organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o939-o940

6-[(2E)-3,7-Di­methyl­octa-2,6-dien-1-yl]-5,7-dihy­dr­oxy-8-(2-methyl­butano­yl)-4-phenyl-2H-chromen-2-one–6-[(2E)-3,7-di­methyl­octa-2,6-dien-1-yl]-5,7-dihy­dr­oxy-8-(3-methyl­butano­yl)-4-phenyl-2H-chromen-2-one (1/1) from Mesua elegans1

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia, and cChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 23 February 2012; accepted 27 February 2012; online 3 March 2012)

The title co-crystal, C30H34O5·C30H34O5, comprises a 1:1 mixture of two mostly superimposed mol­ecules with the same chemical formula that differ in the nature of the substituent (2-methyl­butanoyl or 3-methyl­butano­yl) bound at the exocyclic ketone. The lactone ring is close to planar (r.m.s. deviation = 0.058 Å) and the phenyl ring is twisted out of this plane [dihedral angle = 60.08 (9)°]. The geranyl substituent is almost normal to benzene ring to which it is connected [C—C—Car—Car (ar = aromatic) torsion angle = −87.8 (2)°]. Intra­molecular O—H⋯O and O—H⋯π inter­actions are formed. In the crystal, supra­molecular chains are formed along the a axis owing to C—H⋯O contacts, with the lactone carbonyl atom accepting two such bonds.

Related literature

For the spectroscopic characterization of the title material, see: Verotta et al. (2004[Verotta, L., Lovaglio, E., Vidari, G., Finzi, P. V., Neri, M. G., Raimondi, A., Parapini, S., Taramelli, D., Riva, A. & Bombardelli, E. (2004). Phytochemistry, 65, 2867-2879.]) and for its acetyl­cholinesterase (AChE) inhibitory properties, see: Awang et al. (2010[Awang, K., Chan, G., Litaudon, M., Ismail, N. H., Martin, M.-T. & Gueritte, F. (2010). Bioorg. Med. Chem. 18, 7873-7877.]).

[Scheme 1]

Experimental

Crystal data
  • C30H34O5·C30H34O5

  • Mr = 949.14

  • Triclinic, [P \overline 1]

  • a = 5.9426 (2) Å

  • b = 13.4688 (5) Å

  • c = 16.3275 (6) Å

  • α = 91.955 (3)°

  • β = 99.515 (3)°

  • γ = 95.834 (3)°

  • V = 1280.47 (8) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 100 K

  • 0.30 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.826, Tmax = 0.968

  • 25960 measured reflections

  • 5330 independent reflections

  • 4528 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.208

  • S = 1.01

  • 5330 reflections

  • 363 parameters

  • 54 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4o⋯O5 0.85 (1) 1.54 (4) 2.35 (3) 158 (4)
O4—H4o⋯O5′ 0.85 (1) 1.76 (4) 2.55 (3) 154 (3)
O3—H3oCg1 0.84 (2) 2.56 (4) 3.355 (2) 158 (4)
C2—H2⋯O2i 0.95 2.47 3.408 (2) 169
C15—H15⋯O2ii 0.95 2.59 3.351 (2) 137
Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structure of the title co-crystal (I), previously isolated from Mesua ferrea, was elucidated by spectroscopic measurements (Verotta et al., 2004). Both components possess the 4-phenylcoumarin skeleton, which is substituted by two hydroxyl group at C-5 and C-7, and a geranyl group at C-6. The difference between the two compounds is the substituent at position C-8; the first is substituted with 2-methylbutanoyl and the second is substituted with the 3-methyl- butanoyl group. The title co-crystal have been evaluated as multi-drug resistant anti-bacterials (Verotta et al., 2004) and for their acetylcholinesterase (AChE) inhibitory properties (Awang et al., 2010). Herein, a crystallographic analysis is described.

The molecular components of the co-crystal (I) are shown in Figs 1 and 2. The r.m.s. deviation for the fitted atoms of the lactone ring = 0.058 Å with maximum deviations of 0.043 (2) Å for the C3 atoms and -0.058 (2) Å for the C4 atom. The phenyl ring is twisted out of this plane, forming a dihedral angle of 60.08 (9)°. The excocyclic carbonyl atom is co-planar with the benzene ring to which it is connected with the C7—C8—C26—O5 torsion angle being 2.2 (10)°; the equivalent torsion angle for the molecule with the 3-methylbutanoyl is 9.9 (9)°. The co-planarity is readily accounted for in terms of intramolecular O—H···O hydrogen bonds. The geranyl group projects almost normal to the plane through the benzene ring with the C5—C6—C16—C17 torsion angle being -87.8 (2)°. The second hydroxyl group forms an intramolecular O—H···π interaction with the phenyl ring, Table 1.

In the crystal, the lactone-carbonyl atom participates in two C—H···O interactions, Table 1, to link molecules into a supramolecular chain along the a axis, Fig. 3.

Related literature top

For the spectroscopic characterization of the title material, see: Verotta et al. (2004) and for its acetylcholinesterase (AChE) inhibitory properties, see: Awang et al. (2010).

Experimental top

Dried ground bark (1.5 kg) of Mesua elegans (Clusiaceae), collected from Sungai Badak Forest Reserve, Sintok, Kedah, Malaysia, was extracted with hexane (3 × 4 L, 48 h) at room temperature. The hexane was evaporated to give a yellow gum (120 g). A portion of the extract (10 g) was subjected to column chromatography over silica gel (230–400 mesh) and eluted with hexane:ethyl acetate (from 9.5 to 0) and ethyl acetate:methanol (5:5) to give six fractions. The first fraction was subjected to further silica gel chromatography and eluted with hexane:ethyl acetate (from 9.7 to 9.4) to produce two other sub-fractions. The co-crystal was obtained from the second sub-fraction and recrystallized from its methanol solution as colourless prisms.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O—H = 0.84±0.01 Å; their Uiso values were refined.

The crystal is a co-crystal of two molecules having an identical chemical composition. One has an 2-methylbutanoyl substituent in the fused-ring whereas the other has the isomeric 3-methylbutanoyl substituent. As the occupancy refined to a nearly 1:1 ratio, the occupancy of each substituent was set as exactly 0.5.

The pairs of Cbenzene–Cketone, Cketone–Cmethine/methylene and C—O distances were restrained to within 0.01 Å of each other, and the anisotropic displacement parameters of the primed atoms were set to those of the unprimed ones. The four-atom unit was restrained to be nearly planar. For the atoms comprising the butyl fragment, 1,2-related C–C distances were restrained to 1.540±0.005 and 1,3-related ones to 2.51±0.01 Å, and the anisotropic displacement parameters were restrained to be nearly isotropic.

Structure description top

The structure of the title co-crystal (I), previously isolated from Mesua ferrea, was elucidated by spectroscopic measurements (Verotta et al., 2004). Both components possess the 4-phenylcoumarin skeleton, which is substituted by two hydroxyl group at C-5 and C-7, and a geranyl group at C-6. The difference between the two compounds is the substituent at position C-8; the first is substituted with 2-methylbutanoyl and the second is substituted with the 3-methyl- butanoyl group. The title co-crystal have been evaluated as multi-drug resistant anti-bacterials (Verotta et al., 2004) and for their acetylcholinesterase (AChE) inhibitory properties (Awang et al., 2010). Herein, a crystallographic analysis is described.

The molecular components of the co-crystal (I) are shown in Figs 1 and 2. The r.m.s. deviation for the fitted atoms of the lactone ring = 0.058 Å with maximum deviations of 0.043 (2) Å for the C3 atoms and -0.058 (2) Å for the C4 atom. The phenyl ring is twisted out of this plane, forming a dihedral angle of 60.08 (9)°. The excocyclic carbonyl atom is co-planar with the benzene ring to which it is connected with the C7—C8—C26—O5 torsion angle being 2.2 (10)°; the equivalent torsion angle for the molecule with the 3-methylbutanoyl is 9.9 (9)°. The co-planarity is readily accounted for in terms of intramolecular O—H···O hydrogen bonds. The geranyl group projects almost normal to the plane through the benzene ring with the C5—C6—C16—C17 torsion angle being -87.8 (2)°. The second hydroxyl group forms an intramolecular O—H···π interaction with the phenyl ring, Table 1.

In the crystal, the lactone-carbonyl atom participates in two C—H···O interactions, Table 1, to link molecules into a supramolecular chain along the a axis, Fig. 3.

For the spectroscopic characterization of the title material, see: Verotta et al. (2004) and for its acetylcholinesterase (AChE) inhibitory properties, see: Awang et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the first (2-methyl butanoyl) component of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of the second (3-methyl butanoyl) component of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of (I). The C—H···O interactions are shown as orange dashed lines.
6-[(2E)-3,7-Dimethylocta-2,6-dien-1-yl]-5,7-dihydroxy-8-(2- methylbutanoyl)-4-phenyl-2H-chromen-2-one–6-[(2E)-3,7- dimethylocta-2,6-dien-1-yl]-5,7-dihydroxy-8-(3-methylbutanoyl)-4-phenyl- 2H-chromen-2-one (1/1) top
Crystal data top
C30H34O5·C30H34O5Z = 1
Mr = 949.14F(000) = 508
Triclinic, P1Dx = 1.231 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 5.9426 (2) ÅCell parameters from 8956 reflections
b = 13.4688 (5) Åθ = 2.8–76.3°
c = 16.3275 (6) ŵ = 0.66 mm1
α = 91.955 (3)°T = 100 K
β = 99.515 (3)°Prism, colourless
γ = 95.834 (3)°0.30 × 0.15 × 0.05 mm
V = 1280.47 (8) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5330 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4528 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.045
Detector resolution: 10.4041 pixels mm-1θmax = 76.5°, θmin = 2.8°
ω scanh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1616
Tmin = 0.826, Tmax = 0.968l = 2020
25960 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.1357P)2 + 0.5208P]
where P = (Fo2 + 2Fc2)/3
5330 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.57 e Å3
54 restraintsΔρmin = 0.53 e Å3
Crystal data top
C30H34O5·C30H34O5γ = 95.834 (3)°
Mr = 949.14V = 1280.47 (8) Å3
Triclinic, P1Z = 1
a = 5.9426 (2) ÅCu Kα radiation
b = 13.4688 (5) ŵ = 0.66 mm1
c = 16.3275 (6) ÅT = 100 K
α = 91.955 (3)°0.30 × 0.15 × 0.05 mm
β = 99.515 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5330 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4528 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.968Rint = 0.045
25960 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06654 restraints
wR(F2) = 0.208H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.57 e Å3
5330 reflectionsΔρmin = 0.53 e Å3
363 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.9303 (2)0.47777 (9)0.36863 (8)0.0331 (3)
O21.2727 (2)0.55978 (10)0.41312 (9)0.0390 (3)
O30.7244 (2)0.13093 (9)0.41205 (9)0.0399 (4)
H3o0.851 (3)0.138 (2)0.4450 (14)0.052 (7)*
O40.1977 (2)0.30693 (11)0.25255 (9)0.0415 (4)
H4o0.198 (6)0.3641 (14)0.232 (2)0.080 (10)*
O50.284 (4)0.473 (2)0.218 (3)0.046 (2)0.50
O5'0.308 (4)0.489 (2)0.223 (3)0.046 (2)0.50
C11.1476 (3)0.48355 (13)0.41647 (12)0.0329 (4)
C21.1949 (3)0.40121 (13)0.46801 (11)0.0325 (4)
H21.33630.40460.50550.039*
C31.0417 (3)0.31880 (13)0.46420 (11)0.0311 (4)
C40.8304 (3)0.30996 (13)0.40438 (11)0.0308 (4)
C50.6749 (3)0.22155 (13)0.38407 (11)0.0326 (4)
C60.4647 (3)0.22110 (13)0.33394 (11)0.0340 (4)
C70.4069 (3)0.31019 (14)0.29808 (11)0.0344 (4)
C80.5641 (3)0.39885 (14)0.30749 (11)0.0344 (4)
C90.7747 (3)0.39437 (13)0.36031 (11)0.0314 (4)
C101.0886 (3)0.24091 (13)0.52593 (11)0.0330 (4)
C111.2800 (4)0.18927 (16)0.52804 (13)0.0422 (5)
H111.38610.20550.49170.051*
C121.3170 (4)0.11372 (18)0.58338 (15)0.0508 (6)
H121.44610.07740.58360.061*
C131.1665 (4)0.09147 (16)0.63781 (14)0.0475 (5)
H131.19120.03950.67510.057*
C140.9803 (4)0.14473 (15)0.63803 (13)0.0439 (5)
H140.87940.13050.67660.053*
C150.9392 (4)0.21920 (14)0.58222 (13)0.0390 (4)
H150.80980.25520.58240.047*
C160.3045 (3)0.12556 (14)0.31303 (12)0.0372 (4)
H16A0.32280.08170.36060.045*
H16B0.14350.14140.30260.045*
C170.3576 (3)0.07200 (14)0.23678 (13)0.0377 (4)
H170.51570.06790.23550.045*
C180.2122 (3)0.03001 (13)0.17137 (12)0.0336 (4)
C190.0431 (3)0.02650 (17)0.16256 (13)0.0427 (5)
H19A0.08230.06820.20740.064*
H19B0.10950.04260.16580.064*
H19C0.10490.05160.10870.064*
C200.2995 (3)0.01785 (14)0.09938 (12)0.0378 (4)
H20A0.46240.00820.10150.045*
H20B0.21170.00220.04680.045*
C210.2809 (5)0.13182 (16)0.09853 (15)0.0547 (6)
H21A0.37370.15260.14990.066*
H21B0.11910.15840.09790.066*
C220.3627 (5)0.17516 (16)0.02434 (15)0.0501 (5)
H220.51790.15520.01970.060*
C230.2449 (4)0.23810 (17)0.03575 (14)0.0501 (5)
C240.3472 (5)0.27142 (19)0.10876 (16)0.0590 (6)
H24A0.50740.24210.10230.089*
H24B0.26030.24940.16000.089*
H24C0.34090.34450.11160.089*
C250.0024 (6)0.2785 (4)0.0393 (2)0.0989 (14)
H25A0.05330.25360.01000.148*
H25B0.00960.35170.04070.148*
H25C0.09070.25700.08950.148*
C260.480 (2)0.4832 (7)0.2594 (10)0.0424 (9)0.50
C270.6207 (16)0.5821 (7)0.2569 (5)0.0590 (13)0.50
H270.72120.59420.31250.071*0.50
C26'0.506 (2)0.4880 (7)0.2608 (9)0.0424 (9)0.50
C27'0.6741 (18)0.5785 (8)0.2554 (6)0.0590 (13)0.50
H27A0.83040.55780.25860.071*0.50
H27B0.67550.62630.30290.071*0.50
C280.7818 (6)0.5736 (2)0.1937 (2)0.0311 (7)0.50
H28A0.85780.51180.20250.037*0.50
H28B0.69000.56760.13700.037*0.50
C290.9641 (7)0.6620 (3)0.1995 (3)0.0458 (9)0.50
H29A1.06000.65300.15700.069*0.50
H29B1.05980.66680.25470.069*0.50
H29C0.89020.72350.19050.069*0.50
C300.4816 (13)0.6723 (6)0.2447 (5)0.117 (3)0.50
H30A0.38920.67640.28890.176*0.50
H30B0.38030.66420.19050.176*0.50
H30C0.58680.73360.24690.176*0.50
C28'0.6076 (11)0.6297 (4)0.1732 (3)0.0737 (16)0.50
H28'0.44800.64890.16900.088*0.50
C29'0.7783 (13)0.7238 (4)0.1787 (4)0.089 (2)0.50
H29D0.73650.76350.13040.133*0.50
H29E0.93330.70460.17940.133*0.50
H29F0.77440.76350.22980.133*0.50
C30'0.6254 (7)0.5651 (3)0.0980 (2)0.0362 (8)0.50
H30D0.51550.50510.09440.054*0.50
H30E0.78140.54570.10290.054*0.50
H30F0.59100.60250.04790.054*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0368 (7)0.0244 (6)0.0359 (7)0.0024 (5)0.0040 (5)0.0023 (5)
O20.0393 (7)0.0253 (6)0.0494 (8)0.0036 (5)0.0038 (6)0.0011 (5)
O30.0433 (8)0.0231 (6)0.0500 (8)0.0009 (5)0.0025 (6)0.0037 (5)
O40.0383 (7)0.0393 (8)0.0431 (8)0.0025 (6)0.0004 (6)0.0012 (6)
O50.049 (4)0.029 (7)0.051 (4)0.010 (4)0.012 (3)0.001 (6)
O5'0.049 (4)0.029 (7)0.051 (4)0.010 (4)0.012 (3)0.001 (6)
C10.0351 (9)0.0258 (8)0.0366 (9)0.0003 (7)0.0062 (7)0.0049 (7)
C20.0335 (9)0.0274 (9)0.0351 (9)0.0004 (7)0.0045 (7)0.0024 (7)
C30.0353 (9)0.0255 (8)0.0329 (9)0.0016 (7)0.0089 (7)0.0044 (6)
C40.0338 (9)0.0259 (8)0.0323 (8)0.0013 (7)0.0084 (7)0.0039 (6)
C50.0381 (9)0.0248 (8)0.0351 (9)0.0001 (7)0.0098 (7)0.0042 (7)
C60.0366 (9)0.0285 (9)0.0359 (9)0.0041 (7)0.0089 (7)0.0066 (7)
C70.0364 (9)0.0337 (9)0.0317 (9)0.0013 (7)0.0061 (7)0.0055 (7)
C80.0406 (10)0.0302 (9)0.0306 (8)0.0019 (7)0.0056 (7)0.0032 (7)
C90.0355 (9)0.0263 (8)0.0315 (8)0.0027 (7)0.0083 (7)0.0054 (6)
C100.0386 (9)0.0248 (8)0.0338 (9)0.0015 (7)0.0052 (7)0.0029 (7)
C110.0449 (11)0.0420 (11)0.0431 (11)0.0092 (9)0.0131 (9)0.0075 (8)
C120.0566 (13)0.0470 (12)0.0535 (13)0.0172 (10)0.0144 (10)0.0115 (10)
C130.0650 (14)0.0336 (10)0.0455 (11)0.0064 (9)0.0128 (10)0.0069 (8)
C140.0588 (13)0.0320 (10)0.0441 (11)0.0018 (9)0.0198 (9)0.0035 (8)
C150.0453 (11)0.0293 (9)0.0441 (10)0.0029 (8)0.0137 (8)0.0001 (7)
C160.0371 (9)0.0306 (9)0.0415 (10)0.0047 (7)0.0067 (8)0.0072 (7)
C170.0322 (9)0.0322 (9)0.0470 (11)0.0008 (7)0.0055 (8)0.0077 (8)
C180.0356 (9)0.0264 (8)0.0379 (9)0.0008 (7)0.0060 (7)0.0002 (7)
C190.0368 (10)0.0494 (12)0.0400 (10)0.0012 (8)0.0056 (8)0.0044 (8)
C200.0386 (10)0.0322 (9)0.0409 (10)0.0008 (7)0.0064 (8)0.0050 (7)
C210.0848 (18)0.0338 (11)0.0472 (12)0.0082 (11)0.0157 (12)0.0017 (9)
C220.0640 (14)0.0358 (11)0.0521 (13)0.0076 (10)0.0146 (11)0.0051 (9)
C230.0633 (14)0.0430 (11)0.0439 (11)0.0074 (10)0.0083 (10)0.0009 (9)
C240.0779 (17)0.0476 (13)0.0526 (13)0.0122 (12)0.0136 (12)0.0113 (10)
C250.084 (2)0.146 (4)0.0572 (17)0.037 (2)0.0231 (16)0.030 (2)
C260.048 (3)0.0361 (12)0.0364 (11)0.0067 (14)0.0059 (15)0.0013 (10)
C270.051 (4)0.0474 (15)0.0629 (16)0.020 (2)0.0257 (19)0.0194 (12)
C26'0.048 (3)0.0361 (12)0.0364 (11)0.0067 (14)0.0059 (15)0.0013 (10)
C27'0.051 (4)0.0474 (15)0.0629 (16)0.020 (2)0.0257 (19)0.0194 (12)
C280.0366 (17)0.0258 (16)0.0301 (16)0.0024 (13)0.0019 (13)0.0110 (12)
C290.050 (2)0.0336 (19)0.054 (2)0.0012 (17)0.0135 (19)0.0053 (17)
C300.115 (6)0.101 (5)0.114 (6)0.012 (5)0.033 (5)0.032 (5)
C28'0.078 (4)0.064 (3)0.073 (4)0.001 (3)0.001 (3)0.005 (3)
C29'0.101 (5)0.068 (4)0.089 (4)0.005 (3)0.004 (4)0.017 (3)
C30'0.051 (2)0.0264 (16)0.0316 (17)0.0002 (15)0.0093 (15)0.0057 (13)
Geometric parameters (Å, º) top
O1—C91.368 (2)C19—H19C0.9800
O1—C11.388 (2)C20—C211.527 (3)
O2—C11.213 (2)C20—H20A0.9900
O3—C51.361 (2)C20—H20B0.9900
O3—H3o0.844 (10)C21—C221.499 (3)
O4—C71.335 (2)C21—H21A0.9900
O4—H4o0.853 (10)C21—H21B0.9900
O5—C261.240 (6)C22—C231.329 (3)
O5'—C26'1.238 (6)C22—H220.9500
C1—C21.437 (3)C23—C251.479 (4)
C2—C31.355 (2)C23—C241.500 (3)
C2—H20.9500C24—H24A0.9800
C3—C41.450 (3)C24—H24B0.9800
C3—C101.494 (2)C24—H24C0.9800
C4—C91.405 (3)C25—H25A0.9800
C4—C51.425 (2)C25—H25B0.9800
C5—C61.375 (3)C25—H25C0.9800
C6—C71.402 (3)C26—C271.504 (6)
C6—C161.514 (2)C27—C281.528 (4)
C7—C81.427 (3)C27—C301.538 (5)
C8—C91.405 (3)C27—H271.0000
C8—C261.483 (6)C26'—C27'1.510 (6)
C8—C26'1.484 (6)C27'—C28'1.541 (11)
C10—C111.389 (3)C27'—H27A0.9900
C10—C151.398 (3)C27'—H27B0.9900
C11—C121.394 (3)C28—C291.516 (4)
C11—H110.9500C28—H28A0.9900
C12—C131.380 (3)C28—H28B0.9900
C12—H120.9500C29—H29A0.9800
C13—C141.379 (3)C29—H29B0.9800
C13—H130.9500C29—H29C0.9800
C14—C151.391 (3)C30—H30A0.9800
C14—H140.9500C30—H30B0.9800
C15—H150.9500C30—H30C0.9800
C16—C171.511 (3)C28'—C30'1.505 (4)
C16—H16A0.9900C28'—C29'1.531 (4)
C16—H16B0.9900C28'—H28'1.0000
C17—C181.327 (3)C29'—H29D0.9800
C17—H170.9500C29'—H29E0.9800
C18—C191.496 (3)C29'—H29F0.9800
C18—C201.511 (3)C30'—H30D0.9800
C19—H19A0.9800C30'—H30E0.9800
C19—H19B0.9800C30'—H30F0.9800
C9—O1—C1123.73 (14)C20—C21—H21A109.3
C5—O3—H3o108.8 (19)C22—C21—H21B109.3
C7—O4—H4o103 (2)C20—C21—H21B109.3
O2—C1—O1116.26 (17)H21A—C21—H21B108.0
O2—C1—C2127.17 (18)C23—C22—C21128.0 (2)
O1—C1—C2116.46 (15)C23—C22—H22116.0
C3—C2—C1121.27 (17)C21—C22—H22116.0
C3—C2—H2119.4C22—C23—C25124.1 (2)
C1—C2—H2119.4C22—C23—C24122.0 (2)
C2—C3—C4120.15 (17)C25—C23—C24113.8 (2)
C2—C3—C10118.72 (17)C23—C24—H24A109.5
C4—C3—C10121.03 (15)C23—C24—H24B109.5
C9—C4—C5116.29 (17)H24A—C24—H24B109.5
C9—C4—C3118.02 (16)C23—C24—H24C109.5
C5—C4—C3125.66 (17)H24A—C24—H24C109.5
O3—C5—C6114.94 (16)H24B—C24—H24C109.5
O3—C5—C4122.49 (17)C23—C25—H25A109.5
C6—C5—C4122.57 (17)C23—C25—H25B109.5
C5—C6—C7118.48 (16)H25A—C25—H25B109.5
C5—C6—C16121.17 (17)C23—C25—H25C109.5
C7—C6—C16120.24 (17)H25A—C25—H25C109.5
O4—C7—C6116.21 (16)H25B—C25—H25C109.5
O4—C7—C8121.54 (17)O5—C26—C8119.2 (19)
C6—C7—C8122.22 (17)O5—C26—C27116.9 (16)
C9—C8—C7116.14 (17)C8—C26—C27123.9 (8)
C9—C8—C26129.2 (6)C26—C27—C28109.4 (9)
C7—C8—C26114.7 (6)C26—C27—C30115.0 (7)
C9—C8—C26'123.4 (6)C28—C27—C30113.0 (5)
C7—C8—C26'120.5 (6)C26—C27—H27106.2
O1—C9—C8117.12 (16)C28—C27—H27106.2
O1—C9—C4119.40 (16)C30—C27—H27106.2
C8—C9—C4123.48 (16)O5'—C26'—C8118.4 (19)
C11—C10—C15119.28 (18)O5'—C26'—C27'117.3 (17)
C11—C10—C3120.61 (17)C8—C26'—C27'124.3 (9)
C15—C10—C3120.11 (17)C26'—C27'—C28'110.6 (7)
C10—C11—C12120.20 (19)C26'—C27'—H27A109.5
C10—C11—H11119.9C28'—C27'—H27A109.5
C12—C11—H11119.9C26'—C27'—H27B109.5
C13—C12—C11120.2 (2)C28'—C27'—H27B109.5
C13—C12—H12119.9H27A—C27'—H27B108.1
C11—C12—H12119.9C29—C28—C27113.2 (5)
C14—C13—C12120.0 (2)C29—C28—H28A108.9
C14—C13—H13120.0C27—C28—H28A108.9
C12—C13—H13120.0C29—C28—H28B108.9
C13—C14—C15120.48 (19)C27—C28—H28B108.9
C13—C14—H14119.8H28A—C28—H28B107.8
C15—C14—H14119.8C28—C29—H29A109.5
C14—C15—C10119.84 (19)C28—C29—H29B109.5
C14—C15—H15120.1H29A—C29—H29B109.5
C10—C15—H15120.1C28—C29—H29C109.5
C17—C16—C6110.01 (16)H29A—C29—H29C109.5
C17—C16—H16A109.7H29B—C29—H29C109.5
C6—C16—H16A109.7C27—C30—H30A109.5
C17—C16—H16B109.7C27—C30—H30B109.5
C6—C16—H16B109.7H30A—C30—H30B109.5
H16A—C16—H16B108.2C27—C30—H30C109.5
C18—C17—C16128.44 (18)H30A—C30—H30C109.5
C18—C17—H17115.8H30B—C30—H30C109.5
C16—C17—H17115.8C30'—C28'—C29'109.5 (4)
C17—C18—C19123.89 (18)C30'—C28'—C27'112.7 (6)
C17—C18—C20120.64 (18)C29'—C28'—C27'105.2 (7)
C19—C18—C20115.46 (16)C30'—C28'—H28'109.8
C18—C19—H19A109.5C29'—C28'—H28'109.8
C18—C19—H19B109.5C27'—C28'—H28'109.8
H19A—C19—H19B109.5C28'—C29'—H29D109.5
C18—C19—H19C109.5C28'—C29'—H29E109.5
H19A—C19—H19C109.5H29D—C29'—H29E109.5
H19B—C19—H19C109.5C28'—C29'—H29F109.5
C18—C20—C21114.04 (17)H29D—C29'—H29F109.5
C18—C20—H20A108.7H29E—C29'—H29F109.5
C21—C20—H20A108.7C28'—C30'—H30D109.5
C18—C20—H20B108.7C28'—C30'—H30E109.5
C21—C20—H20B108.7H30D—C30'—H30E109.5
H20A—C20—H20B107.6C28'—C30'—H30F109.5
C22—C21—C20111.63 (19)H30D—C30'—H30F109.5
C22—C21—H21A109.3H30E—C30'—H30F109.5
C9—O1—C1—O2174.82 (16)C4—C3—C10—C1559.2 (2)
C9—O1—C1—C28.6 (2)C15—C10—C11—C122.7 (3)
O2—C1—C2—C3178.28 (18)C3—C10—C11—C12177.2 (2)
O1—C1—C2—C35.6 (3)C10—C11—C12—C131.6 (4)
C1—C2—C3—C43.2 (3)C11—C12—C13—C140.6 (4)
C1—C2—C3—C10173.11 (16)C12—C13—C14—C151.7 (3)
C2—C3—C4—C99.5 (3)C13—C14—C15—C100.6 (3)
C10—C3—C4—C9166.80 (16)C11—C10—C15—C141.6 (3)
C2—C3—C4—C5168.59 (17)C3—C10—C15—C14178.26 (18)
C10—C3—C4—C515.1 (3)C5—C6—C16—C1787.8 (2)
C9—C4—C5—O3169.56 (16)C7—C6—C16—C1788.2 (2)
C3—C4—C5—O38.5 (3)C6—C16—C17—C18135.2 (2)
C9—C4—C5—C69.6 (3)C16—C17—C18—C191.5 (3)
C3—C4—C5—C6172.29 (17)C16—C17—C18—C20178.18 (18)
O3—C5—C6—C7175.86 (16)C17—C18—C20—C21102.3 (2)
C4—C5—C6—C73.4 (3)C19—C18—C20—C2178.0 (2)
O3—C5—C6—C160.2 (3)C18—C20—C21—C22178.11 (19)
C4—C5—C6—C16179.46 (16)C20—C21—C22—C23119.9 (3)
C5—C6—C7—O4177.50 (16)C21—C22—C23—C250.6 (5)
C16—C6—C7—O46.4 (3)C21—C22—C23—C24177.0 (2)
C5—C6—C7—C84.2 (3)C9—C8—C26—O5177.9 (19)
C16—C6—C7—C8171.91 (17)C7—C8—C26—O52.2 (10)
O4—C7—C8—C9176.91 (16)C26'—C8—C26—O5165 (12)
C6—C7—C8—C94.9 (3)C9—C8—C26—C272.8 (19)
O4—C7—C8—C263.1 (8)C7—C8—C26—C27177.2 (10)
C6—C7—C8—C26175.1 (8)C26'—C8—C26—C2714 (12)
O4—C7—C8—C26'5.2 (8)O5—C26—C27—C2897.7 (14)
C6—C7—C8—C26'173.0 (8)C8—C26—C27—C2881.7 (14)
C1—O1—C9—C8177.96 (15)O5—C26—C27—C3030.8 (11)
C1—O1—C9—C42.4 (2)C8—C26—C27—C30149.8 (11)
C7—C8—C9—O1178.44 (15)C9—C8—C26'—O5'172.3 (17)
C26—C8—C9—O11.5 (9)C7—C8—C26'—O5'9.9 (9)
C26'—C8—C9—O10.6 (9)C26—C8—C26'—O5'8 (14)
C7—C8—C9—C42.0 (3)C9—C8—C26'—C27'8.4 (18)
C26—C8—C9—C4178.1 (9)C7—C8—C26'—C27'169.4 (9)
C26'—C8—C9—C4179.8 (8)C26—C8—C26'—C27'173 (14)
C5—C4—C9—O1171.55 (15)O5'—C26'—C27'—C28'27.9 (12)
C3—C4—C9—O16.7 (2)C8—C26'—C27'—C28'151.4 (12)
C5—C4—C9—C88.9 (3)C26—C27—C28—C29167.9 (5)
C3—C4—C9—C8172.90 (16)C30—C27—C28—C2962.5 (9)
C2—C3—C10—C1163.0 (2)C26'—C27'—C28'—C30'65.2 (9)
C4—C3—C10—C11120.7 (2)C26'—C27'—C28'—C29'175.6 (8)
C2—C3—C10—C15117.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4o···O50.85 (1)1.54 (4)2.35 (3)158 (4)
O4—H4o···O50.85 (1)1.76 (4)2.55 (3)154 (3)
O3—H3o···Cg10.84 (2)2.56 (4)3.355 (2)158 (4)
C2—H2···O2i0.952.473.408 (2)169
C15—H15···O2ii0.952.593.351 (2)137
Symmetry codes: (i) x+3, y+1, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H34O5·C30H34O5
Mr949.14
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.9426 (2), 13.4688 (5), 16.3275 (6)
α, β, γ (°)91.955 (3), 99.515 (3), 95.834 (3)
V3)1280.47 (8)
Z1
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.30 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.826, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
25960, 5330, 4528
Rint0.045
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.208, 1.01
No. of reflections5330
No. of parameters363
No. of restraints54
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.53

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4o···O50.85 (1)1.54 (4)2.35 (3)158 (4)
O4—H4o···O5'0.85 (1)1.76 (4)2.55 (3)154 (3)
O3—H3o···Cg10.84 (2)2.56 (4)3.355 (2)158 (4)
C2—H2···O2i0.952.473.408 (2)169
C15—H15···O2ii0.952.593.351 (2)137
Symmetry codes: (i) x+3, y+1, z+1; (ii) x+2, y+1, z+1.
 

Footnotes

1Additional correspondence author, e-mail: khalijah@um.edu.my.

Acknowledgements

The authors thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12), Ministry of Science and Technology grant (02–01-01-SF0329) and University of Malaya student's grant (PPP 369/2010B) for the isolation and elucidation of the co-crystal.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAwang, K., Chan, G., Litaudon, M., Ismail, N. H., Martin, M.-T. & Gueritte, F. (2010). Bioorg. Med. Chem. 18, 7873–7877.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerotta, L., Lovaglio, E., Vidari, G., Finzi, P. V., Neri, M. G., Raimondi, A., Parapini, S., Taramelli, D., Riva, A. & Bombardelli, E. (2004). Phytochemistry, 65, 2867–2879.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o939-o940
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds