metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tetra­kis­(1H-pyrazole-κN2)copper(II)]-μ-hexa­fluoridosilicato-κ2F:F′]

aDepartment of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
*Correspondence e-mail: lihuiwff@163.com

(Received 22 February 2012; accepted 4 March 2012; online 14 March 2012)

In the title one-dimensional coordination polymer, [Cu(SiF6)(C3H4N2)4]n, the CuII atom is coordinated by two hexafluoridosilicate F atoms and four pyrazole N atoms in a distorted trans-CuF2N4 octa­hedral environment. The dihedral angle between the planes of the pyrazlole rings in the asymmetric unit is 74.4 (3)°. The hexa­fluoridosilicate dianion acts as a bridging ligand, connecting the CuII atoms into a [1-10] chain. The Cu and Si atoms lie on special positions with 2/m site symmetry. In the crystal, intra­chain N—H⋯F hydrogen bonds occur and weak C—H⋯F inter­actions link the chains.

Related literature

For background to coordination polymers with nitro­gen-containing ligands, see: Li et al. (2011[Li, Z. X., Chu, X., Cui, G. H., Liu, Y., Li, L. & Xue, G. L. (2011). CrystEngComm, 13, 1984-1989.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(SiF6)(C3H4N2)4]

  • Mr = 477.96

  • Monoclinic, C 2/c

  • a = 10.617 (2) Å

  • b = 12.108 (2) Å

  • c = 14.652 (3) Å

  • β = 95.07 (3)°

  • V = 1876.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.730, Tmax = 0.771

  • 7864 measured reflections

  • 1665 independent reflections

  • 1283 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.101

  • S = 1.16

  • 1665 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.007 (4)
Cu1—N3 2.008 (3)
Cu1—F3 2.348 (2)
Si1—F1 1.679 (2)
Si1—F2 1.680 (3)
SI1—F3 1.695 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯F2i 0.86 1.99 2.849 (5) 174
N4—H4A⋯F1i 0.86 2.02 2.848 (4) 162
C1—H1⋯F2ii 0.93 2.46 3.317 (6) 153
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, nitrogen-containing ligands have been extensively studied (Li et al., 2011). Pyrazole have been well used as a kind of N-containing ligands.

Single-crystal X-ray diffraction analysis reveals that the title compound (I) crystallizes in the monoclinic space group C2/c. For the title compound, the geometry of the Cu(II) ion is bound by four pyrazole ligands and two hexafluoridosilicate dianions, which illustrates a distorted octahedral coordination environment (Fig 1). The dihedral angle between the pyrazole rings is 105.6°.

Related literature top

For background to coordination polymers with nitrogen-containing ligands, see: Li et al. (2011).

Experimental top

A buffer layer of a solution (8 ml) of methanol and chloroform (1:1) was carefully layered over the chloroform solution of pyrazole (0.06 mmol, 6 ml). Then a methanol solution of CuSiF6 (0.02 mmol, 6 ml) was layered over the buffer layer. The resultant reaction was left to stand at room temperature. After ca three weeks, colorless blocks appeared at the boundary. Yield: ~20% (based on pyrazole).

Refinement top

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq (C).

The N-bound H atoms were located in a difference map and their positions were freely refined with Uiso(H) = 1.2Ueq (N).

Structure description top

In recent years, nitrogen-containing ligands have been extensively studied (Li et al., 2011). Pyrazole have been well used as a kind of N-containing ligands.

Single-crystal X-ray diffraction analysis reveals that the title compound (I) crystallizes in the monoclinic space group C2/c. For the title compound, the geometry of the Cu(II) ion is bound by four pyrazole ligands and two hexafluoridosilicate dianions, which illustrates a distorted octahedral coordination environment (Fig 1). The dihedral angle between the pyrazole rings is 105.6°.

For background to coordination polymers with nitrogen-containing ligands, see: Li et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing for (I).
catena-Poly[[tetrakis(1H-pyrazole-κN2)copper(II)]- µ-hexafluoridosilicato-κ2F:F'] top
Crystal data top
[Cu(SiF6)(C3H4N2)4]F(000) = 964
Mr = 477.96Dx = 1.692 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7871 reflections
a = 10.617 (2) Åθ = 3.0–27.5°
b = 12.108 (2) ŵ = 1.30 mm1
c = 14.652 (3) ÅT = 293 K
β = 95.07 (3)°Block, colorless
V = 1876.2 (6) Å30.25 × 0.22 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
1665 independent reflections
Radiation source: fine-focus sealed tube1283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1414
Tmin = 0.730, Tmax = 0.771l = 1717
7864 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0309P)2 + 3.0774P]
where P = (Fo2 + 2Fc2)/3
1665 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(SiF6)(C3H4N2)4]V = 1876.2 (6) Å3
Mr = 477.96Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.617 (2) ŵ = 1.30 mm1
b = 12.108 (2) ÅT = 293 K
c = 14.652 (3) Å0.25 × 0.22 × 0.20 mm
β = 95.07 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
1665 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1283 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.771Rint = 0.079
7864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.16Δρmax = 0.44 e Å3
1665 reflectionsΔρmin = 0.31 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25000.25000.50000.0262 (2)
F10.3887 (2)0.0988 (2)0.4884 (2)0.0540 (8)
F20.5087 (3)0.0006 (2)0.38606 (17)0.0533 (8)
F30.3866 (2)0.09883 (19)0.48968 (18)0.0429 (7)
Si10.50000.00000.50000.0313 (4)
N10.2744 (3)0.2900 (3)0.3698 (2)0.0304 (9)
N20.2000 (3)0.3633 (3)0.3217 (3)0.0362 (9)
H2A0.14520.40440.34510.043*
N30.1011 (3)0.1589 (3)0.4510 (2)0.0309 (9)
N40.0206 (4)0.1865 (3)0.4494 (3)0.0490 (11)
H4A0.04800.24590.47300.059*
C10.2212 (5)0.3646 (4)0.2340 (3)0.0476 (13)
H10.18010.40840.18850.057*
C20.3147 (5)0.2895 (4)0.2227 (3)0.0487 (14)
H20.35030.27230.16870.058*
C30.3449 (4)0.2448 (4)0.3085 (3)0.0389 (11)
H30.40590.19070.32190.047*
C40.0944 (5)0.1099 (4)0.4063 (4)0.0611 (17)
H40.18220.11180.39710.073*
C50.0190 (5)0.0291 (4)0.3785 (3)0.0522 (15)
H50.04300.03510.34670.063*
C60.1020 (4)0.0633 (4)0.4078 (3)0.0446 (13)
H60.17490.02380.39840.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0254 (4)0.0244 (4)0.0285 (4)0.0000 (4)0.0012 (3)0.0008 (4)
F10.0361 (15)0.0378 (16)0.088 (2)0.0014 (13)0.0064 (15)0.0160 (15)
F20.0553 (17)0.0645 (19)0.0392 (17)0.0229 (16)0.0006 (14)0.0063 (15)
F30.0389 (15)0.0348 (15)0.0540 (18)0.0193 (12)0.0006 (13)0.0025 (13)
Si10.0268 (9)0.0263 (9)0.0397 (11)0.0087 (8)0.0032 (8)0.0072 (8)
N10.028 (2)0.028 (2)0.035 (2)0.0005 (16)0.0005 (18)0.0004 (17)
N20.035 (2)0.038 (2)0.036 (2)0.0079 (18)0.0058 (19)0.0050 (19)
N30.026 (2)0.028 (2)0.039 (2)0.0013 (16)0.0062 (17)0.0066 (17)
N40.034 (2)0.031 (2)0.080 (3)0.0045 (19)0.005 (2)0.005 (2)
C10.042 (3)0.064 (4)0.036 (3)0.005 (3)0.001 (2)0.015 (3)
C20.047 (3)0.069 (4)0.032 (3)0.006 (3)0.012 (2)0.007 (3)
C30.032 (2)0.040 (3)0.045 (3)0.003 (2)0.006 (2)0.004 (3)
C40.039 (3)0.042 (3)0.097 (5)0.009 (3)0.021 (3)0.002 (3)
C50.062 (4)0.041 (3)0.052 (3)0.012 (3)0.009 (3)0.011 (3)
C60.038 (3)0.041 (3)0.057 (3)0.009 (2)0.013 (3)0.018 (3)
Geometric parameters (Å, º) top
Cu1—N1i2.007 (4)N2—H2A0.8600
Cu1—N12.007 (4)N3—C61.320 (5)
Cu1—N3i2.008 (3)N3—N41.332 (5)
Cu1—N32.008 (3)N4—C41.337 (6)
Cu1—F3i2.348 (2)N4—H4A0.8600
Cu1—F32.348 (2)C1—C21.366 (6)
Si1—F11.679 (2)C1—H10.9300
Si1—F21.680 (3)C2—C31.381 (6)
SI1—F31.695 (2)C2—H20.9300
Si1—F1ii1.679 (2)C3—H30.9300
Si1—F2ii1.680 (3)C4—C51.350 (7)
Si1—F3ii1.695 (2)C4—H40.9300
N1—C31.336 (5)C5—C61.381 (6)
N1—N21.345 (5)C5—H50.9300
N2—C11.324 (6)C6—H60.9300
N1i—Cu1—N1180.0C3—N1—N2104.9 (4)
N1i—Cu1—N3i87.50 (14)C3—N1—Cu1131.8 (3)
N1—Cu1—N3i92.50 (14)N2—N1—Cu1122.6 (3)
N1i—Cu1—N392.50 (14)C1—N2—N1111.9 (4)
N1—Cu1—N387.50 (14)C1—N2—H2A124.0
N3i—Cu1—N3180.00 (16)N1—N2—H2A124.0
N1i—Cu1—F3i89.70 (12)C6—N3—N4105.1 (4)
N1—Cu1—F3i90.30 (12)C6—N3—Cu1127.9 (3)
N3i—Cu1—F3i91.15 (11)N4—N3—Cu1126.9 (3)
N3—Cu1—F3i88.85 (11)N3—N4—C4111.2 (4)
N1i—Cu1—F390.30 (12)N3—N4—H4A124.4
N1—Cu1—F389.70 (12)C4—N4—H4A124.4
N3i—Cu1—F388.85 (11)N2—C1—C2107.3 (4)
N3—Cu1—F391.15 (11)N2—C1—H1126.3
F3i—Cu1—F3180.0C2—C1—H1126.3
Si1—F3—Cu1169.24 (15)C1—C2—C3105.2 (4)
F1ii—Si1—F1180.00 (17)C1—C2—H2127.4
F1ii—Si1—F2ii90.16 (15)C3—C2—H2127.4
F1—Si1—F2ii89.84 (15)N1—C3—C2110.6 (4)
F1ii—Si1—F289.84 (15)N1—C3—H3124.7
F1—Si1—F290.16 (15)C2—C3—H3124.7
F2ii—Si1—F2180.000 (1)N4—C4—C5107.8 (5)
F1ii—Si1—F389.69 (12)N4—C4—H4126.1
F1—Si1—F390.31 (12)C5—C4—H4126.1
F2ii—Si1—F389.49 (13)C4—C5—C6104.5 (4)
F2—Si1—F390.51 (13)C4—C5—H5127.8
F1ii—Si1—F3ii90.31 (12)C6—C5—H5127.8
F1—Si1—F3ii89.69 (12)N3—C6—C5111.4 (4)
F2ii—Si1—F3ii90.51 (13)N3—C6—H6124.3
F2—Si1—F3ii89.49 (13)C5—C6—H6124.3
F3—Si1—F3ii180.0
N1i—Cu1—F3—Si153.9 (8)N1—Cu1—N3—C673.5 (4)
N1—Cu1—F3—Si1126.1 (8)F3i—Cu1—N3—C6163.9 (4)
N3i—Cu1—F3—Si133.6 (8)F3—Cu1—N3—C616.1 (4)
N3—Cu1—F3—Si1146.4 (8)N1i—Cu1—N3—N478.8 (4)
Cu1—F3—Si1—F1ii48.7 (8)N1—Cu1—N3—N4101.2 (4)
Cu1—F3—Si1—F1131.3 (8)F3i—Cu1—N3—N410.9 (4)
Cu1—F3—Si1—F2ii41.4 (8)F3—Cu1—N3—N4169.1 (4)
Cu1—F3—Si1—F2138.6 (8)C6—N3—N4—C40.0 (5)
N3i—Cu1—N1—C387.4 (4)Cu1—N3—N4—C4175.7 (3)
N3—Cu1—N1—C392.6 (4)N1—N2—C1—C20.5 (5)
F3i—Cu1—N1—C3178.5 (4)N2—C1—C2—C30.5 (6)
F3—Cu1—N1—C31.5 (4)N2—N1—C3—C20.0 (5)
N3i—Cu1—N1—N2104.4 (3)Cu1—N1—C3—C2169.7 (3)
N3—Cu1—N1—N275.6 (3)C1—C2—C3—N10.3 (6)
F3i—Cu1—N1—N213.2 (3)N3—N4—C4—C50.0 (6)
F3—Cu1—N1—N2166.8 (3)N4—C4—C5—C60.0 (6)
C3—N1—N2—C10.3 (5)N4—N3—C6—C50.0 (5)
Cu1—N1—N2—C1170.6 (3)Cu1—N3—C6—C5175.7 (3)
N1i—Cu1—N3—C6106.5 (4)C4—C5—C6—N30.0 (6)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···F2iii0.861.992.849 (5)174
N4—H4A···F1iii0.862.022.848 (4)162
C1—H1···F2iv0.932.463.317 (6)153
Symmetry codes: (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(SiF6)(C3H4N2)4]
Mr477.96
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)10.617 (2), 12.108 (2), 14.652 (3)
β (°) 95.07 (3)
V3)1876.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.730, 0.771
No. of measured, independent and
observed [I > 2σ(I)] reflections
7864, 1665, 1283
Rint0.079
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.101, 1.16
No. of reflections1665
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.31

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N12.007 (4)Si1—F11.679 (2)
Cu1—N32.008 (3)Si1—F21.680 (3)
Cu1—F32.348 (2)SI1—F31.695 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···F2i0.861.992.849 (5)174
N4—H4A···F1i0.862.022.848 (4)162
C1—H1···F2ii0.932.463.317 (6)153
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the young scientist fund of the NSFC of China (51101138) and the College Research Program of Yuncheng University (2008114) for funding.

References

First citationLi, Z. X., Chu, X., Cui, G. H., Liu, Y., Li, L. & Xue, G. L. (2011). CrystEngComm, 13, 1984–1989.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds