metal-organic compounds
catena-Poly[[tetrakis(1H-pyrazole-κN2)copper(II)]-μ-hexafluoridosilicato-κ2F:F′]
aDepartment of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
*Correspondence e-mail: lihuiwff@163.com
In the title one-dimensional coordination polymer, [Cu(SiF6)(C3H4N2)4]n, the CuII atom is coordinated by two hexafluoridosilicate F atoms and four pyrazole N atoms in a distorted trans-CuF2N4 octahedral environment. The dihedral angle between the planes of the pyrazlole rings in the is 74.4 (3)°. The hexafluoridosilicate dianion acts as a bridging ligand, connecting the CuII atoms into a [1-10] chain. The Cu and Si atoms lie on special positions with 2/m In the crystal, intrachain N—H⋯F hydrogen bonds occur and weak C—H⋯F interactions link the chains.
Related literature
For background to coordination polymers with nitrogen-containing ligands, see: Li et al. (2011).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812009531/hb6651sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812009531/hb6651Isup2.hkl
A buffer layer of a solution (8 ml) of methanol and chloroform (1:1) was carefully layered over the chloroform solution of pyrazole (0.06 mmol, 6 ml). Then a methanol solution of CuSiF6 (0.02 mmol, 6 ml) was layered over the buffer layer. The resultant reaction was left to stand at room temperature. After ca three weeks, colorless blocks appeared at the boundary. Yield: ~20% (based on pyrazole).
C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq (C).
The N-bound H atoms were located in a difference map and their positions were freely refined with Uiso(H) = 1.2Ueq (N).
In recent years, nitrogen-containing ligands have been extensively studied (Li et al., 2011). Pyrazole have been well used as a kind of N-containing ligands.
Single-crystal X-ray
reveals that the title compound (I) crystallizes in the monoclinic C2/c. For the title compound, the geometry of the Cu(II) ion is bound by four pyrazole ligands and two hexafluoridosilicate dianions, which illustrates a distorted octahedral coordination environment (Fig 1). The dihedral angle between the pyrazole rings is 105.6°.For background to coordination polymers with nitrogen-containing ligands, see: Li et al. (2011).
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius. | |
Fig. 2. The crystal packing for (I). |
[Cu(SiF6)(C3H4N2)4] | F(000) = 964 |
Mr = 477.96 | Dx = 1.692 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 7871 reflections |
a = 10.617 (2) Å | θ = 3.0–27.5° |
b = 12.108 (2) Å | µ = 1.30 mm−1 |
c = 14.652 (3) Å | T = 293 K |
β = 95.07 (3)° | Block, colorless |
V = 1876.2 (6) Å3 | 0.25 × 0.22 × 0.20 mm |
Z = 4 |
Rigaku Mercury CCD diffractometer | 1665 independent reflections |
Radiation source: fine-focus sealed tube | 1283 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.079 |
Detector resolution: 9 pixels mm-1 | θmax = 25.0°, θmin = 3.0° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | k = −14→14 |
Tmin = 0.730, Tmax = 0.771 | l = −17→17 |
7864 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0309P)2 + 3.0774P] where P = (Fo2 + 2Fc2)/3 |
1665 reflections | (Δ/σ)max < 0.001 |
130 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
[Cu(SiF6)(C3H4N2)4] | V = 1876.2 (6) Å3 |
Mr = 477.96 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 10.617 (2) Å | µ = 1.30 mm−1 |
b = 12.108 (2) Å | T = 293 K |
c = 14.652 (3) Å | 0.25 × 0.22 × 0.20 mm |
β = 95.07 (3)° |
Rigaku Mercury CCD diffractometer | 1665 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | 1283 reflections with I > 2σ(I) |
Tmin = 0.730, Tmax = 0.771 | Rint = 0.079 |
7864 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.16 | Δρmax = 0.44 e Å−3 |
1665 reflections | Δρmin = −0.31 e Å−3 |
130 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.2500 | 0.2500 | 0.5000 | 0.0262 (2) | |
F1 | 0.3887 (2) | −0.0988 (2) | 0.4884 (2) | 0.0540 (8) | |
F2 | 0.5087 (3) | 0.0006 (2) | 0.38606 (17) | 0.0533 (8) | |
F3 | 0.3866 (2) | 0.09883 (19) | 0.48968 (18) | 0.0429 (7) | |
Si1 | 0.5000 | 0.0000 | 0.5000 | 0.0313 (4) | |
N1 | 0.2744 (3) | 0.2900 (3) | 0.3698 (2) | 0.0304 (9) | |
N2 | 0.2000 (3) | 0.3633 (3) | 0.3217 (3) | 0.0362 (9) | |
H2A | 0.1452 | 0.4044 | 0.3451 | 0.043* | |
N3 | 0.1011 (3) | 0.1589 (3) | 0.4510 (2) | 0.0309 (9) | |
N4 | −0.0206 (4) | 0.1865 (3) | 0.4494 (3) | 0.0490 (11) | |
H4A | −0.0480 | 0.2459 | 0.4730 | 0.059* | |
C1 | 0.2212 (5) | 0.3646 (4) | 0.2340 (3) | 0.0476 (13) | |
H1 | 0.1801 | 0.4084 | 0.1885 | 0.057* | |
C2 | 0.3147 (5) | 0.2895 (4) | 0.2227 (3) | 0.0487 (14) | |
H2 | 0.3503 | 0.2723 | 0.1687 | 0.058* | |
C3 | 0.3449 (4) | 0.2448 (4) | 0.3085 (3) | 0.0389 (11) | |
H3 | 0.4059 | 0.1907 | 0.3219 | 0.047* | |
C4 | −0.0944 (5) | 0.1099 (4) | 0.4063 (4) | 0.0611 (17) | |
H4 | −0.1822 | 0.1118 | 0.3971 | 0.073* | |
C5 | −0.0190 (5) | 0.0291 (4) | 0.3785 (3) | 0.0522 (15) | |
H5 | −0.0430 | −0.0351 | 0.3467 | 0.063* | |
C6 | 0.1020 (4) | 0.0633 (4) | 0.4078 (3) | 0.0446 (13) | |
H6 | 0.1749 | 0.0238 | 0.3984 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0254 (4) | 0.0244 (4) | 0.0285 (4) | 0.0000 (4) | 0.0012 (3) | −0.0008 (4) |
F1 | 0.0361 (15) | 0.0378 (16) | 0.088 (2) | −0.0014 (13) | 0.0064 (15) | −0.0160 (15) |
F2 | 0.0553 (17) | 0.0645 (19) | 0.0392 (17) | 0.0229 (16) | −0.0006 (14) | −0.0063 (15) |
F3 | 0.0389 (15) | 0.0348 (15) | 0.0540 (18) | 0.0193 (12) | −0.0006 (13) | −0.0025 (13) |
Si1 | 0.0268 (9) | 0.0263 (9) | 0.0397 (11) | 0.0087 (8) | −0.0032 (8) | −0.0072 (8) |
N1 | 0.028 (2) | 0.028 (2) | 0.035 (2) | 0.0005 (16) | −0.0005 (18) | 0.0004 (17) |
N2 | 0.035 (2) | 0.038 (2) | 0.036 (2) | 0.0079 (18) | 0.0058 (19) | 0.0050 (19) |
N3 | 0.026 (2) | 0.028 (2) | 0.039 (2) | −0.0013 (16) | 0.0062 (17) | −0.0066 (17) |
N4 | 0.034 (2) | 0.031 (2) | 0.080 (3) | 0.0045 (19) | −0.005 (2) | −0.005 (2) |
C1 | 0.042 (3) | 0.064 (4) | 0.036 (3) | −0.005 (3) | 0.001 (2) | 0.015 (3) |
C2 | 0.047 (3) | 0.069 (4) | 0.032 (3) | −0.006 (3) | 0.012 (2) | −0.007 (3) |
C3 | 0.032 (2) | 0.040 (3) | 0.045 (3) | 0.003 (2) | 0.006 (2) | −0.004 (3) |
C4 | 0.039 (3) | 0.042 (3) | 0.097 (5) | −0.009 (3) | −0.021 (3) | 0.002 (3) |
C5 | 0.062 (4) | 0.041 (3) | 0.052 (3) | −0.012 (3) | −0.009 (3) | −0.011 (3) |
C6 | 0.038 (3) | 0.041 (3) | 0.057 (3) | −0.009 (2) | 0.013 (3) | −0.018 (3) |
Cu1—N1i | 2.007 (4) | N2—H2A | 0.8600 |
Cu1—N1 | 2.007 (4) | N3—C6 | 1.320 (5) |
Cu1—N3i | 2.008 (3) | N3—N4 | 1.332 (5) |
Cu1—N3 | 2.008 (3) | N4—C4 | 1.337 (6) |
Cu1—F3i | 2.348 (2) | N4—H4A | 0.8600 |
Cu1—F3 | 2.348 (2) | C1—C2 | 1.366 (6) |
Si1—F1 | 1.679 (2) | C1—H1 | 0.9300 |
Si1—F2 | 1.680 (3) | C2—C3 | 1.381 (6) |
SI1—F3 | 1.695 (2) | C2—H2 | 0.9300 |
Si1—F1ii | 1.679 (2) | C3—H3 | 0.9300 |
Si1—F2ii | 1.680 (3) | C4—C5 | 1.350 (7) |
Si1—F3ii | 1.695 (2) | C4—H4 | 0.9300 |
N1—C3 | 1.336 (5) | C5—C6 | 1.381 (6) |
N1—N2 | 1.345 (5) | C5—H5 | 0.9300 |
N2—C1 | 1.324 (6) | C6—H6 | 0.9300 |
N1i—Cu1—N1 | 180.0 | C3—N1—N2 | 104.9 (4) |
N1i—Cu1—N3i | 87.50 (14) | C3—N1—Cu1 | 131.8 (3) |
N1—Cu1—N3i | 92.50 (14) | N2—N1—Cu1 | 122.6 (3) |
N1i—Cu1—N3 | 92.50 (14) | C1—N2—N1 | 111.9 (4) |
N1—Cu1—N3 | 87.50 (14) | C1—N2—H2A | 124.0 |
N3i—Cu1—N3 | 180.00 (16) | N1—N2—H2A | 124.0 |
N1i—Cu1—F3i | 89.70 (12) | C6—N3—N4 | 105.1 (4) |
N1—Cu1—F3i | 90.30 (12) | C6—N3—Cu1 | 127.9 (3) |
N3i—Cu1—F3i | 91.15 (11) | N4—N3—Cu1 | 126.9 (3) |
N3—Cu1—F3i | 88.85 (11) | N3—N4—C4 | 111.2 (4) |
N1i—Cu1—F3 | 90.30 (12) | N3—N4—H4A | 124.4 |
N1—Cu1—F3 | 89.70 (12) | C4—N4—H4A | 124.4 |
N3i—Cu1—F3 | 88.85 (11) | N2—C1—C2 | 107.3 (4) |
N3—Cu1—F3 | 91.15 (11) | N2—C1—H1 | 126.3 |
F3i—Cu1—F3 | 180.0 | C2—C1—H1 | 126.3 |
Si1—F3—Cu1 | 169.24 (15) | C1—C2—C3 | 105.2 (4) |
F1ii—Si1—F1 | 180.00 (17) | C1—C2—H2 | 127.4 |
F1ii—Si1—F2ii | 90.16 (15) | C3—C2—H2 | 127.4 |
F1—Si1—F2ii | 89.84 (15) | N1—C3—C2 | 110.6 (4) |
F1ii—Si1—F2 | 89.84 (15) | N1—C3—H3 | 124.7 |
F1—Si1—F2 | 90.16 (15) | C2—C3—H3 | 124.7 |
F2ii—Si1—F2 | 180.000 (1) | N4—C4—C5 | 107.8 (5) |
F1ii—Si1—F3 | 89.69 (12) | N4—C4—H4 | 126.1 |
F1—Si1—F3 | 90.31 (12) | C5—C4—H4 | 126.1 |
F2ii—Si1—F3 | 89.49 (13) | C4—C5—C6 | 104.5 (4) |
F2—Si1—F3 | 90.51 (13) | C4—C5—H5 | 127.8 |
F1ii—Si1—F3ii | 90.31 (12) | C6—C5—H5 | 127.8 |
F1—Si1—F3ii | 89.69 (12) | N3—C6—C5 | 111.4 (4) |
F2ii—Si1—F3ii | 90.51 (13) | N3—C6—H6 | 124.3 |
F2—Si1—F3ii | 89.49 (13) | C5—C6—H6 | 124.3 |
F3—Si1—F3ii | 180.0 | ||
N1i—Cu1—F3—Si1 | −53.9 (8) | N1—Cu1—N3—C6 | 73.5 (4) |
N1—Cu1—F3—Si1 | 126.1 (8) | F3i—Cu1—N3—C6 | 163.9 (4) |
N3i—Cu1—F3—Si1 | 33.6 (8) | F3—Cu1—N3—C6 | −16.1 (4) |
N3—Cu1—F3—Si1 | −146.4 (8) | N1i—Cu1—N3—N4 | 78.8 (4) |
Cu1—F3—Si1—F1ii | −48.7 (8) | N1—Cu1—N3—N4 | −101.2 (4) |
Cu1—F3—Si1—F1 | 131.3 (8) | F3i—Cu1—N3—N4 | −10.9 (4) |
Cu1—F3—Si1—F2ii | 41.4 (8) | F3—Cu1—N3—N4 | 169.1 (4) |
Cu1—F3—Si1—F2 | −138.6 (8) | C6—N3—N4—C4 | 0.0 (5) |
N3i—Cu1—N1—C3 | 87.4 (4) | Cu1—N3—N4—C4 | 175.7 (3) |
N3—Cu1—N1—C3 | −92.6 (4) | N1—N2—C1—C2 | −0.5 (5) |
F3i—Cu1—N1—C3 | 178.5 (4) | N2—C1—C2—C3 | 0.5 (6) |
F3—Cu1—N1—C3 | −1.5 (4) | N2—N1—C3—C2 | 0.0 (5) |
N3i—Cu1—N1—N2 | −104.4 (3) | Cu1—N1—C3—C2 | 169.7 (3) |
N3—Cu1—N1—N2 | 75.6 (3) | C1—C2—C3—N1 | −0.3 (6) |
F3i—Cu1—N1—N2 | −13.2 (3) | N3—N4—C4—C5 | 0.0 (6) |
F3—Cu1—N1—N2 | 166.8 (3) | N4—C4—C5—C6 | 0.0 (6) |
C3—N1—N2—C1 | 0.3 (5) | N4—N3—C6—C5 | 0.0 (5) |
Cu1—N1—N2—C1 | −170.6 (3) | Cu1—N3—C6—C5 | −175.7 (3) |
N1i—Cu1—N3—C6 | −106.5 (4) | C4—C5—C6—N3 | 0.0 (6) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···F2iii | 0.86 | 1.99 | 2.849 (5) | 174 |
N4—H4A···F1iii | 0.86 | 2.02 | 2.848 (4) | 162 |
C1—H1···F2iv | 0.93 | 2.46 | 3.317 (6) | 153 |
Symmetry codes: (iii) x−1/2, y+1/2, z; (iv) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(SiF6)(C3H4N2)4] |
Mr | 477.96 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 10.617 (2), 12.108 (2), 14.652 (3) |
β (°) | 95.07 (3) |
V (Å3) | 1876.2 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.30 |
Crystal size (mm) | 0.25 × 0.22 × 0.20 |
Data collection | |
Diffractometer | Rigaku Mercury CCD |
Absorption correction | Multi-scan (CrystalClear; Rigaku/MSC, 2005) |
Tmin, Tmax | 0.730, 0.771 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7864, 1665, 1283 |
Rint | 0.079 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.101, 1.16 |
No. of reflections | 1665 |
No. of parameters | 130 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.31 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—N1 | 2.007 (4) | Si1—F1 | 1.679 (2) |
Cu1—N3 | 2.008 (3) | Si1—F2 | 1.680 (3) |
Cu1—F3 | 2.348 (2) | SI1—F3 | 1.695 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···F2i | 0.86 | 1.99 | 2.849 (5) | 174 |
N4—H4A···F1i | 0.86 | 2.02 | 2.848 (4) | 162 |
C1—H1···F2ii | 0.93 | 2.46 | 3.317 (6) | 153 |
Symmetry codes: (i) x−1/2, y+1/2, z; (ii) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
We thank the young scientist fund of the NSFC of China (51101138) and the College Research Program of Yuncheng University (2008114) for funding.
References
Li, Z. X., Chu, X., Cui, G. H., Liu, Y., Li, L. & Xue, G. L. (2011). CrystEngComm, 13, 1984–1989. Web of Science CSD CrossRef CAS Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, nitrogen-containing ligands have been extensively studied (Li et al., 2011). Pyrazole have been well used as a kind of N-containing ligands.
Single-crystal X-ray diffraction analysis reveals that the title compound (I) crystallizes in the monoclinic space group C2/c. For the title compound, the geometry of the Cu(II) ion is bound by four pyrazole ligands and two hexafluoridosilicate dianions, which illustrates a distorted octahedral coordination environment (Fig 1). The dihedral angle between the pyrazole rings is 105.6°.