.028*
C370.4014 (4)0.1421 (2)0.4146 (2)0.0252 (6)
H37A0.50200.16030.38660.030*
H37B0.32570.20550.46040.030*
C380.4385 (4)0.0865 (3)0.4677 (2)0.0323 (7)
H38A0.46550.13320.52380.048*
H38B0.52970.03150.42630.048*
H38C0.34410.05870.48720.048*
O1W0.8891 (3)0.47541 (18)0.29021 (17)0.0315 (5)
H1W10.877 (5)0.414 (3)0.275 (3)0.043 (12)*
H2W10.802 (6)0.488 (3)0.267 (3)0.040 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01356 (14)0.02374 (15)0.02573 (15)0.00419 (10)0.00812 (10)0.01460 (11)
Br20.01520 (14)0.02324 (14)0.01864 (14)0.00351 (10)0.00706 (10)0.01260 (11)
N10.0155 (10)0.0182 (10)0.0157 (9)0.0032 (8)0.0068 (8)0.0082 (8)
N20.0130 (10)0.0168 (9)0.0127 (9)0.0020 (7)0.0034 (8)0.0074 (8)
N30.0114 (9)0.0164 (10)0.0144 (9)0.0023 (7)0.0043 (8)0.0080 (8)
N40.0114 (9)0.0153 (9)0.0155 (9)0.0029 (7)0.0063 (8)0.0070 (8)
C10.0155 (11)0.0147 (11)0.0154 (11)0.0032 (9)0.0051 (9)0.0070 (9)
C20.0247 (14)0.0188 (12)0.0164 (11)0.0058 (10)0.0081 (10)0.0073 (10)
C30.0241 (14)0.0207 (12)0.0127 (11)0.0042 (10)0.0013 (10)0.0051 (10)
C40.0154 (12)0.0200 (12)0.0207 (12)0.0018 (9)0.0018 (10)0.0077 (10)
C50.0134 (11)0.0195 (12)0.0172 (11)0.0015 (9)0.0027 (9)0.0080 (10)
C60.0140 (11)0.0137 (10)0.0118 (10)0.0022 (8)0.0023 (9)0.0051 (9)
C70.0144 (11)0.0180 (11)0.0164 (11)0.0028 (9)0.0049 (9)0.0092 (9)
C80.0138 (11)0.0224 (12)0.0121 (10)0.0011 (9)0.0037 (9)0.0093 (9)
C90.0112 (11)0.0190 (11)0.0126 (10)0.0015 (9)0.0045 (9)0.0077 (9)
C100.0169 (12)0.0237 (12)0.0200 (12)0.0073 (10)0.0079 (10)0.0134 (10)
C110.0256 (14)0.0194 (12)0.0203 (12)0.0074 (10)0.0110 (11)0.0098 (10)
C120.0208 (13)0.0163 (11)0.0157 (11)0.0012 (9)0.0063 (10)0.0050 (9)
C130.0156 (12)0.0204 (12)0.0142 (11)0.0028 (9)0.0028 (9)0.0076 (10)
C140.0125 (11)0.0173 (11)0.0126 (10)0.0038 (9)0.0044 (9)0.0073 (9)
C150.0125 (11)0.0171 (11)0.0136 (11)0.0019 (9)0.0010 (9)0.0062 (9)
C160.0138 (11)0.0158 (11)0.0149 (10)0.0027 (9)0.0057 (9)0.0068 (9)
C170.0137 (11)0.0123 (10)0.0132 (10)0.0019 (8)0.0056 (9)0.0040 (8)
C180.0143 (12)0.0171 (11)0.0178 (11)0.0031 (9)0.0068 (9)0.0056 (9)
C190.0181 (12)0.0166 (11)0.0202 (12)0.0017 (9)0.0108 (10)0.0056 (10)
C200.0229 (13)0.0164 (11)0.0167 (11)0.0051 (9)0.0104 (10)0.0078 (9)
C210.0190 (12)0.0165 (11)0.0136 (11)0.0061 (9)0.0055 (9)0.0075 (9)
C220.0139 (11)0.0131 (10)0.0135 (10)0.0032 (8)0.0068 (9)0.0047 (9)
C230.0191 (12)0.0223 (12)0.0219 (12)0.0056 (10)0.0129 (10)0.0113 (10)
C240.0286 (15)0.0213 (12)0.0278 (14)0.0077 (11)0.0175 (12)0.0127 (11)
C250.0256 (14)0.0196 (12)0.0229 (13)0.0050 (10)0.0144 (11)0.0103 (10)
C260.0257 (14)0.0201 (12)0.0219 (13)0.0040 (10)0.0130 (11)0.0089 (10)
C270.0271 (14)0.0201 (12)0.0210 (12)0.0032 (10)0.0128 (11)0.0078 (10)
C280.0225 (13)0.0207 (12)0.0177 (12)0.0036 (10)0.0085 (10)0.0086 (10)
C290.0261 (14)0.0243 (13)0.0204 (12)0.0028 (11)0.0119 (11)0.0095 (11)
C300.0219 (14)0.0300 (14)0.0252 (13)0.0052 (11)0.0102 (11)0.0160 (12)
C310.0106 (11)0.0194 (11)0.0178 (11)0.0044 (9)0.0052 (9)0.0078 (9)
C320.0134 (11)0.0213 (12)0.0188 (12)0.0032 (9)0.0049 (9)0.0095 (10)
C330.0212 (13)0.0232 (13)0.0211 (12)0.0013 (10)0.0056 (10)0.0115 (11)
C340.0183 (13)0.0229 (13)0.0231 (13)0.0003 (10)0.0068 (10)0.0093 (11)
C350.0210 (13)0.0214 (13)0.0246 (13)0.0001 (10)0.0090 (11)0.0080 (11)
C360.0204 (13)0.0223 (13)0.0286 (14)0.0033 (10)0.0074 (11)0.0119 (11)
C370.0259 (15)0.0211 (13)0.0260 (14)0.0049 (11)0.0061 (12)0.0093 (11)
C380.0359 (18)0.0339 (16)0.0298 (15)0.0072 (14)0.0134 (13)0.0148 (13)
O1W0.0215 (11)0.0275 (12)0.0366 (13)0.0002 (9)0.0042 (9)0.0141 (10)
Geometric parameters (Å, º) top
N1—C71.338 (3)C23—C241.519 (4)
N1—C11.390 (3)C23—H23A0.9900
N1—C231.476 (3)C23—H23B0.9900
N2—C71.337 (3)C24—C251.525 (4)
N2—C61.395 (3)C24—H24A0.9900
N2—C81.482 (3)C24—H24B0.9900
N3—C161.334 (3)C25—C261.518 (4)
N3—C171.395 (3)C25—H25A0.9900
N3—C151.469 (3)C25—H25B0.9900
N4—C161.331 (3)C26—C271.518 (4)
N4—C221.395 (3)C26—H26A0.9900
N4—C311.477 (3)C26—H26B0.9900
C1—C21.393 (3)C27—C281.527 (4)
C1—C61.394 (3)C27—H27A0.9900
C2—C31.387 (4)C27—H27B0.9900
C2—H2A0.9500C28—C291.522 (4)
C3—C41.406 (4)C28—H28A0.9900
C3—H3A0.9500C28—H28B0.9900
C4—C51.380 (4)C29—C301.528 (4)
C4—H4A0.9500C29—H29A0.9900
C5—C61.397 (3)C29—H29B0.9900
C5—H5A0.9500C30—H30A0.9800
C7—H7A0.9500C30—H30B0.9800
C8—C91.508 (3)C30—H30C0.9800
C8—H8A0.9900C31—C321.523 (3)
C8—H8B0.9900C31—H31A0.9900
C9—C101.402 (4)C31—H31B0.9900
C9—C141.407 (3)C32—C331.527 (4)
C10—C111.386 (4)C32—H32A0.9900
C10—H10A0.9500C32—H32B0.9900
C11—C121.383 (4)C33—C341.532 (4)
C11—H11A0.9500C33—H33A0.9900
C12—C131.400 (4)C33—H33B0.9900
C12—H12A0.9500C34—C351.519 (4)
C13—C141.396 (3)C34—H34A0.9900
C13—H13A0.9500C34—H34B0.9900
C14—C151.520 (3)C35—C361.531 (4)
C15—H15A0.9900C35—H35A0.9900
C15—H15B0.9900C35—H35B0.9900
C16—H16A0.9500C36—C371.529 (4)
C17—C181.393 (3)C36—H36A0.9900
C17—C221.397 (3)C36—H36B0.9900
C18—C191.389 (4)C37—C381.515 (4)
C18—H18A0.9500C37—H37A0.9900
C19—C201.405 (4)C37—H37B0.9900
C19—H19A0.9500C38—H38A0.9800
C20—C211.387 (4)C38—H38B0.9800
C20—H20A0.9500C38—H38C0.9800
C21—C221.403 (3)O1W—H1W10.84 (5)
C21—H21A0.9500O1W—H2W10.83 (5)
C7—N1—C1108.6 (2)C23—C24—H24A109.2
C7—N1—C23126.4 (2)C25—C24—H24A109.2
C1—N1—C23125.0 (2)C23—C24—H24B109.2
C7—N2—C6108.2 (2)C25—C24—H24B109.2
C7—N2—C8128.7 (2)H24A—C24—H24B107.9
C6—N2—C8122.9 (2)C26—C25—C24113.0 (2)
C16—N3—C17108.5 (2)C26—C25—H25A109.0
C16—N3—C15125.8 (2)C24—C25—H25A109.0
C17—N3—C15125.6 (2)C26—C25—H25B109.0
C16—N4—C22108.3 (2)C24—C25—H25B109.0
C16—N4—C31126.3 (2)H25A—C25—H25B107.8
C22—N4—C31125.4 (2)C27—C26—C25113.4 (2)
N1—C1—C2131.5 (2)C27—C26—H26A108.9
N1—C1—C6106.4 (2)C25—C26—H26A108.9
C2—C1—C6122.1 (2)C27—C26—H26B108.9
C3—C2—C1115.6 (2)C25—C26—H26B108.9
C3—C2—H2A122.2H26A—C26—H26B107.7
C1—C2—H2A122.2C26—C27—C28113.4 (2)
C2—C3—C4122.4 (2)C26—C27—H27A108.9
C2—C3—H3A118.8C28—C27—H27A108.9
C4—C3—H3A118.8C26—C27—H27B108.9
C5—C4—C3121.7 (3)C28—C27—H27B108.9
C5—C4—H4A119.2H27A—C27—H27B107.7
C3—C4—H4A119.2C29—C28—C27114.5 (2)
C4—C5—C6116.2 (2)C29—C28—H28A108.6
C4—C5—H5A121.9C27—C28—H28A108.6
C6—C5—H5A121.9C29—C28—H28B108.6
C1—C6—N2106.8 (2)C27—C28—H28B108.6
C1—C6—C5122.0 (2)H28A—C28—H28B107.6
N2—C6—C5131.1 (2)C28—C29—C30112.1 (2)
N2—C7—N1110.0 (2)C28—C29—H29A109.2
N2—C7—H7A125.0C30—C29—H29A109.2
N1—C7—H7A125.0C28—C29—H29B109.2
N2—C8—C9113.9 (2)C30—C29—H29B109.2
N2—C8—H8A108.8H29A—C29—H29B107.9
C9—C8—H8A108.8C29—C30—H30A109.5
N2—C8—H8B108.8C29—C30—H30B109.5
C9—C8—H8B108.8H30A—C30—H30B109.5
H8A—C8—H8B107.7C29—C30—H30C109.5
C10—C9—C14119.5 (2)H30A—C30—H30C109.5
C10—C9—C8117.3 (2)H30B—C30—H30C109.5
C14—C9—C8123.1 (2)N4—C31—C32112.6 (2)
C11—C10—C9120.8 (2)N4—C31—H31A109.1
C11—C10—H10A119.6C32—C31—H31A109.1
C9—C10—H10A119.6N4—C31—H31B109.1
C12—C11—C10119.9 (2)C32—C31—H31B109.1
C12—C11—H11A120.0H31A—C31—H31B107.8
C10—C11—H11A120.0C31—C32—C33113.9 (2)
C11—C12—C13120.0 (2)C31—C32—H32A108.8
C11—C12—H12A120.0C33—C32—H32A108.8
C13—C12—H12A120.0C31—C32—H32B108.8
C14—C13—C12120.7 (2)C33—C32—H32B108.8
C14—C13—H13A119.6H32A—C32—H32B107.7
C12—C13—H13A119.6C32—C33—C34113.6 (2)
C13—C14—C9119.0 (2)C32—C33—H33A108.9
C13—C14—C15121.2 (2)C34—C33—H33A108.9
C9—C14—C15119.7 (2)C32—C33—H33B108.9
N3—C15—C14113.37 (19)C34—C33—H33B108.9
N3—C15—H15A108.9H33A—C33—H33B107.7
C14—C15—H15A108.9C35—C34—C33113.3 (2)
N3—C15—H15B108.9C35—C34—H34A108.9
C14—C15—H15B108.9C33—C34—H34A108.9
H15A—C15—H15B107.7C35—C34—H34B108.9
N4—C16—N3110.3 (2)C33—C34—H34B108.9
N4—C16—H16A124.9H34A—C34—H34B107.7
N3—C16—H16A124.9C34—C35—C36113.6 (2)
C18—C17—N3131.4 (2)C34—C35—H35A108.8
C18—C17—C22122.3 (2)C36—C35—H35A108.8
N3—C17—C22106.2 (2)C34—C35—H35B108.8
C19—C18—C17115.9 (2)C36—C35—H35B108.8
C19—C18—H18A122.0H35A—C35—H35B107.7
C17—C18—H18A122.0C37—C36—C35113.8 (2)
C18—C19—C20122.0 (2)C37—C36—H36A108.8
C18—C19—H19A119.0C35—C36—H36A108.8
C20—C19—H19A119.0C37—C36—H36B108.8
C21—C20—C19122.3 (2)C35—C36—H36B108.8
C21—C20—H20A118.9H36A—C36—H36B107.7
C19—C20—H20A118.9C38—C37—C36114.1 (3)
C20—C21—C22115.7 (2)C38—C37—H37A108.7
C20—C21—H21A122.1C36—C37—H37A108.7
C22—C21—H21A122.1C38—C37—H37B108.7
N4—C22—C17106.7 (2)C36—C37—H37B108.7
N4—C22—C21131.4 (2)H37A—C37—H37B107.6
C17—C22—C21121.8 (2)C37—C38—H38A109.5
N1—C23—C24112.5 (2)C37—C38—H38B109.5
N1—C23—H23A109.1H38A—C38—H38B109.5
C24—C23—H23A109.1C37—C38—H38C109.5
N1—C23—H23B109.1H38A—C38—H38C109.5
C24—C23—H23B109.1H38B—C38—H38C109.5
H23A—C23—H23B107.8H1W1—O1W—H2W1108 (4)
C23—C24—C25112.0 (2)
C7—N1—C1—C2177.9 (3)C9—C14—C15—N3165.0 (2)
C23—N1—C1—C22.6 (4)C22—N4—C16—N30.3 (3)
C7—N1—C1—C60.7 (3)C31—N4—C16—N3177.1 (2)
C23—N1—C1—C6178.8 (2)C17—N3—C16—N40.4 (3)
N1—C1—C2—C3178.2 (3)C15—N3—C16—N4177.2 (2)
C6—C1—C2—C30.2 (4)C16—N3—C17—C18176.6 (3)
C1—C2—C3—C40.2 (4)C15—N3—C17—C180.3 (4)
C2—C3—C4—C50.1 (4)C16—N3—C17—C220.3 (3)
C3—C4—C5—C60.5 (4)C15—N3—C17—C22177.2 (2)
N1—C1—C6—N20.9 (3)N3—C17—C18—C19176.5 (2)
C2—C1—C6—N2177.9 (2)C22—C17—C18—C190.0 (4)
N1—C1—C6—C5178.9 (2)C17—C18—C19—C200.1 (4)
C2—C1—C6—C50.1 (4)C18—C19—C20—C210.2 (4)
C7—N2—C6—C10.8 (3)C19—C20—C21—C220.1 (4)
C8—N2—C6—C1175.7 (2)C16—N4—C22—C170.1 (3)
C7—N2—C6—C5178.5 (3)C31—N4—C22—C17177.0 (2)
C8—N2—C6—C56.5 (4)C16—N4—C22—C21176.8 (2)
C4—C5—C6—C10.5 (4)C31—N4—C22—C210.0 (4)
C4—C5—C6—N2177.0 (2)C18—C17—C22—N4177.1 (2)
C6—N2—C7—N10.3 (3)N3—C17—C22—N40.1 (3)
C8—N2—C7—N1174.9 (2)C18—C17—C22—C210.2 (4)
C1—N1—C7—N20.3 (3)N3—C17—C22—C21177.4 (2)
C23—N1—C7—N2179.2 (2)C20—C21—C22—N4176.5 (2)
C7—N2—C8—C929.6 (4)C20—C21—C22—C170.1 (3)
C6—N2—C8—C9156.5 (2)C7—N1—C23—C24101.5 (3)
N2—C8—C9—C1094.4 (3)C1—N1—C23—C2479.1 (3)
N2—C8—C9—C1489.2 (3)N1—C23—C24—C25165.2 (2)
C14—C9—C10—C110.9 (4)C23—C24—C25—C26170.9 (2)
C8—C9—C10—C11177.4 (2)C24—C25—C26—C27170.5 (3)
C9—C10—C11—C120.0 (4)C25—C26—C27—C28173.2 (2)
C10—C11—C12—C130.4 (4)C26—C27—C28—C29170.3 (2)
C11—C12—C13—C140.1 (4)C27—C28—C29—C30176.1 (2)
C12—C13—C14—C90.9 (4)C16—N4—C31—C3298.8 (3)
C12—C13—C14—C15179.4 (2)C22—N4—C31—C3284.9 (3)
C10—C9—C14—C131.4 (4)N4—C31—C32—C3373.6 (3)
C8—C9—C14—C13177.6 (2)C31—C32—C33—C34174.3 (2)
C10—C9—C14—C15179.9 (2)C32—C33—C34—C3566.7 (3)
C8—C9—C14—C153.8 (4)C33—C34—C35—C36176.1 (2)
C16—N3—C15—C14102.7 (3)C34—C35—C36—C37173.0 (2)
C17—N3—C15—C1480.9 (3)C35—C36—C37—C3859.2 (4)
C13—C14—C15—N316.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Br10.83 (5)2.50 (5)3.326 (3)173 (4)
O1W—H2W1···Br20.83 (5)2.52 (5)3.343 (3)177 (5)
C7—H7A···Br10.952.693.569 (3)154
C15—H15A···Br10.992.923.672 (3)134
C16—H16A···Br10.952.793.594 (3)143
C2—H2A···Br2i0.952.813.698 (3)155
C4—H4A···O1Wii0.952.493.218 (4)133
C8—H8A···Br1iii0.992.803.779 (3)169
C8—H8B···Br2iii0.992.713.655 (3)159
C19—H19A···Br2iv0.952.843.770 (3)167
C21—H21A···Br2v0.952.903.785 (3)155
C31—H31A···Br2v0.992.873.786 (3)154
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC38H52N42+·2Br·H2O
Mr742.67
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.7203 (4), 14.9342 (12), 16.4090 (8)
α, β, γ (°)115.598 (3), 104.638 (2), 92.358 (3)
V3)1836.77 (19)
Z2
Radiation typeMo Kα
µ (mm1)2.24
Crystal size (mm)0.42 × 0.32 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.451, 0.614
No. of measured, independent and
observed [I > 2σ(I)] reflections
44354, 10659, 8816
Rint0.047
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.161, 1.05
No. of reflections10659
No. of parameters416
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.62, 1.68

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Br10.83 (5)2.50 (5)3.326 (3)173 (4)
O1W—H2W1···Br20.83 (5)2.52 (5)3.343 (3)177 (5)
C7—H7A···Br10.952.693.569 (3)154
C15—H15A···Br10.992.923.672 (3)134
C16—H16A···Br10.952.793.594 (3)143
C2—H2A···Br2i0.952.813.698 (3)155
C4—H4A···O1Wii0.952.493.218 (4)133
C8—H8A···Br1iii0.992.803.779 (3)169
C8—H8B···Br2iii0.992.713.655 (3)159
C19—H19A···Br2iv0.952.843.770 (3)167
C21—H21A···Br2v0.952.903.785 (3)155
C31—H31A···Br2v0.992.873.786 (3)154
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z; (v) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH thanks the Universiti Sains Malaysia (USM) for Research University (RU) grants Nos. 1001/PKI MIA/811157 and 1001/PKIMIA/823082. MAI is grateful to (IPS) USM for financial support [a fellowship, grant No. USM.IPS/JWT/1/19 (JLD 6), and a research attachment fund, grant No. P-KM0018/10(R)-308/AIPS/415401]. HKF and SA thank the Universiti Sains Malaysia (USM) for Research University Grant No. 1001/PFIZIK/811160. SA also thanks the Malaysian government and USM for an award through the Academic Staff Training Scheme (ASTS).

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaque, R. A., Iqbal, M. A., Budagumpi, S., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o573.  CSD CrossRef IUCr Journals Google Scholar
First citationHaque, R. A., Iqbal, M. A., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1814–o1815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIqbal, M. A., Haque, R. A., Fun, H.-K. & Chia, T. S. (2012). Acta Cryst. E68, o466–o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o924-o925
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds