metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m358-m359

[N′-(3-Eth­­oxy-2-oxido­benzyl­­idene)-4-hy­dr­oxy-3-meth­­oxy­benzohydrazidato](methanol)dioxidomolybdenum(VI)

aLaboratory Management Center, Zaozhuang University, Zaozhuang 277160, People's Republic of China
*Correspondence e-mail: shouxing_wang@126.com

(Received 24 February 2012; accepted 26 February 2012; online 3 March 2012)

In the title dioxidomolybdenum(VI) complex, [Mo(C17H16N2O5)O2(CH3OH)], the MoVI atom is coordinated by the phenolate O, imine N and enolic O atoms of the tridentate hydrazone ligand, one methanol O atom, and two oxide O atoms, forming a distorted octa­hedral coordination geometry. The oxide O atoms adopt a cis conformation: one is trans to the methanol O atom and the other is trans to the ligand N atom. The dihedral angle between the two benzene rings in the hydrazone ligand is 4.0 (3)°. In the crystal, mol­ecules are linked by O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For background to molybdenum complexes with hydrazone ligands, see: Dinda et al. (2003[Dinda, R., Sengupta, P., Ghosh, S. & Sheldrick, W. S. (2003). Eur. J. Inorg. Chem. pp. 363-369.]); Vrdoljak et al. (2005[Vrdoljak, V., Cindric, M., Matkovic-Calogovic, D., Prugovecki, B., Novak, P. & Kamenar, B. (2005). Z. Anorg. Allg. Chem. 631, 928-936.]); Debel et al. (2008[Debel, R., Buchholz, A. & Plass, W. (2008). Z. Anorg. Allg. Chem. 634, 2291-2298.]). For similar complexes, see: Sheikhshoaie et al. (2011[Sheikhshoaie, I., Langer, V. & Yasrebi, S. A. (2011). Acta Cryst. E67, m839-m840.]); Gao et al. (2004[Gao, S., Zhang, X.-F., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. E60, m1731-m1733.]); Saeednia et al. (2009[Saeednia, S., Sheikhshoaie, I. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1591.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C17H16N2O5)O2(CH4O)]

  • Mr = 488.30

  • Monoclinic, P 21 /c

  • a = 10.054 (2) Å

  • b = 16.401 (3) Å

  • c = 12.233 (3) Å

  • β = 101.946 (2)°

  • V = 1973.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.853, Tmax = 0.871

  • 11140 measured reflections

  • 4300 independent reflections

  • 3162 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.093

  • S = 1.03

  • 4300 reflections

  • 269 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—O8 1.683 (3)
Mo1—O7 1.707 (2)
Mo1—O1 1.920 (2)
Mo1—O3 2.009 (2)
Mo1—N1 2.238 (3)
Mo1—O6 2.364 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯N2i 0.85 (1) 2.01 (1) 2.853 (4) 175 (5)
O5—H5⋯O4 0.82 2.20 2.646 (4) 114
O5—H5⋯O7ii 0.82 2.12 2.828 (3) 145
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molybdenum complexes with hydrazones have received much attention for their structures and catalytic properties (Dinda et al., 2003; Vrdoljak et al., 2005; Debel et al., 2008). In the present work, the author reports the title new dioxomolybdenum(VI) complex with a new hydrazone ligand N'-[(3-ethoxy-2-hydroxybenzylidene]-4-hydroxy-3- methoxybenzohydrazide.

In the title complex, Fig. 1, the Mo atom is six-coordinated by the phenolate O, imine N, and enolic O atoms of the hydrazone ligand, one methanol O atom, and two oxide O atoms, forming an octahedral geometry. The dihedral angle between the two benzene rings in the hydrazone ligand is 4.0 (3)°. The lengths of Mo—O and Mo—N bonds (Table 1) are within normal values (Sheikhshoaie et al., 2011; Gao et al., 2004; Saeednia et al., 2009). The crystal of the complex features intermolecular O—H···N and O—H···O hydrogen bonds (Table 2, Fig. 2).

Related literature top

For background to molybdenum complexes with hydrazone ligands, see: Dinda et al. (2003); Vrdoljak et al. (2005); Debel et al. (2008). For similar complexes, see: Sheikhshoaie et al. (2011); Gao et al. (2004); Saeednia et al. (2009).

Experimental top

The title compound was obtained by stirring 3-ethoxysalicylaldehyde (0.1 mmol, 16.6 mg), 4-hydroxy-3-methoxybenzohydrazide (0.1 mmol, 18.2 mg), and MoO2(acac)2 (0.1 mmol, 32.6 mg) in methanol (20 ml) for 30 min. The reaction mixture was then filtered. Yellow block-shaped single crystals were formed from the filtrate after a week.

Refinement top

The methanol H atom was located from a difference Fourier map and refined isotropically, with O—H distance restrained to 0.85 (1) Å. The remaining hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, O—H distance of 0.82 Å, and with Uiso(H) set at 1.2 or 1.5Ueq(C, O).

Structure description top

Molybdenum complexes with hydrazones have received much attention for their structures and catalytic properties (Dinda et al., 2003; Vrdoljak et al., 2005; Debel et al., 2008). In the present work, the author reports the title new dioxomolybdenum(VI) complex with a new hydrazone ligand N'-[(3-ethoxy-2-hydroxybenzylidene]-4-hydroxy-3- methoxybenzohydrazide.

In the title complex, Fig. 1, the Mo atom is six-coordinated by the phenolate O, imine N, and enolic O atoms of the hydrazone ligand, one methanol O atom, and two oxide O atoms, forming an octahedral geometry. The dihedral angle between the two benzene rings in the hydrazone ligand is 4.0 (3)°. The lengths of Mo—O and Mo—N bonds (Table 1) are within normal values (Sheikhshoaie et al., 2011; Gao et al., 2004; Saeednia et al., 2009). The crystal of the complex features intermolecular O—H···N and O—H···O hydrogen bonds (Table 2, Fig. 2).

For background to molybdenum complexes with hydrazone ligands, see: Dinda et al. (2003); Vrdoljak et al. (2005); Debel et al. (2008). For similar complexes, see: Sheikhshoaie et al. (2011); Gao et al. (2004); Saeednia et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing structure of the title complex, viewed along the a axis. Hydrogen bonds are drawn as dashed lines.
[N'-(3-Ethoxy-2-oxidobenzylidene)-4-hydroxy-3- methoxybenzohydrazidato](methanol)dioxidomolybdenum(VI) top
Crystal data top
[Mo(C17H16N2O5)O2(CH4O)]F(000) = 992
Mr = 488.30Dx = 1.643 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.054 (2) ÅCell parameters from 2809 reflections
b = 16.401 (3) Åθ = 2.7–25.1°
c = 12.233 (3) ŵ = 0.71 mm1
β = 101.946 (2)°T = 298 K
V = 1973.5 (7) Å3Block, yellow
Z = 40.23 × 0.21 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
4300 independent reflections
Radiation source: fine-focus sealed tube3162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scanθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1210
Tmin = 0.853, Tmax = 0.871k = 1320
11140 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0346P)2 + 1.5131P]
where P = (Fo2 + 2Fc2)/3
4300 reflections(Δ/σ)max < 0.001
269 parametersΔρmax = 0.62 e Å3
1 restraintΔρmin = 0.69 e Å3
Crystal data top
[Mo(C17H16N2O5)O2(CH4O)]V = 1973.5 (7) Å3
Mr = 488.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.054 (2) ŵ = 0.71 mm1
b = 16.401 (3) ÅT = 298 K
c = 12.233 (3) Å0.23 × 0.21 × 0.20 mm
β = 101.946 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4300 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3162 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.871Rint = 0.040
11140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.62 e Å3
4300 reflectionsΔρmin = 0.69 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.20815 (3)0.10239 (2)0.35081 (2)0.02894 (11)
N10.4173 (3)0.05321 (18)0.3574 (2)0.0250 (7)
N20.5200 (3)0.08381 (18)0.4423 (2)0.0260 (7)
O10.1607 (2)0.00584 (16)0.2626 (2)0.0354 (6)
O20.0005 (3)0.07464 (17)0.1042 (2)0.0449 (7)
O30.3379 (2)0.15737 (15)0.4761 (2)0.0332 (6)
O40.9131 (2)0.23736 (17)0.7064 (2)0.0410 (7)
O50.7908 (3)0.3165 (2)0.8463 (2)0.0507 (8)
H50.86850.32040.83570.076*
O60.2310 (3)0.00410 (17)0.4948 (2)0.0357 (6)
O70.0629 (2)0.12772 (16)0.3944 (2)0.0381 (7)
O80.2216 (3)0.16890 (18)0.2489 (2)0.0459 (7)
C10.3597 (4)0.0307 (2)0.1922 (3)0.0337 (9)
C20.2189 (4)0.0313 (2)0.1862 (3)0.0307 (9)
C30.1332 (4)0.0746 (2)0.0993 (3)0.0355 (9)
C40.1891 (4)0.1132 (3)0.0195 (3)0.0460 (11)
H40.13300.14120.03840.055*
C50.3281 (5)0.1108 (3)0.0245 (3)0.0519 (12)
H5A0.36380.13640.03090.062*
C60.4132 (4)0.0715 (3)0.1099 (3)0.0440 (11)
H6A0.50650.07170.11340.053*
C70.0893 (4)0.1285 (3)0.0308 (4)0.0546 (13)
H7A0.05660.18420.04200.065*
H7B0.09220.11360.04640.065*
C80.4533 (4)0.0069 (2)0.2837 (3)0.0318 (9)
H80.54560.00290.28980.038*
C90.4682 (3)0.1391 (2)0.4979 (3)0.0261 (8)
C100.5546 (3)0.1847 (2)0.5889 (3)0.0251 (8)
C110.6961 (3)0.1855 (2)0.6019 (3)0.0276 (8)
H110.73710.15630.55270.033*
C120.7752 (3)0.2295 (2)0.6876 (3)0.0288 (8)
C130.7136 (4)0.2728 (2)0.7621 (3)0.0347 (9)
C140.5754 (4)0.2711 (3)0.7500 (3)0.0431 (11)
H140.53510.29920.80070.052*
C150.4948 (4)0.2285 (2)0.6640 (3)0.0357 (9)
H150.40080.22890.65600.043*
C160.9849 (4)0.1843 (3)0.6466 (4)0.0459 (11)
H16A0.96360.12870.66050.069*
H16B1.08090.19310.67080.069*
H16C0.95850.19550.56800.069*
C170.1822 (5)0.0181 (3)0.5950 (4)0.0558 (12)
H17A0.22570.06550.63220.084*
H17B0.20250.02840.64330.084*
H17C0.08570.02650.57670.084*
C180.2272 (5)0.1219 (3)0.0562 (4)0.0709 (16)
H18A0.22350.13730.13250.106*
H18B0.28860.15740.00760.106*
H18C0.25860.06660.04500.106*
H60.303 (3)0.024 (3)0.511 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02297 (16)0.0324 (2)0.02923 (16)0.00327 (15)0.00036 (11)0.00289 (16)
N10.0226 (14)0.0258 (18)0.0255 (14)0.0006 (13)0.0022 (11)0.0011 (13)
N20.0231 (14)0.0284 (19)0.0250 (14)0.0023 (13)0.0014 (12)0.0044 (13)
O10.0278 (13)0.0443 (17)0.0327 (13)0.0031 (12)0.0028 (11)0.0133 (12)
O20.0377 (16)0.0480 (19)0.0451 (16)0.0068 (13)0.0001 (13)0.0127 (14)
O30.0254 (13)0.0348 (16)0.0366 (14)0.0043 (11)0.0001 (11)0.0101 (12)
O40.0257 (13)0.0491 (19)0.0464 (16)0.0047 (13)0.0033 (12)0.0179 (14)
O50.0381 (16)0.067 (2)0.0477 (17)0.0168 (16)0.0106 (13)0.0329 (16)
O60.0380 (15)0.0371 (17)0.0331 (14)0.0124 (12)0.0094 (12)0.0000 (12)
O70.0253 (13)0.0424 (17)0.0457 (15)0.0103 (12)0.0055 (11)0.0024 (13)
O80.0429 (16)0.0486 (19)0.0431 (16)0.0050 (14)0.0017 (13)0.0102 (14)
C10.035 (2)0.033 (2)0.0323 (19)0.0005 (18)0.0052 (16)0.0063 (17)
C20.036 (2)0.030 (2)0.0248 (18)0.0018 (17)0.0026 (15)0.0005 (16)
C30.039 (2)0.031 (2)0.034 (2)0.0017 (18)0.0019 (17)0.0013 (17)
C40.051 (3)0.047 (3)0.038 (2)0.003 (2)0.0029 (19)0.017 (2)
C50.055 (3)0.060 (3)0.042 (2)0.004 (2)0.014 (2)0.024 (2)
C60.036 (2)0.053 (3)0.044 (2)0.004 (2)0.0085 (18)0.015 (2)
C70.050 (3)0.050 (3)0.055 (3)0.007 (2)0.011 (2)0.014 (2)
C80.0244 (18)0.038 (2)0.0326 (19)0.0040 (17)0.0042 (15)0.0066 (18)
C90.0266 (18)0.027 (2)0.0237 (17)0.0015 (16)0.0028 (14)0.0021 (16)
C100.0284 (18)0.021 (2)0.0251 (16)0.0006 (15)0.0035 (14)0.0007 (15)
C110.0303 (18)0.027 (2)0.0261 (17)0.0027 (16)0.0081 (14)0.0029 (16)
C120.0262 (18)0.029 (2)0.0297 (18)0.0013 (16)0.0019 (15)0.0006 (16)
C130.035 (2)0.039 (3)0.0302 (19)0.0065 (18)0.0065 (16)0.0095 (18)
C140.040 (2)0.050 (3)0.042 (2)0.001 (2)0.0143 (18)0.018 (2)
C150.0254 (19)0.040 (3)0.042 (2)0.0021 (17)0.0084 (16)0.0104 (19)
C160.031 (2)0.051 (3)0.058 (3)0.001 (2)0.0139 (19)0.009 (2)
C170.050 (3)0.062 (3)0.059 (3)0.009 (2)0.021 (2)0.007 (3)
C180.046 (3)0.082 (4)0.078 (4)0.014 (3)0.001 (3)0.011 (3)
Geometric parameters (Å, º) top
Mo1—O81.683 (3)C5—C61.367 (5)
Mo1—O71.707 (2)C5—H5A0.9300
Mo1—O11.920 (2)C6—H6A0.9300
Mo1—O32.009 (2)C7—C181.487 (6)
Mo1—N12.238 (3)C7—H7A0.9700
Mo1—O62.364 (3)C7—H7B0.9700
N1—C81.286 (4)C8—H80.9300
N1—N21.398 (4)C9—C101.467 (4)
N2—C91.305 (4)C10—C151.397 (5)
O1—C21.347 (4)C10—C111.399 (5)
O2—C31.358 (4)C11—C121.380 (5)
O2—C71.432 (4)C11—H110.9300
O3—C91.316 (4)C12—C131.398 (5)
O4—C121.364 (4)C13—C141.366 (5)
O4—C161.425 (4)C14—C151.378 (5)
O5—C131.360 (4)C14—H140.9300
O5—H50.8200C15—H150.9300
O6—C171.430 (5)C16—H16A0.9600
O6—H60.847 (10)C16—H16B0.9600
C1—C21.402 (5)C16—H16C0.9600
C1—C61.405 (5)C17—H17A0.9600
C1—C81.444 (5)C17—H17B0.9600
C2—C31.413 (5)C17—H17C0.9600
C3—C41.377 (5)C18—H18A0.9600
C4—C51.386 (6)C18—H18B0.9600
C4—H40.9300C18—H18C0.9600
O8—Mo1—O7106.19 (13)C18—C7—H7A110.1
O8—Mo1—O199.61 (12)O2—C7—H7B110.1
O7—Mo1—O1104.31 (12)C18—C7—H7B110.1
O8—Mo1—O397.79 (12)H7A—C7—H7B108.4
O7—Mo1—O396.60 (11)N1—C8—C1124.3 (3)
O1—Mo1—O3147.72 (10)N1—C8—H8117.9
O8—Mo1—N192.37 (12)C1—C8—H8117.9
O7—Mo1—N1159.23 (11)N2—C9—O3122.7 (3)
O1—Mo1—N181.09 (10)N2—C9—C10120.8 (3)
O3—Mo1—N171.19 (10)O3—C9—C10116.5 (3)
O8—Mo1—O6169.67 (11)C15—C10—C11119.1 (3)
O7—Mo1—O683.73 (11)C15—C10—C9119.6 (3)
O1—Mo1—O680.25 (10)C11—C10—C9121.3 (3)
O3—Mo1—O677.86 (10)C12—C11—C10120.3 (3)
N1—Mo1—O677.38 (9)C12—C11—H11119.9
C8—N1—N2117.5 (3)C10—C11—H11119.9
C8—N1—Mo1125.9 (2)O4—C12—C11125.7 (3)
N2—N1—Mo1116.2 (2)O4—C12—C13114.5 (3)
C9—N2—N1108.9 (3)C11—C12—C13119.8 (3)
C2—O1—Mo1132.1 (2)O5—C13—C14120.1 (3)
C3—O2—C7117.9 (3)O5—C13—C12120.1 (3)
C9—O3—Mo1121.0 (2)C14—C13—C12119.8 (3)
C12—O4—C16117.4 (3)C13—C14—C15121.1 (4)
C13—O5—H5109.5C13—C14—H14119.4
C17—O6—Mo1122.1 (2)C15—C14—H14119.4
C17—O6—H6108 (3)C14—C15—C10119.9 (3)
Mo1—O6—H6120 (3)C14—C15—H15120.1
C2—C1—C6119.4 (3)C10—C15—H15120.1
C2—C1—C8122.2 (3)O4—C16—H16A109.5
C6—C1—C8118.3 (3)O4—C16—H16B109.5
O1—C2—C1122.6 (3)H16A—C16—H16B109.5
O1—C2—C3117.7 (3)O4—C16—H16C109.5
C1—C2—C3119.7 (3)H16A—C16—H16C109.5
O2—C3—C4125.7 (3)H16B—C16—H16C109.5
O2—C3—C2115.0 (3)O6—C17—H17A109.5
C4—C3—C2119.3 (4)O6—C17—H17B109.5
C3—C4—C5120.7 (4)H17A—C17—H17B109.5
C3—C4—H4119.6O6—C17—H17C109.5
C5—C4—H4119.6H17A—C17—H17C109.5
C6—C5—C4120.9 (4)H17B—C17—H17C109.5
C6—C5—H5A119.6C7—C18—H18A109.5
C4—C5—H5A119.6C7—C18—H18B109.5
C5—C6—C1120.0 (4)H18A—C18—H18B109.5
C5—C6—H6A120.0C7—C18—H18C109.5
C1—C6—H6A120.0H18A—C18—H18C109.5
O2—C7—C18108.1 (4)H18B—C18—H18C109.5
O2—C7—H7A110.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N2i0.85 (1)2.01 (1)2.853 (4)175 (5)
O5—H5···O40.822.202.646 (4)114
O5—H5···O7ii0.822.122.828 (3)145
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mo(C17H16N2O5)O2(CH4O)]
Mr488.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.054 (2), 16.401 (3), 12.233 (3)
β (°) 101.946 (2)
V3)1973.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.23 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.853, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
11140, 4300, 3162
Rint0.040
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.093, 1.03
No. of reflections4300
No. of parameters269
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.69

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mo1—O81.683 (3)Mo1—O32.009 (2)
Mo1—O71.707 (2)Mo1—N12.238 (3)
Mo1—O11.920 (2)Mo1—O62.364 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N2i0.847 (10)2.008 (12)2.853 (4)175 (5)
O5—H5···O40.822.202.646 (4)114
O5—H5···O7ii0.822.122.828 (3)145
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The author thanks Zaozhuang University for support.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDebel, R., Buchholz, A. & Plass, W. (2008). Z. Anorg. Allg. Chem. 634, 2291–2298.  Web of Science CSD CrossRef CAS Google Scholar
First citationDinda, R., Sengupta, P., Ghosh, S. & Sheldrick, W. S. (2003). Eur. J. Inorg. Chem. pp. 363–369.  Web of Science CSD CrossRef Google Scholar
First citationGao, S., Zhang, X.-F., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. E60, m1731–m1733.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeednia, S., Sheikhshoaie, I. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1591.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheikhshoaie, I., Langer, V. & Yasrebi, S. A. (2011). Acta Cryst. E67, m839–m840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVrdoljak, V., Cindric, M., Matkovic-Calogovic, D., Prugovecki, B., Novak, P. & Kamenar, B. (2005). Z. Anorg. Allg. Chem. 631, 928–936.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m358-m359
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds