organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o972-o973

4-[3-(Bi­phenyl-4-yl)-1-phenyl-4,5-di­hydro-1H-pyrazol-5-yl]-3-(4-meth­­oxy­phen­yl)-1-phenyl-1H-pyrazole dioxane monosolvate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cSchulich faculty of Chemistry, Technion Israel Institute of Technology, Haifa, Israel 32000
*Correspondence e-mail: hkfun@usm.my

(Received 27 February 2012; accepted 29 February 2012; online 7 March 2012)

In the title compound, C37H30N4O·C4H8O2, the dihedral angle between the pyrazole and dihydro­pyrazole rings is 74.09 (10)°. In the crystal, the components are linked into centrosymmetric tetra­mers (two main mol­ecules and two solvent mol­ecules) by C—H⋯O hydrogen bonds. C—H⋯π and ππ [shortest centroid-centroid separation = 3.6546 (9) Å] inter­actions are also observed.

Related literature

For the biological and pharmacological activity of pyrazolines, see, for example: Sahu et al. (2008[Sahu, S. K., Banerjee, M., Samantray, A., Behera, C. & Azam, M. A. (2008). Trop. J. Pharm. Res. 7, 961-968.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C37H30N4O·C4H8O2

  • Mr = 634.75

  • Triclinic, [P \overline 1]

  • a = 11.1189 (2) Å

  • b = 13.0541 (2) Å

  • c = 13.0852 (2) Å

  • α = 117.309 (1)°

  • β = 90.468 (1)°

  • γ = 98.558 (1)°

  • V = 1662.48 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.26 × 0.19 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.996

  • 31208 measured reflections

  • 9701 independent reflections

  • 5913 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.126

  • S = 1.01

  • 9701 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg3 and Cg5 are the centroids of the N1/N2/C7/C14/C16, C1–C6 and C32–C37 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O2 0.95 2.28 3.202 (2) 164
C41—H41B⋯O1i 0.99 2.54 3.344 (3) 139
C1—H1ACg1i 0.95 2.88 3.412 (2) 117
C33—H33ACg3ii 0.95 2.79 3.6748 (19) 155
C35—H35ACg1iii 0.95 2.82 3.684 (2) 151
C41—H41ACg5iv 0.99 2.83 3.682 (2) 145
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) x+1, y+1, z; (iv) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazolines are well-known and important nitrogen containing five-membered heterocyclic compounds with biological and pharmacological activities such as analgesic properties (Sahu et al., 2008). As part of our investigations of this area, we have synthesized the title compound to study its crystal structure (Fig. 1).

The solvent 1,4-dioxane ring (O2/O3/C39–C42) adopts a chair conformation (Cremer & Pople, 1975) with puckering parameters Q= 0.567 (2) Å, Θ= 179.0 (2)° and Φ= 302 (6)°. The ring A (N1/N2/C7/C14/C16), B (N3/N4/C17/C24/C25), C (C1–C6), D (C8–C13), E (C18–C23), F (C26–C31) and G (C32–C37) are essentially planar. The dihedral angle between the least-square planes of the rings are A/B = 74.09 (10)°, A/C = 42.50 (10)°, A/D = 8.04 (11)°, A/E = 86.29 (9)°, A/F = 77.25 (9)°, A/G = 83.37 (9)°, B/C = 55.81 (8)°, B/D = 74.18 (10)°, B/E = 19.64 (8)°, B/F = 3.18 (8)°, B/G = 30.67 (8)°, C/D = 49.32 (9)°, C/E = 71.40 (8)°, C/F = 57.94 (8)°, C/G = 86.47 (8)°, D/E = 86.48 (9)°, D/F = 77.36 (9)°, D/G = 86.35 (9)°, E/F = 16.50 (7)°, E/F = 20.45 (7)° and F/G = 28.72 (7)°.

The crystal structure is shown in Fig. 2. The molecules are linked into centrosymmetric tetramers (two main molecules and two solvent molecules) via C14—H14A···O2 and C41—H41B···O1 hydrogen bonds (Table 1). C—H···π interactions (Table 1) and π···π interactions of Cg2···Cg1 = 3.6546 (9) Å (symmetry code: x,y,z) and Cg2···Cg4 = 3.7773 (10) Å (symmetry code: 2-x,1-y,-z) further stabilized the crystal structure. [Cg1, Cg2 , Cg3, Cg4 and Cg5 are the centroids of the N1/N2/C7/C14/C16, N3/N4/C17/C24/C25, C1–C6, C26–C31 and C32–C37 rings, respectively].

Related literature top

For the biological and pharmacological activity of pyrazolines, see, for example: Sahu et al. (2008). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of (E)-1-(biphenyl-4-yl)-3-(3-(4-methoxyphenyl)-1-phenyl-1 H-pyrazol-4-yl)prop-2-en-1-one (0.456 g, 1.0 mmol) and phenylhydrazine (0.162 g, 1.5 mmol) was refluxed in glacial acetic acid for 4 h. The mixture was then cooled to room temperature and resulting solid was filtered and dried to get title compound. Yield: 0.31 g, 56.77%. M.p.: 437–439 K. 1,4-Dioxane was used as crystallization solvent to yield colourless plates.

Refinement top

The H atoms were positioned geometrically [C–H = 0.95–0.99 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Structure description top

Pyrazolines are well-known and important nitrogen containing five-membered heterocyclic compounds with biological and pharmacological activities such as analgesic properties (Sahu et al., 2008). As part of our investigations of this area, we have synthesized the title compound to study its crystal structure (Fig. 1).

The solvent 1,4-dioxane ring (O2/O3/C39–C42) adopts a chair conformation (Cremer & Pople, 1975) with puckering parameters Q= 0.567 (2) Å, Θ= 179.0 (2)° and Φ= 302 (6)°. The ring A (N1/N2/C7/C14/C16), B (N3/N4/C17/C24/C25), C (C1–C6), D (C8–C13), E (C18–C23), F (C26–C31) and G (C32–C37) are essentially planar. The dihedral angle between the least-square planes of the rings are A/B = 74.09 (10)°, A/C = 42.50 (10)°, A/D = 8.04 (11)°, A/E = 86.29 (9)°, A/F = 77.25 (9)°, A/G = 83.37 (9)°, B/C = 55.81 (8)°, B/D = 74.18 (10)°, B/E = 19.64 (8)°, B/F = 3.18 (8)°, B/G = 30.67 (8)°, C/D = 49.32 (9)°, C/E = 71.40 (8)°, C/F = 57.94 (8)°, C/G = 86.47 (8)°, D/E = 86.48 (9)°, D/F = 77.36 (9)°, D/G = 86.35 (9)°, E/F = 16.50 (7)°, E/F = 20.45 (7)° and F/G = 28.72 (7)°.

The crystal structure is shown in Fig. 2. The molecules are linked into centrosymmetric tetramers (two main molecules and two solvent molecules) via C14—H14A···O2 and C41—H41B···O1 hydrogen bonds (Table 1). C—H···π interactions (Table 1) and π···π interactions of Cg2···Cg1 = 3.6546 (9) Å (symmetry code: x,y,z) and Cg2···Cg4 = 3.7773 (10) Å (symmetry code: 2-x,1-y,-z) further stabilized the crystal structure. [Cg1, Cg2 , Cg3, Cg4 and Cg5 are the centroids of the N1/N2/C7/C14/C16, N3/N4/C17/C24/C25, C1–C6, C26–C31 and C32–C37 rings, respectively].

For the biological and pharmacological activity of pyrazolines, see, for example: Sahu et al. (2008). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and, PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. For the sake of clarity, those H atoms not involved in the intermolecular interactions (dashed lines) have been omitted.
4-[3-(Biphenyl-4-yl)-1-phenyl-4,5-dihydro-1H-pyrazol-5-yl]-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazole dioxane monosolvate top
Crystal data top
C37H30N4O·C4H8O2Z = 2
Mr = 634.75F(000) = 672
Triclinic, P1Dx = 1.268 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.1189 (2) ÅCell parameters from 6011 reflections
b = 13.0541 (2) Åθ = 2.3–29.9°
c = 13.0852 (2) ŵ = 0.08 mm1
α = 117.309 (1)°T = 100 K
β = 90.468 (1)°Plate, colourless
γ = 98.558 (1)°0.26 × 0.19 × 0.05 mm
V = 1662.48 (5) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
9701 independent reflections
Radiation source: fine-focus sealed tube5913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.979, Tmax = 0.996k = 1818
31208 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.3385P]
where P = (Fo2 + 2Fc2)/3
9701 reflections(Δ/σ)max < 0.001
433 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C37H30N4O·C4H8O2γ = 98.558 (1)°
Mr = 634.75V = 1662.48 (5) Å3
Triclinic, P1Z = 2
a = 11.1189 (2) ÅMo Kα radiation
b = 13.0541 (2) ŵ = 0.08 mm1
c = 13.0852 (2) ÅT = 100 K
α = 117.309 (1)°0.26 × 0.19 × 0.05 mm
β = 90.468 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
9701 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5913 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.996Rint = 0.046
31208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.01Δρmax = 0.32 e Å3
9701 reflectionsΔρmin = 0.27 e Å3
433 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38654 (11)0.04602 (10)0.41845 (10)0.0311 (3)
N10.39934 (11)0.40181 (11)0.12580 (11)0.0175 (3)
N20.46058 (11)0.47467 (11)0.23135 (10)0.0168 (3)
N30.92168 (11)0.51162 (11)0.16922 (11)0.0191 (3)
N40.82182 (11)0.42528 (11)0.14802 (11)0.0195 (3)
C10.51535 (14)0.30555 (14)0.15631 (13)0.0195 (3)
H1A0.57450.37390.13540.023*
C20.48901 (14)0.22438 (14)0.27172 (14)0.0220 (3)
H2A0.52920.23790.32930.026*
C30.40379 (14)0.12316 (14)0.30321 (13)0.0216 (3)
C40.34192 (14)0.10595 (14)0.21927 (14)0.0227 (4)
H4A0.28150.03840.24050.027*
C50.36886 (14)0.18822 (13)0.10394 (13)0.0200 (3)
H5A0.32650.17580.04670.024*
C60.45637 (13)0.28837 (13)0.07028 (13)0.0165 (3)
C70.48691 (13)0.37256 (13)0.05328 (13)0.0163 (3)
C80.39562 (14)0.52468 (13)0.33118 (13)0.0188 (3)
C90.26970 (15)0.51084 (15)0.32004 (15)0.0306 (4)
H9A0.22590.46820.24600.037*
C100.20800 (16)0.56008 (17)0.41854 (16)0.0397 (5)
H10A0.12150.55060.41110.048*
C110.26965 (16)0.62242 (15)0.52684 (15)0.0323 (4)
H11A0.22640.65540.59350.039*
C120.39533 (16)0.63607 (16)0.53661 (15)0.0315 (4)
H12A0.43890.67920.61070.038*
C130.45882 (15)0.58756 (15)0.43952 (14)0.0263 (4)
H13A0.54540.59740.44720.032*
C140.58366 (13)0.49157 (13)0.22507 (13)0.0182 (3)
H14A0.64380.53910.28760.022*
C160.60449 (13)0.42740 (13)0.11198 (13)0.0168 (3)
C170.72666 (13)0.41884 (14)0.06391 (13)0.0180 (3)
H17A0.72140.34390.00930.022*
C180.83724 (13)0.33063 (13)0.16535 (13)0.0176 (3)
C190.74746 (14)0.23032 (14)0.12384 (13)0.0196 (3)
H19A0.67320.22740.08550.024*
C200.76629 (14)0.13530 (14)0.13839 (14)0.0223 (4)
H20A0.70570.06670.10770.027*
C210.87245 (15)0.13869 (15)0.19716 (14)0.0240 (4)
H21A0.88440.07350.20770.029*
C220.96060 (14)0.23863 (14)0.24010 (13)0.0219 (4)
H22A1.03330.24190.28090.026*
C230.94465 (14)0.33354 (14)0.22467 (13)0.0191 (3)
H23A1.00650.40110.25420.023*
C240.77997 (13)0.52319 (14)0.04252 (14)0.0219 (3)
H24A0.79180.49710.04010.026*
H24B0.72660.58320.06850.026*
C250.90040 (13)0.56884 (13)0.11509 (13)0.0183 (3)
C260.98614 (14)0.67053 (13)0.12592 (13)0.0186 (3)
C271.09754 (14)0.70889 (14)0.19448 (13)0.0197 (3)
H27A1.11870.66750.23380.024*
C281.17650 (14)0.80617 (13)0.20528 (13)0.0196 (3)
H28A1.25110.83080.25240.023*
C291.14944 (13)0.86939 (13)0.14855 (13)0.0179 (3)
C301.03849 (14)0.83051 (14)0.07968 (13)0.0209 (3)
H30A1.01780.87150.03980.025*
C310.95847 (14)0.73316 (14)0.06885 (14)0.0209 (3)
H31A0.88370.70870.02190.025*
C321.23501 (14)0.97374 (13)0.16014 (13)0.0181 (3)
C331.36075 (14)0.98388 (14)0.18125 (14)0.0220 (3)
H33A1.39190.92350.18880.026*
C341.44036 (15)1.08082 (14)0.19126 (14)0.0251 (4)
H34A1.52561.08640.20570.030*
C351.39703 (15)1.16958 (14)0.18037 (14)0.0234 (4)
H35A1.45211.23580.18700.028*
C361.27214 (15)1.16119 (14)0.15967 (13)0.0224 (4)
H36A1.24151.22180.15220.027*
C371.19241 (14)1.06422 (13)0.14991 (13)0.0201 (3)
H37A1.10721.05920.13600.024*
C380.3130 (2)0.06576 (16)0.45170 (16)0.0404 (5)
H38A0.30750.11260.53590.061*
H38B0.23100.05520.42640.061*
H38C0.35010.10610.41560.061*
O20.76445 (11)0.69333 (11)0.43578 (10)0.0364 (3)
O30.96457 (11)0.86884 (11)0.57046 (11)0.0367 (3)
C390.98147 (17)0.75738 (17)0.48241 (17)0.0401 (5)
H39A1.05610.73640.50410.048*
H39B0.99300.76150.40940.048*
C400.85522 (17)0.89691 (16)0.53937 (16)0.0361 (5)
H40A0.86340.90210.46650.043*
H40B0.84210.97400.60040.043*
C410.74771 (17)0.80558 (16)0.52416 (16)0.0351 (5)
H41A0.73770.80240.59780.042*
H41B0.67270.82650.50310.042*
C420.87401 (17)0.66411 (16)0.46398 (16)0.0378 (5)
H42A0.88740.58840.40070.045*
H42B0.86630.65540.53500.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0427 (7)0.0263 (7)0.0191 (6)0.0054 (6)0.0009 (5)0.0065 (5)
N10.0167 (6)0.0149 (7)0.0202 (6)0.0016 (5)0.0008 (5)0.0080 (5)
N20.0162 (6)0.0163 (7)0.0170 (6)0.0032 (5)0.0013 (5)0.0069 (5)
N30.0153 (6)0.0160 (7)0.0246 (7)0.0003 (5)0.0011 (5)0.0088 (6)
N40.0140 (6)0.0191 (7)0.0273 (7)0.0002 (5)0.0017 (5)0.0132 (6)
C10.0163 (7)0.0198 (9)0.0259 (8)0.0034 (6)0.0013 (6)0.0136 (7)
C20.0231 (8)0.0262 (9)0.0220 (8)0.0059 (7)0.0047 (6)0.0151 (7)
C30.0256 (8)0.0216 (9)0.0179 (8)0.0079 (7)0.0003 (6)0.0083 (7)
C40.0226 (8)0.0172 (9)0.0263 (9)0.0004 (7)0.0014 (7)0.0096 (7)
C50.0189 (8)0.0199 (9)0.0218 (8)0.0022 (7)0.0028 (6)0.0106 (7)
C60.0145 (7)0.0175 (8)0.0203 (8)0.0050 (6)0.0014 (6)0.0106 (6)
C70.0156 (7)0.0137 (8)0.0217 (8)0.0028 (6)0.0014 (6)0.0100 (6)
C80.0205 (8)0.0140 (8)0.0228 (8)0.0036 (6)0.0047 (6)0.0089 (6)
C90.0204 (8)0.0290 (10)0.0265 (9)0.0021 (7)0.0021 (7)0.0001 (8)
C100.0207 (9)0.0380 (12)0.0366 (11)0.0014 (8)0.0081 (8)0.0019 (9)
C110.0322 (10)0.0253 (10)0.0295 (9)0.0047 (8)0.0120 (8)0.0042 (8)
C120.0335 (10)0.0344 (11)0.0215 (9)0.0075 (8)0.0031 (7)0.0083 (8)
C130.0215 (8)0.0321 (10)0.0238 (8)0.0057 (7)0.0029 (7)0.0113 (7)
C140.0142 (7)0.0174 (8)0.0222 (8)0.0014 (6)0.0015 (6)0.0091 (6)
C160.0158 (7)0.0152 (8)0.0209 (8)0.0025 (6)0.0003 (6)0.0097 (6)
C170.0143 (7)0.0190 (8)0.0210 (8)0.0022 (6)0.0005 (6)0.0098 (6)
C180.0163 (7)0.0182 (8)0.0195 (7)0.0053 (6)0.0063 (6)0.0091 (6)
C190.0152 (7)0.0210 (9)0.0229 (8)0.0043 (6)0.0035 (6)0.0101 (7)
C200.0187 (8)0.0202 (9)0.0296 (9)0.0027 (7)0.0074 (7)0.0131 (7)
C210.0249 (8)0.0235 (9)0.0314 (9)0.0097 (7)0.0093 (7)0.0174 (8)
C220.0189 (8)0.0260 (9)0.0232 (8)0.0079 (7)0.0040 (6)0.0123 (7)
C230.0160 (7)0.0194 (8)0.0209 (8)0.0022 (6)0.0017 (6)0.0087 (7)
C240.0161 (7)0.0230 (9)0.0302 (9)0.0010 (7)0.0001 (6)0.0160 (7)
C250.0155 (7)0.0179 (8)0.0215 (8)0.0040 (6)0.0038 (6)0.0087 (7)
C260.0172 (7)0.0166 (8)0.0217 (8)0.0038 (6)0.0047 (6)0.0084 (6)
C270.0202 (8)0.0189 (8)0.0220 (8)0.0050 (7)0.0031 (6)0.0108 (7)
C280.0171 (7)0.0199 (9)0.0207 (8)0.0032 (6)0.0017 (6)0.0086 (7)
C290.0177 (7)0.0157 (8)0.0193 (8)0.0041 (6)0.0054 (6)0.0069 (6)
C300.0216 (8)0.0207 (9)0.0239 (8)0.0053 (7)0.0038 (6)0.0128 (7)
C310.0171 (8)0.0223 (9)0.0239 (8)0.0029 (7)0.0016 (6)0.0115 (7)
C320.0186 (8)0.0180 (8)0.0182 (7)0.0044 (6)0.0052 (6)0.0083 (6)
C330.0210 (8)0.0206 (9)0.0281 (9)0.0043 (7)0.0037 (7)0.0141 (7)
C340.0193 (8)0.0260 (10)0.0321 (9)0.0010 (7)0.0021 (7)0.0161 (8)
C350.0248 (8)0.0200 (9)0.0257 (8)0.0012 (7)0.0039 (7)0.0122 (7)
C360.0271 (9)0.0198 (9)0.0235 (8)0.0059 (7)0.0046 (7)0.0121 (7)
C370.0203 (8)0.0193 (9)0.0211 (8)0.0052 (7)0.0045 (6)0.0092 (7)
C380.0608 (13)0.0224 (10)0.0252 (9)0.0019 (9)0.0082 (9)0.0020 (8)
O20.0327 (7)0.0361 (8)0.0291 (7)0.0064 (6)0.0089 (5)0.0057 (6)
O30.0364 (7)0.0297 (7)0.0362 (7)0.0043 (6)0.0040 (6)0.0094 (6)
C390.0332 (10)0.0365 (12)0.0410 (11)0.0121 (9)0.0018 (9)0.0083 (9)
C400.0468 (12)0.0303 (11)0.0331 (10)0.0137 (9)0.0051 (9)0.0144 (8)
C410.0347 (10)0.0378 (12)0.0301 (10)0.0136 (9)0.0029 (8)0.0113 (9)
C420.0385 (11)0.0302 (11)0.0334 (10)0.0098 (9)0.0065 (8)0.0044 (8)
Geometric parameters (Å, º) top
O1—C31.3672 (18)C22—C231.379 (2)
O1—C381.430 (2)C22—H22A0.9500
N1—C71.3371 (19)C23—H23A0.9500
N1—N21.3647 (16)C24—C251.508 (2)
N2—C141.3627 (18)C24—H24A0.9900
N2—C81.4238 (19)C24—H24B0.9900
N3—C251.2848 (19)C25—C261.463 (2)
N3—N41.3842 (17)C26—C311.397 (2)
N4—C181.3882 (19)C26—C271.405 (2)
N4—C171.4857 (18)C27—C281.380 (2)
C1—C21.386 (2)C27—H27A0.9500
C1—C61.396 (2)C28—C291.398 (2)
C1—H1A0.9500C28—H28A0.9500
C2—C31.391 (2)C29—C301.403 (2)
C2—H2A0.9500C29—C321.485 (2)
C3—C41.387 (2)C30—C311.387 (2)
C4—C51.389 (2)C30—H30A0.9500
C4—H4A0.9500C31—H31A0.9500
C5—C61.391 (2)C32—C371.396 (2)
C5—H5A0.9500C32—C331.398 (2)
C6—C71.479 (2)C33—C341.384 (2)
C7—C161.4185 (19)C33—H33A0.9500
C8—C91.383 (2)C34—C351.383 (2)
C8—C131.386 (2)C34—H34A0.9500
C9—C101.389 (2)C35—C361.391 (2)
C9—H9A0.9500C35—H35A0.9500
C10—C111.379 (2)C36—C371.386 (2)
C10—H10A0.9500C36—H36A0.9500
C11—C121.379 (2)C37—H37A0.9500
C11—H11A0.9500C38—H38A0.9800
C12—C131.387 (2)C38—H38B0.9800
C12—H12A0.9500C38—H38C0.9800
C13—H13A0.9500O2—C421.423 (2)
C14—C161.368 (2)O2—C411.431 (2)
C14—H14A0.9500O3—C391.424 (2)
C16—C171.499 (2)O3—C401.428 (2)
C17—C241.548 (2)C39—C421.504 (3)
C17—H17A1.0000C39—H39A0.9900
C18—C191.398 (2)C39—H39B0.9900
C18—C231.405 (2)C40—C411.498 (3)
C19—C201.383 (2)C40—H40A0.9900
C19—H19A0.9500C40—H40B0.9900
C20—C211.387 (2)C41—H41A0.9900
C20—H20A0.9500C41—H41B0.9900
C21—C221.384 (2)C42—H42A0.9900
C21—H21A0.9500C42—H42B0.9900
C3—O1—C38117.32 (14)C25—C24—C17102.30 (12)
C7—N1—N2104.59 (11)C25—C24—H24A111.3
C14—N2—N1111.88 (12)C17—C24—H24A111.3
C14—N2—C8127.59 (12)C25—C24—H24B111.3
N1—N2—C8120.51 (12)C17—C24—H24B111.3
C25—N3—N4108.93 (12)H24A—C24—H24B109.2
N3—N4—C18118.82 (12)N3—C25—C26121.97 (13)
N3—N4—C17112.63 (12)N3—C25—C24114.21 (14)
C18—N4—C17123.26 (12)C26—C25—C24123.81 (14)
C2—C1—C6121.03 (15)C31—C26—C27118.09 (15)
C2—C1—H1A119.5C31—C26—C25120.55 (14)
C6—C1—H1A119.5C27—C26—C25121.35 (14)
C1—C2—C3120.01 (15)C28—C27—C26120.61 (15)
C1—C2—H2A120.0C28—C27—H27A119.7
C3—C2—H2A120.0C26—C27—H27A119.7
O1—C3—C4124.08 (15)C27—C28—C29121.66 (14)
O1—C3—C2116.11 (15)C27—C28—H28A119.2
C4—C3—C2119.81 (14)C29—C28—H28A119.2
C3—C4—C5119.56 (15)C28—C29—C30117.60 (15)
C3—C4—H4A120.2C28—C29—C32121.40 (13)
C5—C4—H4A120.2C30—C29—C32121.00 (14)
C4—C5—C6121.54 (15)C31—C30—C29121.07 (15)
C4—C5—H5A119.2C31—C30—H30A119.5
C6—C5—H5A119.2C29—C30—H30A119.5
C5—C6—C1118.01 (14)C30—C31—C26120.98 (14)
C5—C6—C7120.63 (14)C30—C31—H31A119.5
C1—C6—C7121.35 (14)C26—C31—H31A119.5
N1—C7—C16111.38 (13)C37—C32—C33118.08 (14)
N1—C7—C6120.78 (13)C37—C32—C29121.07 (13)
C16—C7—C6127.78 (13)C33—C32—C29120.85 (14)
C9—C8—C13120.04 (15)C34—C33—C32120.74 (15)
C9—C8—N2120.04 (14)C34—C33—H33A119.6
C13—C8—N2119.92 (14)C32—C33—H33A119.6
C8—C9—C10119.15 (16)C35—C34—C33120.60 (15)
C8—C9—H9A120.4C35—C34—H34A119.7
C10—C9—H9A120.4C33—C34—H34A119.7
C11—C10—C9121.42 (17)C34—C35—C36119.48 (15)
C11—C10—H10A119.3C34—C35—H35A120.3
C9—C10—H10A119.3C36—C35—H35A120.3
C10—C11—C12118.80 (17)C37—C36—C35119.91 (15)
C10—C11—H11A120.6C37—C36—H36A120.0
C12—C11—H11A120.6C35—C36—H36A120.0
C11—C12—C13120.78 (16)C36—C37—C32121.18 (14)
C11—C12—H12A119.6C36—C37—H37A119.4
C13—C12—H12A119.6C32—C37—H37A119.4
C8—C13—C12119.80 (16)O1—C38—H38A109.5
C8—C13—H13A120.1O1—C38—H38B109.5
C12—C13—H13A120.1H38A—C38—H38B109.5
N2—C14—C16107.22 (13)O1—C38—H38C109.5
N2—C14—H14A126.4H38A—C38—H38C109.5
C16—C14—H14A126.4H38B—C38—H38C109.5
C14—C16—C7104.93 (13)C42—O2—C41109.84 (13)
C14—C16—C17126.23 (13)C39—O3—C40108.80 (13)
C7—C16—C17128.84 (14)O3—C39—C42111.51 (16)
N4—C17—C16111.32 (12)O3—C39—H39A109.3
N4—C17—C24101.74 (11)C42—C39—H39A109.3
C16—C17—C24114.11 (13)O3—C39—H39B109.3
N4—C17—H17A109.8C42—C39—H39B109.3
C16—C17—H17A109.8H39A—C39—H39B108.0
C24—C17—H17A109.8O3—C40—C41110.58 (15)
N4—C18—C19121.16 (13)O3—C40—H40A109.5
N4—C18—C23120.34 (14)C41—C40—H40A109.5
C19—C18—C23118.50 (14)O3—C40—H40B109.5
C20—C19—C18120.32 (14)C41—C40—H40B109.5
C20—C19—H19A119.8H40A—C40—H40B108.1
C18—C19—H19A119.8O2—C41—C40110.46 (15)
C19—C20—C21120.92 (15)O2—C41—H41A109.6
C19—C20—H20A119.5C40—C41—H41A109.6
C21—C20—H20A119.5O2—C41—H41B109.6
C22—C21—C20118.89 (15)C40—C41—H41B109.6
C22—C21—H21A120.6H41A—C41—H41B108.1
C20—C21—H21A120.6O2—C42—C39110.73 (16)
C23—C22—C21121.12 (14)O2—C42—H42A109.5
C23—C22—H22A119.4C39—C42—H42A109.5
C21—C22—H22A119.4O2—C42—H42B109.5
C22—C23—C18120.22 (15)C39—C42—H42B109.5
C22—C23—H23A119.9H42A—C42—H42B108.1
C18—C23—H23A119.9
C7—N1—N2—C140.52 (16)N3—N4—C18—C19166.93 (14)
C7—N1—N2—C8179.51 (13)C17—N4—C18—C1914.5 (2)
C25—N3—N4—C18159.61 (13)N3—N4—C18—C2312.6 (2)
C25—N3—N4—C174.42 (17)C17—N4—C18—C23164.99 (14)
C6—C1—C2—C30.8 (2)N4—C18—C19—C20177.71 (14)
C38—O1—C3—C49.0 (2)C23—C18—C19—C201.8 (2)
C38—O1—C3—C2171.30 (15)C18—C19—C20—C211.9 (2)
C1—C2—C3—O1177.80 (13)C19—C20—C21—C220.8 (2)
C1—C2—C3—C42.5 (2)C20—C21—C22—C230.4 (2)
O1—C3—C4—C5178.08 (14)C21—C22—C23—C180.5 (2)
C2—C3—C4—C52.2 (2)N4—C18—C23—C22178.93 (14)
C3—C4—C5—C60.3 (2)C19—C18—C23—C220.6 (2)
C4—C5—C6—C11.3 (2)N4—C17—C24—C252.31 (15)
C4—C5—C6—C7177.67 (14)C16—C17—C24—C25122.30 (13)
C2—C1—C6—C51.0 (2)N4—N3—C25—C26176.31 (13)
C2—C1—C6—C7177.92 (13)N4—N3—C25—C242.69 (18)
N2—N1—C7—C160.51 (16)C17—C24—C25—N30.08 (18)
N2—N1—C7—C6176.81 (13)C17—C24—C25—C26178.90 (14)
C5—C6—C7—N141.4 (2)N3—C25—C26—C31177.90 (15)
C1—C6—C7—N1139.67 (15)C24—C25—C26—C311.0 (2)
C5—C6—C7—C16135.43 (16)N3—C25—C26—C271.4 (2)
C1—C6—C7—C1643.5 (2)C24—C25—C26—C27179.69 (15)
C14—N2—C8—C9171.24 (16)C31—C26—C27—C280.4 (2)
N1—N2—C8—C97.6 (2)C25—C26—C27—C28178.92 (14)
C14—N2—C8—C138.6 (2)C26—C27—C28—C290.4 (2)
N1—N2—C8—C13172.64 (14)C27—C28—C29—C300.0 (2)
C13—C8—C9—C100.4 (3)C27—C28—C29—C32179.76 (14)
N2—C8—C9—C10179.84 (17)C28—C29—C30—C310.3 (2)
C8—C9—C10—C110.1 (3)C32—C29—C30—C31179.95 (14)
C9—C10—C11—C120.3 (3)C29—C30—C31—C260.2 (2)
C10—C11—C12—C130.4 (3)C27—C26—C31—C300.1 (2)
C9—C8—C13—C120.3 (3)C25—C26—C31—C30179.22 (15)
N2—C8—C13—C12179.93 (15)C28—C29—C32—C37151.41 (15)
C11—C12—C13—C80.1 (3)C30—C29—C32—C3728.8 (2)
N1—N2—C14—C160.34 (17)C28—C29—C32—C3328.8 (2)
C8—N2—C14—C16179.23 (14)C30—C29—C32—C33150.93 (15)
N2—C14—C16—C70.01 (16)C37—C32—C33—C340.2 (2)
N2—C14—C16—C17179.81 (14)C29—C32—C33—C34179.57 (15)
N1—C7—C16—C140.32 (17)C32—C33—C34—C350.1 (3)
C6—C7—C16—C14176.76 (15)C33—C34—C35—C360.3 (2)
N1—C7—C16—C17179.86 (14)C34—C35—C36—C370.1 (2)
C6—C7—C16—C173.1 (3)C35—C36—C37—C320.2 (2)
N3—N4—C17—C16126.06 (13)C33—C32—C37—C360.4 (2)
C18—N4—C17—C1680.03 (18)C29—C32—C37—C36179.42 (14)
N3—N4—C17—C244.11 (16)C40—O3—C39—C4257.7 (2)
C18—N4—C17—C24158.03 (14)C39—O3—C40—C4158.7 (2)
C14—C16—C17—N433.7 (2)C42—O2—C41—C4057.6 (2)
C7—C16—C17—N4146.12 (15)O3—C40—C41—O259.5 (2)
C14—C16—C17—C2480.80 (19)C41—O2—C42—C3956.2 (2)
C7—C16—C17—C2499.41 (18)O3—C39—C42—O257.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3 and Cg5 are the centroids of the N1/N2/C7/C14/C16, C1–C6 and C32–C37 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14A···O20.952.283.202 (2)164
C41—H41B···O1i0.992.543.344 (3)139
C1—H1A···Cg1i0.952.883.412 (2)117
C33—H33A···Cg3ii0.952.793.6748 (19)155
C35—H35A···Cg1iii0.952.823.684 (2)151
C41—H41A···Cg5iv0.992.833.682 (2)145
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC37H30N4O·C4H8O2
Mr634.75
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.1189 (2), 13.0541 (2), 13.0852 (2)
α, β, γ (°)117.309 (1), 90.468 (1), 98.558 (1)
V3)1662.48 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.19 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.979, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
31208, 9701, 5913
Rint0.046
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.126, 1.01
No. of reflections9701
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and, PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg3 and Cg5 are the centroids of the N1/N2/C7/C14/C16, C1–C6 and C32–C37 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14A···O20.952.283.202 (2)164
C41—H41B···O1i0.992.543.344 (3)139
C1—H1A···Cg1i0.952.883.412 (2)117
C33—H33A···Cg3ii0.952.793.6748 (19)155
C35—H35A···Cg1iii0.952.823.684 (2)151
C41—H41A···Cg5iv0.992.833.682 (2)145
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x+2, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and SA thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award. AMI is thankful to the Board of Research in Nuclear Sciences, Government of India for the Young Scientist award. AMI also thanks the Vision Group on Science & Technology, Government of Karnataka, India, for the Best Research Paper award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSahu, S. K., Banerjee, M., Samantray, A., Behera, C. & Azam, M. A. (2008). Trop. J. Pharm. Res. 7, 961–968.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o972-o973
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds