organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis[(E)-1-(thio­phen-3-yl)ethyl­­idene]ethane-1,2-di­amine

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 5 March 2012; accepted 5 March 2012; online 10 March 2012)

The complete mol­ecule of the title compound, C14H16N2S2, is generated by a crystallographic inversion centre. The thio­phene residue is close to being coplanar with the imine group [C—C—C—N torsion angle = 6.5 (2)°], and the conformation about the imine C=N bond [1.281 (2) Å] is E. In the crystal, the three-dimensional architecture is consolidated by C—H⋯N, C—H⋯π and S⋯S [3.3932 (7) Å] inter­actions.

Related literature

For background to 2-substituted thio­phenes, see: Kleemann et al. (2006[Kleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). In Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.]). For related structures, see: Prasath et al. (2010a[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2883.],b[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2883.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2S2

  • Mr = 276.41

  • Monoclinic, P 21 /c

  • a = 7.5231 (6) Å

  • b = 11.2338 (6) Å

  • c = 8.5967 (6) Å

  • β = 112.894 (9)°

  • V = 669.30 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.928, Tmax = 0.963

  • 2789 measured reflections

  • 1542 independent reflections

  • 1339 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.06

  • 1542 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1,C1–C4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N1i 0.95 2.51 3.454 (2) 172
C6—H6CCg1ii 0.98 2.74 3.624 (2) 150
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiophenes attract attention for their biological activity amongst other properties (Kleemann et al., 2006). In continuation of structural studies of thienyl derivatives (Prasath et al., 2010a; Prasath et al., 2010b), herein the title compound, bis[1-(thiophen-3-yl)ethylidene]ethane-1,2-diamine (I), is described.

The asymmetric unit in (I), Fig. 1, comprises half a molecule with the full molecule generated by a crystallographic centre of inversion. The thiophene residue is co-planar with the imine group as seen in the value of the C2—C3—C5—N1 torsion angle of 6.5 (2) °. In fact the entire molecule is planar with the r.m.s. deviation for the 18 non-hydrogen atoms being 0.068 Å; the maximum deviations are found for the S1 [0.092 (1) Å] and C2 [-0.099 (2) Å] atoms. The conformation about the imine N1—C5 bond [1.281 (2) Å] is E.

In the crystal packing the molecules associate via C—H···N, C—H···π, [Table 1] and S···S [S1···S1i = 3.3932 (7) Å for i: 2 - x, 1 - y, 2 - z] interactions to form a three-dimensional architecture, Fig. 2.

Related literature top

For background to 2-substituted thiophenes, see: Kleemann et al. (2006). For related structures, see: Prasath et al. (2010a,b).

Experimental top

A mixture of ethylenediamine (0.6 g, 0.01 M) and 2-acetyl thiophene (0.7 g, 0.01 M) in dry benzene (50 ml) was refluxed using a Dean-Stark trap until no more water was collected (2 h). The benzene was then removed under reduced pressure and the residue treated with methanol. The solid that separated out was recrystallized from ethanol as colourless prisms. Yield: 72%. M.pt: 405–407 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

Thiophenes attract attention for their biological activity amongst other properties (Kleemann et al., 2006). In continuation of structural studies of thienyl derivatives (Prasath et al., 2010a; Prasath et al., 2010b), herein the title compound, bis[1-(thiophen-3-yl)ethylidene]ethane-1,2-diamine (I), is described.

The asymmetric unit in (I), Fig. 1, comprises half a molecule with the full molecule generated by a crystallographic centre of inversion. The thiophene residue is co-planar with the imine group as seen in the value of the C2—C3—C5—N1 torsion angle of 6.5 (2) °. In fact the entire molecule is planar with the r.m.s. deviation for the 18 non-hydrogen atoms being 0.068 Å; the maximum deviations are found for the S1 [0.092 (1) Å] and C2 [-0.099 (2) Å] atoms. The conformation about the imine N1—C5 bond [1.281 (2) Å] is E.

In the crystal packing the molecules associate via C—H···N, C—H···π, [Table 1] and S···S [S1···S1i = 3.3932 (7) Å for i: 2 - x, 1 - y, 2 - z] interactions to form a three-dimensional architecture, Fig. 2.

For background to 2-substituted thiophenes, see: Kleemann et al. (2006). For related structures, see: Prasath et al. (2010a,b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. The unlabelled atoms are related by the symmetry operation (1-x, 1-y, -z).
[Figure 2] Fig. 2. A view in projection down the c axis of the unit-cell contents of (I). The C—N···N, C—H···π and S···S interactions are shown as blue, purple and orange dashed lines, respectively.
N,N'-Bis[(E)-1-(thiophen-3-yl)ethylidene]ethane-1,2-diamine top
Crystal data top
C14H16N2S2F(000) = 292
Mr = 276.41Dx = 1.372 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1637 reflections
a = 7.5231 (6) Åθ = 2.6–27.5°
b = 11.2338 (6) ŵ = 0.38 mm1
c = 8.5967 (6) ÅT = 100 K
β = 112.894 (9)°Prism, colourless
V = 669.30 (8) Å30.20 × 0.15 × 0.10 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1542 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1339 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 149
Tmin = 0.928, Tmax = 0.963l = 117
2789 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.3751P]
where P = (Fo2 + 2Fc2)/3
1542 reflections(Δ/σ)max = 0.001
83 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C14H16N2S2V = 669.30 (8) Å3
Mr = 276.41Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.5231 (6) ŵ = 0.38 mm1
b = 11.2338 (6) ÅT = 100 K
c = 8.5967 (6) Å0.20 × 0.15 × 0.10 mm
β = 112.894 (9)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1542 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1339 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.963Rint = 0.033
2789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.06Δρmax = 0.45 e Å3
1542 reflectionsΔρmin = 0.41 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.88734 (7)0.59544 (4)0.83858 (6)0.01735 (17)
N10.6122 (2)0.51740 (13)0.23310 (18)0.0129 (3)
C10.7443 (3)0.69397 (16)0.6897 (2)0.0161 (4)
H10.71380.77190.71430.019*
C20.6805 (3)0.64614 (16)0.5325 (2)0.0138 (4)
H20.59850.68720.43420.017*
C30.7493 (2)0.52741 (15)0.5294 (2)0.0127 (4)
C40.8632 (3)0.48878 (16)0.6889 (2)0.0151 (4)
H40.92140.41230.71330.018*
C50.7023 (2)0.45986 (15)0.3700 (2)0.0121 (4)
C60.7668 (3)0.33137 (16)0.3829 (2)0.0156 (4)
H6A0.69390.29030.27640.023*
H6B0.74350.29230.47510.023*
H6C0.90490.32830.40550.023*
C70.5591 (3)0.45805 (16)0.0702 (2)0.0144 (4)
H7A0.48310.38560.06750.017*
H7B0.67710.43380.05370.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0200 (3)0.0185 (3)0.0112 (3)0.00100 (18)0.00349 (19)0.00088 (17)
N10.0144 (8)0.0129 (7)0.0110 (7)0.0001 (6)0.0043 (6)0.0005 (6)
C10.0183 (9)0.0150 (8)0.0170 (9)0.0011 (7)0.0091 (7)0.0012 (7)
C20.0147 (9)0.0151 (9)0.0128 (8)0.0013 (7)0.0065 (7)0.0023 (7)
C30.0124 (8)0.0129 (8)0.0134 (9)0.0012 (7)0.0057 (7)0.0010 (7)
C40.0171 (9)0.0137 (8)0.0136 (9)0.0003 (7)0.0052 (7)0.0001 (7)
C50.0101 (8)0.0123 (8)0.0146 (9)0.0011 (6)0.0055 (7)0.0006 (7)
C60.0184 (9)0.0125 (8)0.0158 (9)0.0020 (7)0.0064 (7)0.0004 (7)
C70.0177 (9)0.0124 (8)0.0121 (9)0.0005 (7)0.0047 (7)0.0024 (7)
Geometric parameters (Å, º) top
S1—C41.7154 (18)C3—C51.484 (2)
S1—C11.7174 (19)C4—H40.9500
N1—C51.281 (2)C5—C61.513 (2)
N1—C71.460 (2)C6—H6A0.9800
C1—C21.357 (2)C6—H6B0.9800
C1—H10.9500C6—H6C0.9800
C2—C31.435 (2)C7—C7i1.517 (3)
C2—H20.9500C7—H7A0.9900
C3—C41.374 (2)C7—H7B0.9900
C4—S1—C192.19 (9)N1—C5—C6126.06 (15)
C5—N1—C7120.01 (15)C3—C5—C6117.77 (15)
C2—C1—S1111.31 (14)C5—C6—H6A109.5
C2—C1—H1124.3C5—C6—H6B109.5
S1—C1—H1124.3H6A—C6—H6B109.5
C1—C2—C3113.35 (16)C5—C6—H6C109.5
C1—C2—H2123.3H6A—C6—H6C109.5
C3—C2—H2123.3H6B—C6—H6C109.5
C4—C3—C2111.37 (16)N1—C7—C7i109.65 (18)
C4—C3—C5126.30 (16)N1—C7—H7A109.7
C2—C3—C5122.32 (15)C7i—C7—H7A109.7
C3—C4—S1111.78 (14)N1—C7—H7B109.7
C3—C4—H4124.1C7i—C7—H7B109.7
S1—C4—H4124.1H7A—C7—H7B108.2
N1—C5—C3116.16 (15)
C4—S1—C1—C20.34 (14)C7—N1—C5—C3179.72 (15)
S1—C1—C2—C30.7 (2)C7—N1—C5—C61.3 (3)
C1—C2—C3—C40.8 (2)C4—C3—C5—N1172.11 (17)
C1—C2—C3—C5177.97 (16)C2—C3—C5—N16.5 (2)
C2—C3—C4—S10.6 (2)C4—C3—C5—C67.0 (3)
C5—C3—C4—S1178.19 (14)C2—C3—C5—C6174.39 (15)
C1—S1—C4—C30.13 (15)C5—N1—C7—C7i175.58 (18)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1,C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···N1ii0.952.513.454 (2)172
C6—H6C···Cg1iii0.982.743.624 (2)150
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H16N2S2
Mr276.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.5231 (6), 11.2338 (6), 8.5967 (6)
β (°) 112.894 (9)
V3)669.30 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.928, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
2789, 1542, 1339
Rint0.033
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.06
No. of reflections1542
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.41

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1,C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···N1i0.952.513.454 (2)172
C6—H6C···Cg1ii0.982.743.624 (2)150
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). In Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.  Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds