organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Fluoro­benzene­sulfonamido)­phenyl 4-fluoro­benzene­sulfonate

aPharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia, bMalaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, SAINS@USM, No. 10, 11900 Persiaran Bukit Jambul, Pulau Pinang, Malaysia, cDepartment of Biological Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 February 2012; accepted 6 March 2012; online 17 March 2012)

In the title compound, C18H13F2NO5S2, the complete mol­ecule is generated by a crystallographic inversion centre, and the O atom and the N—H group attached to the central ring are statistically disordered. The dihedral angle between the central and terminal benzene rings is 64.03 (6)°. In the crystal, N—H⋯O, C—H⋯F and C—H⋯O inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For a related structure showing similar statistical disorder of its O atom and NH group, see: Al Najjar et al. (2012[Al-Najjar, B. O., Tengku Muhammad, T. S., Wahab, H. A., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o258.]). For background to the biological activity of benzene­sulfonates, see: Supuran et al. (2003[Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535-558.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13F2NO5S2

  • Mr = 425.41

  • Monoclinic, P 21 /c

  • a = 8.9683 (1) Å

  • b = 11.0323 (1) Å

  • c = 9.3314 (1) Å

  • β = 102.363 (1)°

  • V = 901.85 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.37 × 0.33 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.883, Tmax = 0.930

  • 12757 measured reflections

  • 3235 independent reflections

  • 2940 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.09

  • 3235 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.96 2.12 3.0630 (14) 169
C5—H5A⋯F1ii 0.95 2.37 3.2766 (16) 159
C6—H6A⋯O3iii 0.95 2.54 3.4130 (17) 152
C7—H7A⋯O2iv 0.95 2.60 3.3936 (17) 142
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing structural investigations of benzenesulfonates (Al Najjar et al., 2012) with potential biological activities (Supuran et al., 2003), we now describe the synthesis and structure of the title compound, (I).

The asymmetric unit of the title compound consists of half the molecule with other half being generated by inversion centre. The O1 and N1 atoms occupy the same position to the central phenyl ring (Fig 1 and Fig 2), disordered with half occupancies each. A similar disordering is seen in a related structure with meta substituents on the terminal rings (Al Najjar et al., 2012), although in this case, a crystallographic twofold axis generates the complete molecule. All parameters in (I) are within normal ranges. The dihedral angle between C1/C6 and C7—C9/C7A—C9A is 64.03 (6)° whereas the the C1/C6 ring and its symmetry equivalent C1A/C6A ring are constrained by symmetry to lie in a parallel orientation. In the crystal, N1—H1N1···O2i, C5—H5A···F1ii, C6—H6A···O3iii and C7—H7A···O2iv bonds (Table 1) link the molecules into a three-dimensional network (Fig. 3)

Related literature top

For a related structure showing similar statistical disorder of its O atom and NH group, see: Al Najjar et al. (2012). For background to the biological activity of benzenesulfonates, see: Supuran et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

0.02 Mole of 4-fluorobenzenesulfonyl chloride was added to 0.01 mole of p-aminophenol dissolved in pyridine. Next, the reaction mixture was neutralized by adding hydrochloric acid. The precipitate formed was dissolved in 5% aqueous sodium hydroxide, and the sulfonamide recovered by adding 1:1 hydrochloric acid slowly. Re-crystallization of the product by slow evaporation of an ethyl acetate solution gave yellow blocks of (I).

Refinement top

N bound H atoms were located from a difference Fourier maps and refined using a riding model. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

As part of our ongoing structural investigations of benzenesulfonates (Al Najjar et al., 2012) with potential biological activities (Supuran et al., 2003), we now describe the synthesis and structure of the title compound, (I).

The asymmetric unit of the title compound consists of half the molecule with other half being generated by inversion centre. The O1 and N1 atoms occupy the same position to the central phenyl ring (Fig 1 and Fig 2), disordered with half occupancies each. A similar disordering is seen in a related structure with meta substituents on the terminal rings (Al Najjar et al., 2012), although in this case, a crystallographic twofold axis generates the complete molecule. All parameters in (I) are within normal ranges. The dihedral angle between C1/C6 and C7—C9/C7A—C9A is 64.03 (6)° whereas the the C1/C6 ring and its symmetry equivalent C1A/C6A ring are constrained by symmetry to lie in a parallel orientation. In the crystal, N1—H1N1···O2i, C5—H5A···F1ii, C6—H6A···O3iii and C7—H7A···O2iv bonds (Table 1) link the molecules into a three-dimensional network (Fig. 3)

For a related structure showing similar statistical disorder of its O atom and NH group, see: Al Najjar et al. (2012). For background to the biological activity of benzenesulfonates, see: Supuran et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The first disorder component of the structure with 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The second disorder component of the structure with 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 3] Fig. 3. The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
4-(4-Fluorobenzenesulfonamido)phenyl 4-fluorobenzenesulfonate top
Crystal data top
C18H13F2NO5S2F(000) = 436
Mr = 425.41Dx = 1.567 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7746 reflections
a = 8.9683 (1) Åθ = 2.3–32.6°
b = 11.0323 (1) ŵ = 0.35 mm1
c = 9.3314 (1) ÅT = 100 K
β = 102.363 (1)°Block, yellow
V = 901.85 (2) Å30.37 × 0.33 × 0.21 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
3235 independent reflections
Radiation source: fine-focus sealed tube2940 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 32.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.883, Tmax = 0.930k = 1616
12757 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.4073P]
where P = (Fo2 + 2Fc2)/3
3235 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C18H13F2NO5S2V = 901.85 (2) Å3
Mr = 425.41Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.9683 (1) ŵ = 0.35 mm1
b = 11.0323 (1) ÅT = 100 K
c = 9.3314 (1) Å0.37 × 0.33 × 0.21 mm
β = 102.363 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3235 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2940 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.930Rint = 0.018
12757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.09Δρmax = 0.39 e Å3
3235 reflectionsΔρmin = 0.39 e Å3
127 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.19643 (3)0.57696 (3)0.40553 (3)0.02189 (8)
F10.48038 (14)0.10387 (9)0.39858 (12)0.0534 (3)
O10.03218 (11)0.56620 (9)0.29564 (11)0.0265 (2)0.50
N10.03218 (11)0.56620 (9)0.29564 (11)0.0265 (2)0.50
H1N10.03910.51770.33420.032*0.50
O20.15869 (11)0.59542 (9)0.54583 (10)0.02712 (18)
O30.28500 (11)0.66585 (8)0.34966 (11)0.0302 (2)
C10.41366 (16)0.21362 (12)0.39786 (15)0.0318 (3)
C20.29275 (15)0.22427 (12)0.46723 (16)0.0311 (3)
H2A0.25650.15620.51190.037*
C30.22599 (13)0.33732 (11)0.46964 (14)0.0269 (2)
H3A0.14280.34830.51660.032*
C40.28240 (12)0.43473 (10)0.40228 (12)0.01905 (19)
C50.40364 (13)0.42142 (11)0.33233 (13)0.0248 (2)
H5A0.44020.48890.28680.030*
C60.47055 (16)0.30807 (13)0.32990 (15)0.0323 (3)
H6A0.55330.29620.28260.039*
C70.08657 (15)0.60289 (12)0.05220 (15)0.0299 (3)
H7A0.14500.67250.08820.036*
C80.02046 (14)0.53190 (11)0.14551 (13)0.0258 (2)
C90.06539 (15)0.43016 (12)0.09444 (15)0.0300 (3)
H9A0.10970.38310.15970.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02541 (13)0.01878 (14)0.02456 (14)0.00237 (9)0.01219 (10)0.00205 (9)
F10.0779 (7)0.0299 (5)0.0536 (6)0.0271 (5)0.0170 (5)0.0026 (4)
O10.0272 (4)0.0288 (5)0.0277 (4)0.0093 (3)0.0154 (3)0.0084 (4)
N10.0272 (4)0.0288 (5)0.0277 (4)0.0093 (3)0.0154 (3)0.0084 (4)
O20.0327 (4)0.0280 (4)0.0236 (4)0.0023 (3)0.0127 (3)0.0018 (3)
O30.0369 (5)0.0206 (4)0.0376 (5)0.0023 (3)0.0183 (4)0.0035 (3)
C10.0406 (6)0.0230 (6)0.0289 (6)0.0110 (5)0.0008 (5)0.0027 (5)
C20.0334 (6)0.0211 (5)0.0364 (6)0.0012 (4)0.0020 (5)0.0050 (5)
C30.0237 (5)0.0239 (5)0.0336 (6)0.0002 (4)0.0073 (4)0.0065 (5)
C40.0185 (4)0.0189 (5)0.0197 (4)0.0005 (3)0.0042 (3)0.0003 (4)
C50.0237 (5)0.0267 (6)0.0259 (5)0.0030 (4)0.0096 (4)0.0008 (4)
C60.0342 (6)0.0342 (7)0.0306 (6)0.0130 (5)0.0113 (5)0.0003 (5)
C70.0329 (6)0.0269 (6)0.0349 (6)0.0075 (5)0.0179 (5)0.0146 (5)
C80.0281 (5)0.0255 (5)0.0281 (5)0.0116 (4)0.0159 (4)0.0120 (4)
C90.0313 (6)0.0289 (6)0.0351 (6)0.0076 (4)0.0188 (5)0.0162 (5)
Geometric parameters (Å, º) top
S1—O31.4289 (9)C3—H3A0.9500
S1—O21.4351 (9)C4—C51.3905 (15)
S1—O11.6089 (11)C5—C61.3893 (17)
S1—C41.7515 (11)C5—H5A0.9500
F1—C11.3499 (15)C6—H6A0.9500
O1—C81.4332 (16)C7—C9i1.389 (2)
O1—H1N10.9606C7—C81.3943 (16)
C1—C61.374 (2)C7—H7A0.9500
C1—C21.382 (2)C8—C91.387 (2)
C2—C31.3858 (18)C9—C7i1.389 (2)
C2—H2A0.9500C9—H9A0.9500
C3—C41.3936 (16)
O3—S1—O2119.57 (6)C5—C4—C3121.74 (11)
O3—S1—O1108.83 (6)C5—C4—S1119.61 (9)
O2—S1—O1103.25 (5)C3—C4—S1118.64 (8)
O3—S1—C4109.11 (5)C6—C5—C4119.12 (12)
O2—S1—C4109.49 (5)C6—C5—H5A120.4
O1—S1—C4105.62 (5)C4—C5—H5A120.4
C8—O1—S1120.53 (7)C1—C6—C5118.09 (12)
C8—O1—H1N1107.7C1—C6—H6A121.0
S1—O1—H1N1113.2C5—C6—H6A121.0
F1—C1—C6118.34 (13)C9i—C7—C8118.74 (13)
F1—C1—C2117.73 (13)C9i—C7—H7A120.6
C6—C1—C2123.93 (12)C8—C7—H7A120.6
C1—C2—C3117.99 (12)C9—C8—C7121.28 (12)
C1—C2—H2A121.0C9—C8—O1117.95 (10)
C3—C2—H2A121.0C7—C8—O1120.67 (13)
C2—C3—C4119.13 (11)C8—C9—C7i119.98 (11)
C2—C3—H3A120.4C8—C9—H9A120.0
C4—C3—H3A120.4C7i—C9—H9A120.0
O3—S1—O1—C859.87 (10)O1—S1—C4—C371.39 (10)
O2—S1—O1—C8172.10 (9)C3—C4—C5—C60.18 (18)
C4—S1—O1—C857.16 (10)S1—C4—C5—C6179.74 (10)
F1—C1—C2—C3178.60 (12)F1—C1—C6—C5178.59 (12)
C6—C1—C2—C30.7 (2)C2—C1—C6—C50.7 (2)
C1—C2—C3—C40.23 (19)C4—C5—C6—C10.25 (19)
C2—C3—C4—C50.18 (18)C9i—C7—C8—C90.15 (19)
C2—C3—C4—S1179.75 (10)C9i—C7—C8—O1176.54 (11)
O3—S1—C4—C58.66 (11)S1—O1—C8—C9122.24 (11)
O2—S1—C4—C5141.24 (9)S1—O1—C8—C761.25 (13)
O1—S1—C4—C5108.18 (10)C7—C8—C9—C7i0.2 (2)
O3—S1—C4—C3171.77 (9)O1—C8—C9—C7i176.64 (11)
O2—S1—C4—C339.18 (11)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2ii0.962.123.0630 (14)169
C5—H5A···F1iii0.952.373.2766 (16)159
C6—H6A···O3iv0.952.543.4130 (17)152
C7—H7A···O2v0.952.603.3936 (17)142
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H13F2NO5S2
Mr425.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.9683 (1), 11.0323 (1), 9.3314 (1)
β (°) 102.363 (1)
V3)901.85 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.37 × 0.33 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.883, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
12757, 3235, 2940
Rint0.018
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.09
No. of reflections3235
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.962.123.0630 (14)169
C5—H5A···F1ii0.952.373.2766 (16)159
C6—H6A···O3iii0.952.543.4130 (17)152
C7—H7A···O2iv0.952.603.3936 (17)142
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: habibahw@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HAW gratefully acknowledges the Malaysian Ministry of Science, Technology and Innovation for the synthesis work funded by grant Nos. 311/IFN/69230112 and 304/PFARMASI/650545/I121. HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAl-Najjar, B. O., Tengku Muhammad, T. S., Wahab, H. A., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535–558.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds