organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­butano­yl)-N′-[2-(tri­fluoro­meth­yl)phen­yl]thio­urea

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Terengganu, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 23 February 2012; accepted 28 February 2012; online 10 March 2012)

In the title compound, C12H12ClF3N2OS, the dihedral angle between the benzene ring and the thio­urea fragment is 69.41 (5)°. The thio­urea N—H atoms adopt an anti conformation, such that one of them forms an intra­molecular N—H⋯O hydrogen bond, generating an S(6) ring. In the crystal, both N—H groups form inversion dimers, one via a pair of N—H⋯S hydrogen bonds and one via a pair of N—H⋯O hydrogen bonds. These lead to R22(8) and R22(12) loops, respectively. Weak C—H⋯Cl, C—H⋯F, C—H⋯S and ππ [centroid–centroid separation = 3.7098 (6)Å and slippage = 1.853 Å] inter­actions also occur.

Related literature

For a related structure and background to thio­urea derivatives, see: Yusof et al. (2011[Yusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849.]). For related structures, see: Khawar Rauf et al. (2006[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006). Acta Cryst. E62, o4299-o4301.]); Yusof et al. (2007[Yusof, M. S. M., Yaakob, W. N. A., Kadir, M. A. & Yamin, B. M. (2007). Acta Cryst. E63, o241-o243.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12ClF3N2OS

  • Mr = 324.75

  • Triclinic, [P \overline 1]

  • a = 7.8622 (1) Å

  • b = 8.9073 (1) Å

  • c = 11.0341 (1) Å

  • α = 113.687 (1)°

  • β = 103.419 (1)°

  • γ = 95.653 (1)°

  • V = 672.18 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 100 K

  • 0.41 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.829, Tmax = 0.932

  • 18148 measured reflections

  • 4884 independent reflections

  • 4304 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.078

  • S = 0.97

  • 4884 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 0.855 (16) 1.971 (17) 2.6486 (12) 135.4 (16)
N1—H1N1⋯O1i 0.855 (16) 2.514 (17) 3.2273 (12) 141.6 (14)
N2—H1N2⋯S1ii 0.849 (17) 2.682 (17) 3.5079 (10) 164.7 (14)
C2—H2A⋯Cl1iii 0.95 2.82 3.5535 (11) 135
C3—H3A⋯F1iv 0.95 2.47 3.2617 (13) 140
C9—H9A⋯S1ii 0.99 2.84 3.7829 (10) 159
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+2, -y, -z+1; (iii) x-1, y+1, z; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of thiourea derivatives we now describe the title compound. It is analogous to the previously reported N-(4-chlorobutanoyl)-N'- (2-fluorophenyl)thiourea (Yusof et al., 2011) except the fluoro atom is replaced by trifluoromethyl atom.

In the molecular structure (Fig. 1), the benzene ring (C1–C6) is essentially planar with maximum deviation of 0.011 (1) Å at atom C5. The intramolecular N1—H1N1···O1 hydrogen bond (Table 1) generates S(6) ring motifs (Berstein et al., 1995). The bond lengths and angles are within normal ranges and are comparable to the related structures (Khawar Rauf et al., 2006; Yusof et al., 2007).

The crystal packing is shown in Fig. 2. R12(6), R22(8), R22(12) ring motifs (Berstein et al. 1995) are formed by intermolecular N2—H1N2···S1, N1—H1N1···O1 and C9—H9A···S1 (Table 1) hydrogen bonds, respectively. Intermolecular C2—H2A···Cl1 and C3—H3A···F1 (Table 1) interactions linked the molecules into three-dimensional network. ππ interaction [Cg1···Cg1 (-1 - x, 1 - y, 1 - z) = 3.7098 (6) Å;] are also observed [Cg1: C1–C6].

Related literature top

For a related structure and background to thiourea derivatives, see: Yusof et al. (2011). For related structures, see: Khawar Rauf et al. (2006); Yusof et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

An equimolar amount of 2-(trifluoromethyl)aniline (1.14 g, 7.09 mmol) in 20 ml acetone was added drop-wise into a stirring acetone solution (75 ml) containing 4-chlorobutanoylchloride (1.00 g, 7.09 mmol) and ammonium thiocyanate (0.54 g, 7.09 mmol). The mixture was refluxed for 1 h. Then, the solution was filtered-off and left to evaporate at room temperature to yield colourless needles.

Refinement top

N-bound H atoms was located from the difference map and refined freely, [N–H = 0.856 (17) and 0.849 (15) Å]. The remaining H atoms were positioned geometrically [C–H = 0.95 or 0.99 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Structure description top

As part of our ongoing studies of thiourea derivatives we now describe the title compound. It is analogous to the previously reported N-(4-chlorobutanoyl)-N'- (2-fluorophenyl)thiourea (Yusof et al., 2011) except the fluoro atom is replaced by trifluoromethyl atom.

In the molecular structure (Fig. 1), the benzene ring (C1–C6) is essentially planar with maximum deviation of 0.011 (1) Å at atom C5. The intramolecular N1—H1N1···O1 hydrogen bond (Table 1) generates S(6) ring motifs (Berstein et al., 1995). The bond lengths and angles are within normal ranges and are comparable to the related structures (Khawar Rauf et al., 2006; Yusof et al., 2007).

The crystal packing is shown in Fig. 2. R12(6), R22(8), R22(12) ring motifs (Berstein et al. 1995) are formed by intermolecular N2—H1N2···S1, N1—H1N1···O1 and C9—H9A···S1 (Table 1) hydrogen bonds, respectively. Intermolecular C2—H2A···Cl1 and C3—H3A···F1 (Table 1) interactions linked the molecules into three-dimensional network. ππ interaction [Cg1···Cg1 (-1 - x, 1 - y, 1 - z) = 3.7098 (6) Å;] are also observed [Cg1: C1–C6].

For a related structure and background to thiourea derivatives, see: Yusof et al. (2011). For related structures, see: Khawar Rauf et al. (2006); Yusof et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
N-(4-Chlorobutanoyl)-N'-[2-(trifluoromethyl)phenyl]thiourea top
Crystal data top
C12H12ClF3N2OSZ = 2
Mr = 324.75F(000) = 332
Triclinic, P1Dx = 1.605 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8622 (1) ÅCell parameters from 9937 reflections
b = 8.9073 (1) Åθ = 2.5–32.6°
c = 11.0341 (1) ŵ = 0.47 mm1
α = 113.687 (1)°T = 100 K
β = 103.419 (1)°Needle, colourless
γ = 95.653 (1)°0.41 × 0.19 × 0.15 mm
V = 672.18 (2) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4884 independent reflections
Radiation source: fine-focus sealed tube4304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 32.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.829, Tmax = 0.932k = 1312
18148 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.3295P]
where P = (Fo2 + 2Fc2)/3
4884 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C12H12ClF3N2OSγ = 95.653 (1)°
Mr = 324.75V = 672.18 (2) Å3
Triclinic, P1Z = 2
a = 7.8622 (1) ÅMo Kα radiation
b = 8.9073 (1) ŵ = 0.47 mm1
c = 11.0341 (1) ÅT = 100 K
α = 113.687 (1)°0.41 × 0.19 × 0.15 mm
β = 103.419 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4884 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4304 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.932Rint = 0.021
18148 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.49 e Å3
4884 reflectionsΔρmin = 0.32 e Å3
189 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.66943 (3)0.08190 (3)0.87826 (3)0.01972 (6)
S10.77778 (4)0.12238 (3)0.48626 (3)0.01851 (6)
F10.97525 (9)0.59829 (9)0.65758 (8)0.02506 (15)
F20.86578 (9)0.81937 (8)0.70633 (8)0.02360 (14)
F30.97036 (10)0.74396 (10)0.86623 (7)0.02883 (16)
O11.11812 (11)0.39045 (10)0.93786 (8)0.02277 (17)
N10.83210 (12)0.36357 (10)0.74177 (9)0.01434 (15)
N21.02233 (11)0.17737 (10)0.71774 (9)0.01377 (15)
C10.69392 (13)0.58116 (12)0.69974 (9)0.01248 (16)
C20.54109 (13)0.64135 (12)0.66718 (10)0.01409 (16)
H2A0.55230.74910.66830.017*
C30.37240 (13)0.54429 (13)0.63303 (10)0.01548 (17)
H3A0.26850.58640.61230.019*
C40.35583 (14)0.38496 (13)0.62916 (10)0.01655 (18)
H4A0.24040.31750.60380.020*
C50.50789 (14)0.32467 (12)0.66239 (10)0.01537 (17)
H5A0.49620.21620.65980.018*
C60.67708 (13)0.42288 (12)0.69935 (9)0.01262 (16)
C70.87834 (13)0.22901 (12)0.65719 (10)0.01306 (16)
C81.13277 (14)0.25600 (12)0.85287 (10)0.01538 (17)
C91.27517 (14)0.16553 (12)0.88836 (10)0.01620 (17)
H9A1.29200.08270.80210.019*
H9B1.23700.10430.93850.019*
C101.45172 (14)0.29236 (12)0.97903 (10)0.01529 (17)
H10A1.48750.35220.92720.018*
H10B1.43100.37651.06280.018*
C111.60482 (14)0.21825 (13)1.02413 (10)0.01720 (18)
H11A1.56890.15381.07260.021*
H11B1.70870.31001.09020.021*
C120.87515 (13)0.68537 (12)0.73243 (11)0.01615 (17)
H1N21.050 (2)0.0918 (19)0.6625 (16)0.021 (4)*
H1N10.895 (2)0.413 (2)0.8270 (17)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01900 (12)0.01807 (11)0.01890 (11)0.00744 (9)0.00681 (9)0.00360 (9)
S10.01973 (12)0.01899 (12)0.01193 (11)0.00983 (9)0.00168 (9)0.00240 (9)
F10.0166 (3)0.0231 (3)0.0371 (4)0.0074 (3)0.0159 (3)0.0098 (3)
F20.0204 (3)0.0169 (3)0.0348 (4)0.0028 (2)0.0088 (3)0.0125 (3)
F30.0184 (3)0.0350 (4)0.0206 (3)0.0043 (3)0.0044 (3)0.0078 (3)
O10.0251 (4)0.0206 (4)0.0152 (3)0.0129 (3)0.0010 (3)0.0015 (3)
N10.0152 (4)0.0144 (3)0.0114 (3)0.0069 (3)0.0024 (3)0.0038 (3)
N20.0141 (4)0.0126 (3)0.0131 (3)0.0064 (3)0.0030 (3)0.0039 (3)
C10.0115 (4)0.0135 (4)0.0110 (4)0.0036 (3)0.0033 (3)0.0038 (3)
C20.0140 (4)0.0149 (4)0.0128 (4)0.0056 (3)0.0042 (3)0.0048 (3)
C30.0117 (4)0.0216 (4)0.0130 (4)0.0064 (3)0.0040 (3)0.0066 (3)
C40.0130 (4)0.0209 (4)0.0150 (4)0.0023 (3)0.0051 (3)0.0070 (3)
C50.0157 (4)0.0157 (4)0.0147 (4)0.0034 (3)0.0051 (3)0.0064 (3)
C60.0126 (4)0.0138 (4)0.0105 (4)0.0053 (3)0.0033 (3)0.0039 (3)
C70.0138 (4)0.0128 (4)0.0129 (4)0.0048 (3)0.0043 (3)0.0053 (3)
C80.0155 (4)0.0154 (4)0.0138 (4)0.0060 (3)0.0030 (3)0.0052 (3)
C90.0157 (4)0.0146 (4)0.0155 (4)0.0065 (3)0.0011 (3)0.0049 (3)
C100.0171 (4)0.0127 (4)0.0138 (4)0.0051 (3)0.0037 (3)0.0037 (3)
C110.0163 (4)0.0174 (4)0.0140 (4)0.0061 (3)0.0033 (3)0.0031 (3)
C120.0127 (4)0.0155 (4)0.0175 (4)0.0032 (3)0.0037 (3)0.0051 (3)
Geometric parameters (Å, º) top
Cl1—C111.8038 (10)C2—H2A0.9500
S1—C71.6748 (10)C3—C41.3947 (14)
F1—C121.3455 (12)C3—H3A0.9500
F2—C121.3404 (12)C4—C51.3904 (14)
F3—C121.3430 (12)C4—H4A0.9500
O1—C81.2255 (12)C5—C61.3905 (14)
N1—C71.3358 (12)C5—H5A0.9500
N1—C61.4298 (12)C8—C91.5112 (14)
N1—H1N10.856 (17)C9—C101.5305 (14)
N2—C81.3813 (13)C9—H9A0.9900
N2—C71.3921 (12)C9—H9B0.9900
N2—H1N20.849 (15)C10—C111.5082 (14)
C1—C21.3935 (13)C10—H10A0.9900
C1—C61.4011 (13)C10—H10B0.9900
C1—C121.5013 (14)C11—H11A0.9900
C2—C31.3888 (14)C11—H11B0.9900
C7—N1—C6123.49 (8)O1—C8—N2122.61 (9)
C7—N1—H1N1118.1 (11)O1—C8—C9122.16 (9)
C6—N1—H1N1118.3 (11)N2—C8—C9115.22 (8)
C8—N2—C7127.83 (8)C8—C9—C10109.74 (8)
C8—N2—H1N2116.8 (10)C8—C9—H9A109.7
C7—N2—H1N2115.1 (10)C10—C9—H9A109.7
C2—C1—C6119.79 (9)C8—C9—H9B109.7
C2—C1—C12119.61 (9)C10—C9—H9B109.7
C6—C1—C12120.59 (8)H9A—C9—H9B108.2
C3—C2—C1120.22 (9)C11—C10—C9115.10 (8)
C3—C2—H2A119.9C11—C10—H10A108.5
C1—C2—H2A119.9C9—C10—H10A108.5
C2—C3—C4119.88 (9)C11—C10—H10B108.5
C2—C3—H3A120.1C9—C10—H10B108.5
C4—C3—H3A120.1H10A—C10—H10B107.5
C5—C4—C3120.14 (9)C10—C11—Cl1111.48 (7)
C5—C4—H4A119.9C10—C11—H11A109.3
C3—C4—H4A119.9Cl1—C11—H11A109.3
C4—C5—C6120.12 (9)C10—C11—H11B109.3
C4—C5—H5A119.9Cl1—C11—H11B109.3
C6—C5—H5A119.9H11A—C11—H11B108.0
C5—C6—C1119.81 (9)F2—C12—F3106.59 (8)
C5—C6—N1119.42 (8)F2—C12—F1106.08 (8)
C1—C6—N1120.72 (9)F3—C12—F1106.43 (8)
N1—C7—N2116.42 (8)F2—C12—C1112.63 (8)
N1—C7—S1124.76 (7)F3—C12—C1112.29 (8)
N2—C7—S1118.81 (7)F1—C12—C1112.35 (8)
C6—C1—C2—C30.66 (14)C8—N2—C7—N15.61 (15)
C12—C1—C2—C3178.23 (9)C8—N2—C7—S1173.63 (8)
C1—C2—C3—C41.03 (14)C7—N2—C8—O12.41 (17)
C2—C3—C4—C51.43 (14)C7—N2—C8—C9178.37 (9)
C3—C4—C5—C60.13 (15)O1—C8—C9—C1040.56 (14)
C4—C5—C6—C11.56 (14)N2—C8—C9—C10138.66 (9)
C4—C5—C6—N1176.03 (9)C8—C9—C10—C11178.93 (8)
C2—C1—C6—C51.95 (14)C9—C10—C11—Cl165.16 (10)
C12—C1—C6—C5176.93 (9)C2—C1—C12—F29.09 (13)
C2—C1—C6—N1175.61 (8)C6—C1—C12—F2169.80 (8)
C12—C1—C6—N15.52 (13)C2—C1—C12—F3111.26 (10)
C7—N1—C6—C566.17 (13)C6—C1—C12—F369.86 (12)
C7—N1—C6—C1116.27 (11)C2—C1—C12—F1128.80 (9)
C6—N1—C7—N2173.57 (9)C6—C1—C12—F150.08 (12)
C6—N1—C7—S17.24 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.855 (16)1.971 (17)2.6486 (12)135.4 (16)
N1—H1N1···O1i0.855 (16)2.514 (17)3.2273 (12)141.6 (14)
N2—H1N2···S1ii0.849 (17)2.682 (17)3.5079 (10)164.7 (14)
C2—H2A···Cl1iii0.952.823.5535 (11)135
C3—H3A···F1iv0.952.473.2617 (13)140
C9—H9A···S1ii0.992.843.7829 (10)159
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y, z+1; (iii) x1, y+1, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H12ClF3N2OS
Mr324.75
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8622 (1), 8.9073 (1), 11.0341 (1)
α, β, γ (°)113.687 (1), 103.419 (1), 95.653 (1)
V3)672.18 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.41 × 0.19 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.829, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
18148, 4884, 4304
Rint0.021
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 0.97
No. of reflections4884
No. of parameters189
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.855 (16)1.971 (17)2.6486 (12)135.4 (16)
N1—H1N1···O1i0.855 (16)2.514 (17)3.2273 (12)141.6 (14)
N2—H1N2···S1ii0.849 (17)2.682 (17)3.5079 (10)164.7 (14)
C2—H2A···Cl1iii0.952.823.5535 (11)135
C3—H3A···F1iv0.952.473.2617 (13)140
C9—H9A···S1ii0.992.843.7829 (10)159
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y, z+1; (iii) x1, y+1, z; (iv) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009

Acknowledgements

The authors thank the Malaysian Government, Universiti Malaysia Terengganu and Universiti Sains Malaysia for research facilities and the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171 and FRGS 59178 to conduct this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006). Acta Cryst. E62, o4299–o4301.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Yaakob, W. N. A., Kadir, M. A. & Yamin, B. M. (2007). Acta Cryst. E63, o241–o243.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds