organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[3-(4-Chloro­phen­yl)-5-(4-meth­­oxy­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]butan-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 27 February 2012; accepted 29 February 2012; online 7 March 2012)

In the title compound, C20H21ClN2O2, the benzene rings form dihedral angles of 6.35 (5) and 81.82 (5)° with the mean plane of the 4,5-dihydro-1H-pyrazole ring (r.m.s. deviation = 0.145 Å). This latter ring adopts an envelope conformation with the CH grouping as the flap. The dihedral angle between the benzene rings is 75.63 (4)°. In the crystal, mol­ecules are linked by C—H⋯Cl and C—H⋯O hydrogen bonds into chains along [-201]. The crystal structure also features C—H⋯π inter­actions.

Related literature

For a related structure, see: Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582-o583.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21ClN2O2

  • Mr = 356.84

  • Triclinic, [P \overline 1]

  • a = 6.7918 (3) Å

  • b = 10.8822 (4) Å

  • c = 13.2576 (5) Å

  • α = 109.202 (1)°

  • β = 91.396 (1)°

  • γ = 105.087 (1)°

  • V = 886.93 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.43 × 0.17 × 0.14 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.968

  • 17324 measured reflections

  • 6403 independent reflections

  • 5492 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.104

  • S = 1.04

  • 6403 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯Cl1i 0.93 2.73 3.4539 (10) 135
C14—H14A⋯O2ii 0.93 2.51 3.3253 (12) 147
C18—H18ACg1iii 0.97 2.62 3.4514 (9) 144
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x-1, -y+1, -z+2; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the synthesis and sturctures of pyrazoline derivatives (Fun et al., 2010), the title compound (I) is prepared and its crystal structure is reported.

In the title molecule (Fig. 1), the two benzene rings (C1-C6 and C10-C15) form dihedral angles of 6.35 (5) and 81.82 (5)°, respectively, with the mean plane of 4,5-dihydro-1H-pyrazole ring (N1/N2/C7-C9, r.m.s. deviation = 0.145 Å). The dihedral angle between the two benzene rings is 75.63 (4)°. Bond lengths are comparable with a related structure (Fun et al., 2010).

In the crystal structure, Fig. 2, molecules are linked via C11–H11A···Cl1 and C14–H14A···O2 hydrogen bonds (Table 1) into chains along [-201]. The crystal structure is further consolidated by C18–H18A···Cg1iii (Table 1) interactions, where Cg1 is the centroid of C1-C6 benzene ring.

Related literature top

For a related structure, see: Fun et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of (2E)-1-(4-chlorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (2.72 g, 0.01 mol) and hydrazine hydrate (0.5 ml, 0.01 mol) in 25 ml butyric acid was refluxed for 8 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Colourless blocks of (I) were grown from a DMF solution by slow evaporation and yield of the compound was 76% (m.p. : 369 K).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

In continuation of our work on the synthesis and sturctures of pyrazoline derivatives (Fun et al., 2010), the title compound (I) is prepared and its crystal structure is reported.

In the title molecule (Fig. 1), the two benzene rings (C1-C6 and C10-C15) form dihedral angles of 6.35 (5) and 81.82 (5)°, respectively, with the mean plane of 4,5-dihydro-1H-pyrazole ring (N1/N2/C7-C9, r.m.s. deviation = 0.145 Å). The dihedral angle between the two benzene rings is 75.63 (4)°. Bond lengths are comparable with a related structure (Fun et al., 2010).

In the crystal structure, Fig. 2, molecules are linked via C11–H11A···Cl1 and C14–H14A···O2 hydrogen bonds (Table 1) into chains along [-201]. The crystal structure is further consolidated by C18–H18A···Cg1iii (Table 1) interactions, where Cg1 is the centroid of C1-C6 benzene ring.

For a related structure, see: Fun et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
1-[3-(4-Chlorophenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol- 1-yl]butan-1-one top
Crystal data top
C20H21ClN2O2Z = 2
Mr = 356.84F(000) = 376
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7918 (3) ÅCell parameters from 8526 reflections
b = 10.8822 (4) Åθ = 3.1–32.7°
c = 13.2576 (5) ŵ = 0.23 mm1
α = 109.202 (1)°T = 100 K
β = 91.396 (1)°Block, colourless
γ = 105.087 (1)°0.43 × 0.17 × 0.14 mm
V = 886.93 (6) Å3
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
6403 independent reflections
Radiation source: fine-focus sealed tube5492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 32.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 109
Tmin = 0.908, Tmax = 0.968k = 1616
17324 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2279P]
where P = (Fo2 + 2Fc2)/3
6403 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C20H21ClN2O2γ = 105.087 (1)°
Mr = 356.84V = 886.93 (6) Å3
Triclinic, P1Z = 2
a = 6.7918 (3) ÅMo Kα radiation
b = 10.8822 (4) ŵ = 0.23 mm1
c = 13.2576 (5) ÅT = 100 K
α = 109.202 (1)°0.43 × 0.17 × 0.14 mm
β = 91.396 (1)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
6403 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5492 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.968Rint = 0.021
17324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.04Δρmax = 0.43 e Å3
6403 reflectionsΔρmin = 0.30 e Å3
228 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89607 (4)0.72819 (3)0.48730 (2)0.02770 (7)
O10.64280 (11)0.12922 (7)0.66911 (6)0.02244 (14)
O20.24411 (10)0.75836 (7)0.97896 (5)0.01753 (13)
N10.11361 (11)0.74489 (7)0.79068 (6)0.01296 (12)
N20.00821 (11)0.71541 (7)0.86691 (6)0.01292 (12)
C10.42153 (13)0.77985 (9)0.65141 (7)0.01642 (15)
H1A0.33540.83580.66290.020*
C20.57466 (14)0.79372 (10)0.58516 (7)0.01864 (16)
H2A0.59300.85940.55300.022*
C30.70038 (13)0.70779 (10)0.56759 (7)0.01822 (16)
C40.67516 (13)0.60834 (9)0.61348 (7)0.01807 (16)
H4A0.75850.55050.59950.022*
C50.52253 (13)0.59623 (9)0.68109 (7)0.01569 (15)
H5A0.50510.53040.71300.019*
C60.39554 (12)0.68211 (8)0.70129 (6)0.01347 (14)
C70.24252 (12)0.67322 (8)0.77666 (6)0.01296 (14)
C80.22791 (12)0.59223 (8)0.85087 (7)0.01436 (14)
H8A0.33900.63420.90950.017*
H8B0.22930.49980.81230.017*
C90.01915 (12)0.59689 (8)0.89181 (6)0.01294 (14)
H9A0.02970.61610.96960.016*
C100.15764 (12)0.47169 (8)0.83447 (6)0.01292 (14)
C110.15456 (14)0.38856 (9)0.72900 (7)0.01689 (15)
H11A0.04030.40900.69390.020*
C120.31873 (14)0.27611 (9)0.67577 (7)0.01846 (16)
H12A0.31350.22180.60570.022*
C130.49209 (13)0.24412 (9)0.72721 (7)0.01629 (15)
C140.49940 (13)0.32638 (9)0.83207 (7)0.01572 (15)
H14A0.61460.30670.86680.019*
C150.33179 (13)0.43875 (8)0.88443 (7)0.01423 (14)
H15A0.33660.49300.95460.017*
C160.82621 (16)0.09749 (11)0.71737 (10)0.0288 (2)
H16A0.92110.01600.66900.043*
H16B0.88730.17090.73240.043*
H16C0.79350.08430.78320.043*
C170.14102 (12)0.78735 (8)0.91064 (6)0.01265 (14)
C180.14900 (12)0.90227 (8)0.87211 (6)0.01306 (14)
H18A0.18000.86720.79440.016*
H18B0.01510.96880.89050.016*
C190.30931 (13)0.97135 (8)0.92125 (7)0.01505 (14)
H19A0.27821.00690.99900.018*
H19B0.44340.90500.90300.018*
C200.31538 (16)1.08654 (9)0.88125 (8)0.02108 (17)
H20A0.41381.13020.91600.032*
H20B0.35411.05080.80480.032*
H20C0.18201.15130.89770.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02295 (12)0.03579 (14)0.02385 (12)0.00841 (9)0.01502 (9)0.00879 (9)
O10.0177 (3)0.0192 (3)0.0253 (3)0.0002 (2)0.0032 (2)0.0053 (3)
O20.0185 (3)0.0192 (3)0.0194 (3)0.0091 (2)0.0097 (2)0.0092 (2)
N10.0110 (3)0.0152 (3)0.0140 (3)0.0049 (2)0.0047 (2)0.0057 (2)
N20.0127 (3)0.0142 (3)0.0155 (3)0.0067 (2)0.0061 (2)0.0074 (2)
C10.0142 (3)0.0208 (4)0.0165 (3)0.0072 (3)0.0039 (3)0.0075 (3)
C20.0175 (4)0.0238 (4)0.0162 (4)0.0058 (3)0.0050 (3)0.0088 (3)
C30.0136 (3)0.0243 (4)0.0136 (3)0.0046 (3)0.0052 (3)0.0030 (3)
C40.0143 (4)0.0214 (4)0.0175 (4)0.0078 (3)0.0053 (3)0.0031 (3)
C50.0133 (3)0.0176 (3)0.0163 (3)0.0064 (3)0.0041 (3)0.0043 (3)
C60.0105 (3)0.0168 (3)0.0130 (3)0.0049 (3)0.0027 (2)0.0042 (3)
C70.0103 (3)0.0150 (3)0.0140 (3)0.0044 (3)0.0025 (2)0.0050 (3)
C80.0120 (3)0.0169 (3)0.0178 (3)0.0069 (3)0.0042 (3)0.0083 (3)
C90.0130 (3)0.0143 (3)0.0144 (3)0.0065 (3)0.0041 (3)0.0065 (3)
C100.0130 (3)0.0142 (3)0.0144 (3)0.0062 (3)0.0047 (3)0.0066 (3)
C110.0159 (4)0.0189 (4)0.0159 (3)0.0053 (3)0.0071 (3)0.0055 (3)
C120.0185 (4)0.0191 (4)0.0160 (3)0.0048 (3)0.0054 (3)0.0038 (3)
C130.0151 (3)0.0153 (3)0.0192 (4)0.0039 (3)0.0028 (3)0.0071 (3)
C140.0144 (3)0.0170 (3)0.0197 (4)0.0060 (3)0.0070 (3)0.0098 (3)
C150.0157 (3)0.0156 (3)0.0150 (3)0.0074 (3)0.0061 (3)0.0074 (3)
C160.0190 (4)0.0264 (5)0.0360 (5)0.0015 (4)0.0059 (4)0.0101 (4)
C170.0113 (3)0.0130 (3)0.0137 (3)0.0050 (2)0.0024 (2)0.0035 (3)
C180.0122 (3)0.0136 (3)0.0150 (3)0.0056 (3)0.0033 (3)0.0054 (3)
C190.0141 (3)0.0148 (3)0.0174 (3)0.0073 (3)0.0025 (3)0.0045 (3)
C200.0252 (4)0.0186 (4)0.0230 (4)0.0121 (3)0.0016 (3)0.0073 (3)
Geometric parameters (Å, º) top
Cl1—C31.7377 (9)C9—H9A0.9800
O1—C131.3661 (11)C10—C151.3928 (11)
O1—C161.4285 (13)C10—C111.3976 (11)
O2—C171.2305 (10)C11—C121.3864 (12)
N1—C71.2952 (10)C11—H11A0.9300
N1—N21.3874 (9)C12—C131.3981 (12)
N2—C171.3628 (10)C12—H12A0.9300
N2—C91.4862 (10)C13—C141.3944 (12)
C1—C21.3878 (12)C14—C151.3970 (12)
C1—C61.4036 (12)C14—H14A0.9300
C1—H1A0.9300C15—H15A0.9300
C2—C31.3928 (13)C16—H16A0.9600
C2—H2A0.9300C16—H16B0.9600
C3—C41.3829 (13)C16—H16C0.9600
C4—C51.3955 (12)C17—C181.5106 (11)
C4—H4A0.9300C18—C191.5210 (11)
C5—C61.3983 (11)C18—H18A0.9700
C5—H5A0.9300C18—H18B0.9700
C6—C71.4662 (11)C19—C201.5222 (12)
C7—C81.5114 (11)C19—H19A0.9700
C8—C91.5376 (11)C19—H19B0.9700
C8—H8A0.9700C20—H20A0.9600
C8—H8B0.9700C20—H20B0.9600
C9—C101.5161 (11)C20—H20C0.9600
C13—O1—C16116.96 (8)C12—C11—H11A119.4
C7—N1—N2107.57 (7)C10—C11—H11A119.4
C17—N2—N1122.26 (7)C11—C12—C13120.15 (8)
C17—N2—C9124.98 (7)C11—C12—H12A119.9
N1—N2—C9112.74 (6)C13—C12—H12A119.9
C2—C1—C6120.57 (8)O1—C13—C14124.71 (8)
C2—C1—H1A119.7O1—C13—C12115.63 (8)
C6—C1—H1A119.7C14—C13—C12119.63 (8)
C1—C2—C3118.99 (8)C13—C14—C15119.28 (8)
C1—C2—H2A120.5C13—C14—H14A120.4
C3—C2—H2A120.5C15—C14—H14A120.4
C4—C3—C2121.74 (8)C10—C15—C14121.80 (8)
C4—C3—Cl1119.37 (7)C10—C15—H15A119.1
C2—C3—Cl1118.87 (7)C14—C15—H15A119.1
C3—C4—C5118.89 (8)O1—C16—H16A109.5
C3—C4—H4A120.6O1—C16—H16B109.5
C5—C4—H4A120.6H16A—C16—H16B109.5
C4—C5—C6120.66 (8)O1—C16—H16C109.5
C4—C5—H5A119.7H16A—C16—H16C109.5
C6—C5—H5A119.7H16B—C16—H16C109.5
C5—C6—C1119.12 (8)O2—C17—N2119.86 (7)
C5—C6—C7120.28 (7)O2—C17—C18123.61 (7)
C1—C6—C7120.57 (7)N2—C17—C18116.52 (7)
N1—C7—C6121.23 (7)C17—C18—C19112.44 (7)
N1—C7—C8113.34 (7)C17—C18—H18A109.1
C6—C7—C8125.25 (7)C19—C18—H18A109.1
C7—C8—C9101.98 (6)C17—C18—H18B109.1
C7—C8—H8A111.4C19—C18—H18B109.1
C9—C8—H8A111.4H18A—C18—H18B107.8
C7—C8—H8B111.4C18—C19—C20111.65 (7)
C9—C8—H8B111.4C18—C19—H19A109.3
H8A—C8—H8B109.2C20—C19—H19A109.3
N2—C9—C10110.38 (6)C18—C19—H19B109.3
N2—C9—C899.94 (6)C20—C19—H19B109.3
C10—C9—C8114.84 (7)H19A—C19—H19B108.0
N2—C9—H9A110.4C19—C20—H20A109.5
C10—C9—H9A110.4C19—C20—H20B109.5
C8—C9—H9A110.4H20A—C20—H20B109.5
C15—C10—C11117.92 (8)C19—C20—H20C109.5
C15—C10—C9120.71 (7)H20A—C20—H20C109.5
C11—C10—C9121.33 (7)H20B—C20—H20C109.5
C12—C11—C10121.22 (8)
C7—N1—N2—C17170.91 (8)C7—C8—C9—C1098.74 (7)
C7—N1—N2—C910.65 (9)N2—C9—C10—C1591.37 (9)
C6—C1—C2—C30.94 (13)C8—C9—C10—C15156.62 (7)
C1—C2—C3—C40.68 (14)N2—C9—C10—C1186.38 (9)
C1—C2—C3—Cl1178.41 (7)C8—C9—C10—C1125.64 (11)
C2—C3—C4—C51.50 (14)C15—C10—C11—C120.50 (13)
Cl1—C3—C4—C5177.60 (7)C9—C10—C11—C12178.30 (8)
C3—C4—C5—C60.70 (13)C10—C11—C12—C130.25 (14)
C4—C5—C6—C10.87 (13)C16—O1—C13—C144.58 (13)
C4—C5—C6—C7176.92 (8)C16—O1—C13—C12176.96 (8)
C2—C1—C6—C51.70 (13)C11—C12—C13—O1178.16 (8)
C2—C1—C6—C7176.08 (8)C11—C12—C13—C140.38 (13)
N2—N1—C7—C6179.36 (7)O1—C13—C14—C15177.66 (8)
N2—N1—C7—C84.00 (9)C12—C13—C14—C150.74 (13)
C5—C6—C7—N1174.99 (8)C11—C10—C15—C140.12 (12)
C1—C6—C7—N17.25 (12)C9—C10—C15—C14177.94 (7)
C5—C6—C7—C810.22 (12)C13—C14—C15—C100.49 (12)
C1—C6—C7—C8167.54 (8)N1—N2—C17—O2179.14 (7)
N1—C7—C8—C915.87 (9)C9—N2—C17—O22.62 (12)
C6—C7—C8—C9168.98 (7)N1—N2—C17—C180.20 (11)
C17—N2—C9—C1076.57 (10)C9—N2—C17—C18178.45 (7)
N1—N2—C9—C10101.82 (8)O2—C17—C18—C194.07 (11)
C17—N2—C9—C8162.10 (8)N2—C17—C18—C19177.04 (7)
N1—N2—C9—C819.52 (8)C17—C18—C19—C20179.85 (7)
C7—C8—C9—N219.34 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cl1i0.932.733.4539 (10)135
C14—H14A···O2ii0.932.513.3253 (12)147
C18—H18A···Cg1iii0.972.623.4514 (9)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z+2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H21ClN2O2
Mr356.84
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.7918 (3), 10.8822 (4), 13.2576 (5)
α, β, γ (°)109.202 (1), 91.396 (1), 105.087 (1)
V3)886.93 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.43 × 0.17 × 0.14
Data collection
DiffractometerBruker SMART APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.908, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
17324, 6403, 5492
Rint0.021
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.104, 1.04
No. of reflections6403
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cl1i0.932.733.4539 (10)135
C14—H14A···O2ii0.932.513.3253 (12)147
C18—H18A···Cg1iii0.972.623.4514 (9)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z+2; (iii) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). BN thanks the UGC for financial assistance through an SAP and BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds