organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-N-(4-meth­­oxy-2-nitro­phen­yl)benzamide

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 23 February 2012; accepted 13 March 2012; online 31 March 2012)

In the title compound, C14H11BrN2O4, the amide segment makes dihedral angles of 23.4 (2) and 20.5 (2)° with the benzene rings, while the dihedral angle between the bezene rings is 2.90 (8)°. The nitro and meth­oxy groups are almost coplanar with their bound benzene ring, with the r.m.s. deviation for the 11 non-H atoms being 0.0265 (1) Å. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked into [2-10] chains by weak C—H⋯O and C—H⋯Br inter­actions, which form an R22(8) motif between pairs of mol­ecules in the chain. A Br⋯O [3.2018 (12) Å] short contact also occurs.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Johnston & Taylor (2011[Johnston, D. H. & Taylor, C. R. (2011). Acta Cryst. E67, o2735.]); Li & Cui (2011[Li, H.-L. & Cui, J.-T. (2011). Acta Cryst. E67, o1596.]); Saeed et al. (2008)[Saeed, A., Hussain, S. & Flörke, U. (2008). Acta Cryst. E64, o705.]. For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrN2O4

  • Mr = 351.15

  • Triclinic, [P \overline 1]

  • a = 6.1219 (2) Å

  • b = 7.6519 (3) Å

  • c = 14.3504 (6) Å

  • α = 89.197 (1)°

  • β = 84.795 (1)°

  • γ = 77.983 (1)°

  • V = 654.78 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 100 K

  • 0.54 × 0.27 × 0.17 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.281, Tmax = 0.616

  • 14195 measured reflections

  • 3725 independent reflections

  • 3558 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.080

  • S = 1.12

  • 3725 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2 0.84 (3) 1.99 (3) 2.6318 (19) 132 (2)
C3—H3A⋯O4i 0.95 2.57 3.475 (2) 160
C12—H12A⋯O1ii 0.95 2.41 3.358 (2) 172
C10—H10A⋯Br1iii 0.95 2.93 3.863 (2) 167
Symmetry codes: (i) x-2, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) x+2, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our research in medicinal chemistry, the title benzamide derivative (I) was synthesized with a hope that it may exhibit anticancer and/or anti-alzheimer activities. Herein, its crystal structure was reported.

The molecule of the title benzamide derivative (Fig. 1), C14H11BrN2O4, is not planar as the plane of the middle N-C=O segment makes the dihedral angles of 23.4 (2) and 20.5 (2) ° with the C1–C6 and C8–C13 benzene rings, respectively whereas the dihedral angle between the two benzene rings is 2.90 (8)°. In the 4-methoxy-2-nitrophenyl moiety, the nitro and methoxy groups are co-planar with the bound benzene ring with the r.m.s. deviation of 0.0265 (1) Å for the eleven non-H atoms [C8–C14/N2/O2–O4] and the torsion angles O2–N2–C9–C8 = -3.8 (2)°, O3–N2–C9–C8 = 175.88 (15)° and C14–O4–C11–C12 = 3.5 (2)°. An intramolecular N1—H1N1···O2 hydrogen bond generates a S(6) ring motif (Bernstein et al., 1995). Bond distances are comparable with those in related structures (Johnston & Taylor, 2011; Li & Cui, 2011 and Saeed et al., 2008).

In the crystal (Fig. 2), the molecules are linked into [210] chains by weak C—H···O and C—H···Br interactions forming R22(8) motifs. Br1···O2iii[3.2018 (12) Å; (iii) = -x, 2-y, -z] short contact is presented.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Johnston & Taylor (2011); Li & Cui (2011); Saeed et al. (2008). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of 4-bromobenzoyl chloride (0.20 g, 0.91 mmol) and 4-metoxy-2-nitroaniline (0.23 g, 1.40 mmol) in anhydrous acetone (20 ml) was refluxed for 4 h. An orange solid was formed, which was filtered and washed with water. Orange blocks of the title compound were recrystallized from ethylacetate by slow evaporation of the solvent at room temperature after a week, Mp. 434-436 K.

Refinement top

Amide H atom was located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.95 Å for aromatic and CH and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.75 Å from Br1 and the deepest hole is located at 0.85 Å from Br1.

Structure description top

As part of our research in medicinal chemistry, the title benzamide derivative (I) was synthesized with a hope that it may exhibit anticancer and/or anti-alzheimer activities. Herein, its crystal structure was reported.

The molecule of the title benzamide derivative (Fig. 1), C14H11BrN2O4, is not planar as the plane of the middle N-C=O segment makes the dihedral angles of 23.4 (2) and 20.5 (2) ° with the C1–C6 and C8–C13 benzene rings, respectively whereas the dihedral angle between the two benzene rings is 2.90 (8)°. In the 4-methoxy-2-nitrophenyl moiety, the nitro and methoxy groups are co-planar with the bound benzene ring with the r.m.s. deviation of 0.0265 (1) Å for the eleven non-H atoms [C8–C14/N2/O2–O4] and the torsion angles O2–N2–C9–C8 = -3.8 (2)°, O3–N2–C9–C8 = 175.88 (15)° and C14–O4–C11–C12 = 3.5 (2)°. An intramolecular N1—H1N1···O2 hydrogen bond generates a S(6) ring motif (Bernstein et al., 1995). Bond distances are comparable with those in related structures (Johnston & Taylor, 2011; Li & Cui, 2011 and Saeed et al., 2008).

In the crystal (Fig. 2), the molecules are linked into [210] chains by weak C—H···O and C—H···Br interactions forming R22(8) motifs. Br1···O2iii[3.2018 (12) Å; (iii) = -x, 2-y, -z] short contact is presented.

For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Johnston & Taylor (2011); Li & Cui (2011); Saeed et al. (2008). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The N—H···O hydrogen bond is drawn as dash line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis. Hydrogen bonds were drawn as dashed lines.
4-Bromo-N-(4-methoxy-2-nitrophenyl)benzamide top
Crystal data top
C14H11BrN2O4Z = 2
Mr = 351.15F(000) = 352
Triclinic, P1Dx = 1.781 Mg m3
Hall symbol: -P 1Melting point = 434–436 K
a = 6.1219 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6519 (3) ÅCell parameters from 3725 reflections
c = 14.3504 (6) Åθ = 2.9–30.0°
α = 89.197 (1)°µ = 3.16 mm1
β = 84.795 (1)°T = 100 K
γ = 77.983 (1)°Block, orange
V = 654.78 (4) Å30.54 × 0.27 × 0.17 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3725 independent reflections
Radiation source: sealed tube3558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.281, Tmax = 0.616k = 1010
14195 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.2246P]
where P = (Fo2 + 2Fc2)/3
3725 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C14H11BrN2O4γ = 77.983 (1)°
Mr = 351.15V = 654.78 (4) Å3
Triclinic, P1Z = 2
a = 6.1219 (2) ÅMo Kα radiation
b = 7.6519 (3) ŵ = 3.16 mm1
c = 14.3504 (6) ÅT = 100 K
α = 89.197 (1)°0.54 × 0.27 × 0.17 mm
β = 84.795 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3725 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3558 reflections with I > 2σ(I)
Tmin = 0.281, Tmax = 0.616Rint = 0.022
14195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.93 e Å3
3725 reflectionsΔρmin = 0.48 e Å3
195 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.43080 (2)1.27590 (2)0.081247 (10)0.02080 (7)
O10.2430 (2)0.77009 (18)0.38411 (9)0.0252 (3)
O41.2328 (2)0.25761 (17)0.36805 (9)0.0225 (2)
O31.0773 (2)0.5836 (2)0.08860 (9)0.0292 (3)
O20.7257 (2)0.70628 (18)0.09318 (9)0.0240 (3)
N10.4593 (2)0.69155 (19)0.24641 (10)0.0182 (3)
N20.8886 (2)0.61497 (18)0.12882 (9)0.0183 (3)
C20.1093 (3)0.9574 (2)0.28387 (11)0.0183 (3)
H2A0.14920.91420.34410.022*
C30.2720 (3)1.0681 (2)0.23633 (11)0.0181 (3)
H3A0.42291.09970.26290.022*
C40.2085 (3)1.1314 (2)0.14887 (11)0.0165 (3)
C50.0114 (3)1.0909 (2)0.10918 (11)0.0178 (3)
H5A0.05181.13940.05040.021*
C60.1719 (3)0.9777 (2)0.15721 (11)0.0179 (3)
H6A0.32270.94730.13050.021*
C10.1126 (3)0.9086 (2)0.24441 (11)0.0163 (3)
C70.2764 (3)0.7849 (2)0.29928 (11)0.0176 (3)
C80.6493 (3)0.5785 (2)0.27797 (11)0.0164 (3)
C90.8567 (3)0.5414 (2)0.22300 (10)0.0166 (3)
C101.0464 (3)0.4333 (2)0.25465 (11)0.0175 (3)
H10A1.18360.41130.21590.021*
C111.0359 (3)0.3573 (2)0.34300 (11)0.0173 (3)
C120.8314 (3)0.3867 (2)0.39815 (11)0.0187 (3)
H12A0.82150.33260.45790.022*
C130.6427 (3)0.4951 (2)0.36556 (11)0.0184 (3)
H13A0.50480.51320.40380.022*
C141.2322 (3)0.1852 (2)0.46014 (13)0.0249 (3)
H14A1.38620.13150.47310.037*
H14B1.14120.09370.46500.037*
H14C1.16890.28070.50570.037*
H1N10.467 (4)0.710 (4)0.1886 (19)0.028 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01483 (10)0.02630 (10)0.01952 (10)0.00065 (6)0.00143 (6)0.00490 (6)
O10.0244 (6)0.0295 (6)0.0164 (5)0.0048 (5)0.0024 (4)0.0015 (5)
O40.0157 (6)0.0283 (6)0.0209 (6)0.0013 (4)0.0021 (4)0.0057 (4)
O30.0174 (6)0.0415 (7)0.0236 (6)0.0013 (5)0.0065 (5)0.0085 (5)
O20.0190 (6)0.0306 (6)0.0189 (5)0.0019 (5)0.0001 (4)0.0063 (5)
N10.0159 (6)0.0215 (6)0.0146 (6)0.0012 (5)0.0004 (5)0.0015 (5)
N20.0187 (7)0.0196 (6)0.0156 (6)0.0027 (5)0.0005 (5)0.0015 (5)
C20.0176 (7)0.0208 (7)0.0153 (6)0.0020 (5)0.0009 (5)0.0004 (5)
C30.0138 (7)0.0211 (7)0.0180 (7)0.0015 (5)0.0016 (5)0.0001 (5)
C40.0136 (7)0.0180 (6)0.0171 (7)0.0012 (5)0.0011 (5)0.0004 (5)
C50.0156 (7)0.0196 (7)0.0168 (7)0.0017 (5)0.0018 (5)0.0012 (5)
C60.0146 (7)0.0195 (6)0.0180 (7)0.0015 (5)0.0020 (5)0.0007 (5)
C10.0147 (7)0.0165 (6)0.0163 (6)0.0010 (5)0.0001 (5)0.0001 (5)
C70.0157 (7)0.0172 (6)0.0184 (7)0.0008 (5)0.0002 (5)0.0001 (5)
C80.0142 (7)0.0174 (6)0.0166 (6)0.0009 (5)0.0012 (5)0.0000 (5)
C90.0172 (7)0.0177 (6)0.0142 (6)0.0032 (5)0.0007 (5)0.0009 (5)
C100.0142 (7)0.0190 (6)0.0185 (7)0.0025 (5)0.0010 (5)0.0001 (5)
C110.0140 (7)0.0182 (6)0.0192 (7)0.0016 (5)0.0027 (5)0.0005 (5)
C120.0191 (7)0.0196 (6)0.0160 (7)0.0016 (5)0.0002 (5)0.0024 (5)
C130.0152 (7)0.0208 (7)0.0174 (7)0.0012 (5)0.0013 (5)0.0012 (5)
C140.0237 (9)0.0254 (8)0.0233 (8)0.0014 (6)0.0053 (6)0.0037 (6)
Geometric parameters (Å, º) top
Br1—C41.8975 (16)C5—H5A0.9500
O1—C71.224 (2)C6—C11.399 (2)
O4—C111.3615 (19)C6—H6A0.9500
O4—C141.426 (2)C1—C71.499 (2)
O3—N21.2220 (19)C8—C131.403 (2)
O2—N21.2395 (19)C8—C91.410 (2)
N1—C71.367 (2)C9—C101.387 (2)
N1—C81.404 (2)C10—C111.389 (2)
N1—H1N10.84 (3)C10—H10A0.9500
N2—C91.4692 (19)C11—C121.397 (2)
C2—C31.390 (2)C12—C131.389 (2)
C2—C11.400 (2)C12—H12A0.9500
C2—H2A0.9500C13—H13A0.9500
C3—C41.391 (2)C14—H14A0.9800
C3—H3A0.9500C14—H14B0.9800
C4—C51.387 (2)C14—H14C0.9800
C5—C61.394 (2)
C11—O4—C14117.04 (13)O1—C7—C1121.42 (14)
C7—N1—C8127.66 (14)N1—C7—C1114.35 (13)
C7—N1—H1N1117.3 (19)C13—C8—N1121.83 (14)
C8—N1—H1N1114.8 (19)C13—C8—C9116.34 (14)
O3—N2—O2122.41 (14)N1—C8—C9121.82 (14)
O3—N2—C9118.06 (14)C10—C9—C8122.13 (14)
O2—N2—C9119.53 (13)C10—C9—N2115.12 (13)
C3—C2—C1121.01 (14)C8—C9—N2122.75 (14)
C3—C2—H2A119.5C9—C10—C11120.04 (14)
C1—C2—H2A119.5C9—C10—H10A120.0
C2—C3—C4118.32 (14)C11—C10—H10A120.0
C2—C3—H3A120.8O4—C11—C10115.23 (14)
C4—C3—H3A120.8O4—C11—C12125.42 (14)
C5—C4—C3122.18 (15)C10—C11—C12119.35 (14)
C5—C4—Br1119.02 (11)C13—C12—C11119.98 (14)
C3—C4—Br1118.80 (12)C13—C12—H12A120.0
C4—C5—C6118.73 (14)C11—C12—H12A120.0
C4—C5—H5A120.6C12—C13—C8122.10 (14)
C6—C5—H5A120.6C12—C13—H13A119.0
C5—C6—C1120.52 (14)C8—C13—H13A119.0
C5—C6—H6A119.7O4—C14—H14A109.5
C1—C6—H6A119.7O4—C14—H14B109.5
C6—C1—C2119.17 (14)H14A—C14—H14B109.5
C6—C1—C7123.21 (14)O4—C14—H14C109.5
C2—C1—C7117.61 (13)H14A—C14—H14C109.5
O1—C7—N1124.23 (15)H14B—C14—H14C109.5
C1—C2—C3—C40.9 (2)N1—C8—C9—C10178.41 (14)
C2—C3—C4—C51.5 (2)C13—C8—C9—N2178.41 (14)
C2—C3—C4—Br1177.86 (12)N1—C8—C9—N21.0 (2)
C3—C4—C5—C62.4 (2)O3—N2—C9—C103.6 (2)
Br1—C4—C5—C6176.97 (12)O2—N2—C9—C10176.71 (14)
C4—C5—C6—C10.9 (2)O3—N2—C9—C8175.88 (15)
C5—C6—C1—C21.3 (2)O2—N2—C9—C83.8 (2)
C5—C6—C1—C7179.40 (14)C8—C9—C10—C110.2 (2)
C3—C2—C1—C62.2 (2)N2—C9—C10—C11179.64 (14)
C3—C2—C1—C7178.44 (14)C14—O4—C11—C10176.68 (14)
C8—N1—C7—O16.9 (3)C14—O4—C11—C123.5 (2)
C8—N1—C7—C1173.95 (14)C9—C10—C11—O4178.33 (14)
C6—C1—C7—O1157.07 (16)C9—C10—C11—C121.8 (2)
C2—C1—C7—O122.2 (2)O4—C11—C12—C13178.40 (15)
C6—C1—C7—N123.7 (2)C10—C11—C12—C131.8 (2)
C2—C1—C7—N1156.97 (15)C11—C12—C13—C80.3 (2)
C7—N1—C8—C1323.9 (2)N1—C8—C13—C12178.36 (15)
C7—N1—C8—C9156.70 (16)C9—C8—C13—C122.2 (2)
C13—C8—C9—C102.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.84 (3)1.99 (3)2.6318 (19)132 (2)
C3—H3A···O4i0.952.573.475 (2)160
C12—H12A···O1ii0.952.413.358 (2)172
C10—H10A···Br1iii0.952.933.863 (2)167
Symmetry codes: (i) x2, y+1, z; (ii) x+1, y+1, z+1; (iii) x+2, y1, z.

Experimental details

Crystal data
Chemical formulaC14H11BrN2O4
Mr351.15
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.1219 (2), 7.6519 (3), 14.3504 (6)
α, β, γ (°)89.197 (1), 84.795 (1), 77.983 (1)
V3)654.78 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.16
Crystal size (mm)0.54 × 0.27 × 0.17
Data collection
DiffractometerBruker APEX DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.281, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
14195, 3725, 3558
Rint0.022
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.080, 1.12
No. of reflections3725
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.93, 0.48

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.84 (3)1.99 (3)2.6318 (19)132 (2)
C3—H3A···O4i0.952.573.475 (2)160
C12—H12A···O1ii0.952.413.358 (2)172
C10—H10A···Br1iii0.952.933.863 (2)167
Symmetry codes: (i) x2, y+1, z; (ii) x+1, y+1, z+1; (iii) x+2, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

WS thanks the Crystal Materials Research Unit, Prince of Songkla University, for financial support. The authors thank Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJohnston, D. H. & Taylor, C. R. (2011). Acta Cryst. E67, o2735.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H.-L. & Cui, J.-T. (2011). Acta Cryst. E67, o1596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Hussain, S. & Flörke, U. (2008). Acta Cryst. E64, o705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds