organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1027-o1028

3-Amino-1-(thio­phen-2-yl)-9,10-di­hydro­phenanthrene-2,4-dicarbo­nitrile

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 5 March 2012; accepted 7 March 2012; online 10 March 2012)

In the title compound, C20H13N3S, the partially saturated ring adopts a twisted half-boat conformation with the methyl­ene C atom closest to the amino­benzene ring lying 0.690 (6) Å out of the plane defined by the five remaining atoms. The dihydro­phenanthrene residue has a folded conformation [dihedral angle between the outer benzene rings = 26.27 (18)°]. The thio­phen-2-yl ring forms a dihedral angle of 63.76 (19)° with the benzene ring to which it is attached. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(12) loops. The dimers are linked into layers in the bc plane by weak C—H⋯π inter­actions. The thio­phen-2-yl ring is disordered over two essentially coplanar but opposite orientations in a 0.918 (4):0.082 (4) ratio.

Related literature

For background to the biological activity of related dicarbonitrile compounds, see: Aly et al. (1991[Aly, A. S., El-Ezabawy, S. R. & Abdel-Fattah, A. M. (1991). Egypt. J. Pharm. Sci. 32, 827-834.]); Rostom et al. (2011[Rostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res. 20, 1260-1272.]). For related structures, see: Asiri et al. (2011a[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011a). Acta Cryst. E67, o2438.],b[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o2449.]).

[Scheme 1]

Experimental

Crystal data
  • C20H13N3S

  • Mr = 327.39

  • Monoclinic, P 21 /c

  • a = 9.7882 (10) Å

  • b = 7.1199 (7) Å

  • c = 22.746 (3) Å

  • β = 93.171 (11)°

  • V = 1582.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.30 × 0.06 × 0.03 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.940, Tmax = 0.994

  • 5527 measured reflections

  • 2805 independent reflections

  • 1778 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.164

  • S = 1.03

  • 2805 reflections

  • 236 parameters

  • 56 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯N3i 0.88 (3) 2.18 (3) 3.016 (5) 160 (3)
C6—H6⋯Cg1ii 0.95 2.85 3.660 (5) 144
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystallographic investigation of the title compound, (I), was motivated by reports of the biological activity of related compounds (Aly et al., 1991; Rostom et al., 2011) and allied crystal structure investigations (Asiri et al., 2011a; Asiri et al., 2011b).

In (I), Fig. 1, the partially saturated ring adopts a twisted half boat conformation with the C2 atom lying 0.690 (6) Å out of the plane defined by the five remaining atoms [r.m.s. deviation = 0.1032 Å; maximum deviations = 0.076 (3) Å for the C9 atom and -0.160 (3) Å for the C10 atom]. The dihedral angle between the adjacent benzene rings = 26.27 (18)° indicating a fold in the molecule. The thiophen-2-yl ring forms a dihedral angle of 63.76 (19)° with the benzene to which it is attached.

In the crystal packing, centrosymmetric aggregates are formed via N—H···N hydrogen bonds leading to 12-membered {···HNC3N}2 synthons, Table 1. These are linked into layers in the bc plane by C—H···π interactions, Fig. 2 and Table 1. These stack along the a axis with no specific interactions between them.

Related literature top

For background to the biological activity of related dicarbonitrile compounds, see: Aly et al. (1991); Rostom et al. (2011). For related structures, see: Asiri et al. (2011a,b).

Experimental top

A mixture of thiophene-2-cabaldehyde (1.1 g, 10 mmol), 1-tetralone (1.46 g, 10 mmol), malononitrile (0.66 g, 10 mmol) and ammonium acetate (6.2 g, 80 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool, and the formed precipitate was filtered, washed with water, dried and recrystallized from ethanol as orange prisms. Yield: 69%. M.pt: 451–453 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å; Uiso were refined.

The thienyl ring is disordered over two positions in a 0.918 (4): 0.082 (4) ratio. The S—C distances were restrained to 1.71±0.01 Å, the formal C—C single-bond distances to 1.42±0.01 Å and the formal CC double-bond distances to 1.42±0.01 Å. Additionally, the 1,3-related distances were restrained to within 0.01 Å of each other. Because pairs of atoms are close to each other, the Uaniso of the C18' atom were equated to those of the S1 atom (as well as the C19'/C20, C20'/C19' and C18'/S1 pairs). The anisotropic displacement parameters were tightly restrained to be nearly isotropic.

Structure description top

The crystallographic investigation of the title compound, (I), was motivated by reports of the biological activity of related compounds (Aly et al., 1991; Rostom et al., 2011) and allied crystal structure investigations (Asiri et al., 2011a; Asiri et al., 2011b).

In (I), Fig. 1, the partially saturated ring adopts a twisted half boat conformation with the C2 atom lying 0.690 (6) Å out of the plane defined by the five remaining atoms [r.m.s. deviation = 0.1032 Å; maximum deviations = 0.076 (3) Å for the C9 atom and -0.160 (3) Å for the C10 atom]. The dihedral angle between the adjacent benzene rings = 26.27 (18)° indicating a fold in the molecule. The thiophen-2-yl ring forms a dihedral angle of 63.76 (19)° with the benzene to which it is attached.

In the crystal packing, centrosymmetric aggregates are formed via N—H···N hydrogen bonds leading to 12-membered {···HNC3N}2 synthons, Table 1. These are linked into layers in the bc plane by C—H···π interactions, Fig. 2 and Table 1. These stack along the a axis with no specific interactions between them.

For background to the biological activity of related dicarbonitrile compounds, see: Aly et al. (1991); Rostom et al. (2011). For related structures, see: Asiri et al. (2011a,b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer in the bc plane in (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents of (I) showing the stacking of layers. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively. One layer is highlighted in space-filling mode.
3-Amino-1-(thiophen-2-yl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile top
Crystal data top
C20H13N3SF(000) = 680
Mr = 327.39Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1132 reflections
a = 9.7882 (10) Åθ = 2.7–25.0°
b = 7.1199 (7) ŵ = 0.21 mm1
c = 22.746 (3) ÅT = 100 K
β = 93.171 (11)°Prism, orange
V = 1582.8 (3) Å30.30 × 0.06 × 0.03 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2805 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1778 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.056
Detector resolution: 10.4041 pixels mm-1θmax = 25.1°, θmin = 2.7°
ω scanh = 911
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 86
Tmin = 0.940, Tmax = 0.994l = 1927
5527 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0559P)2 + 1.2744P]
where P = (Fo2 + 2Fc2)/3
2805 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.67 e Å3
56 restraintsΔρmin = 0.55 e Å3
Crystal data top
C20H13N3SV = 1582.8 (3) Å3
Mr = 327.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7882 (10) ŵ = 0.21 mm1
b = 7.1199 (7) ÅT = 100 K
c = 22.746 (3) Å0.30 × 0.06 × 0.03 mm
β = 93.171 (11)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2805 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1778 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.994Rint = 0.056
5527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06656 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.67 e Å3
2805 reflectionsΔρmin = 0.55 e Å3
236 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.98458 (11)0.25812 (17)0.64193 (6)0.0331 (4)0.918 (4)
S1'0.976 (2)0.275 (3)0.5229 (7)0.0358 (13)0.082 (4)
N10.2456 (3)0.6816 (5)0.61810 (16)0.0329 (9)
N20.3958 (3)0.3401 (5)0.54813 (14)0.0213 (7)
H10.402 (4)0.236 (3)0.5276 (15)0.026*
H20.3108 (16)0.373 (5)0.5535 (17)0.026*
N30.6533 (3)0.0358 (5)0.51041 (15)0.0255 (8)
C10.7477 (4)0.6177 (5)0.61652 (16)0.0213 (9)
C20.8711 (4)0.7249 (5)0.64154 (18)0.0262 (9)
H2A0.89040.83220.61560.031*
H2B0.95230.64180.64380.031*
C30.8422 (4)0.7966 (6)0.70321 (18)0.0329 (11)
H3A0.82780.68880.72970.039*
H3B0.92150.86960.71960.039*
C40.7144 (4)0.9209 (5)0.69949 (19)0.0295 (10)
C50.7052 (5)1.0784 (6)0.73318 (19)0.0380 (11)
H50.77681.10820.76150.046*
C60.5919 (4)1.1956 (6)0.72634 (19)0.0329 (11)
H60.58481.30240.75100.040*
C70.4905 (4)1.1578 (5)0.68423 (18)0.0289 (10)
H70.41451.24020.67920.035*
C80.4980 (4)0.9990 (5)0.64865 (18)0.0260 (10)
H80.42880.97520.61870.031*
C90.6089 (4)0.8743 (5)0.65742 (16)0.0221 (9)
C100.6174 (4)0.6957 (5)0.62403 (16)0.0201 (9)
C110.5006 (3)0.5995 (5)0.60216 (16)0.0173 (8)
C120.5094 (4)0.4290 (5)0.57009 (16)0.0184 (8)
C130.6410 (3)0.3549 (5)0.56377 (16)0.0170 (8)
C140.7610 (3)0.4495 (5)0.58825 (16)0.0202 (9)
C150.3602 (4)0.6548 (5)0.61278 (17)0.0237 (9)
C160.6518 (3)0.1773 (5)0.53443 (16)0.0193 (9)
C170.8889 (3)0.3421 (4)0.58171 (17)0.0234 (9)
C180.9449 (5)0.2974 (7)0.5317 (2)0.0358 (13)0.918 (4)
H180.90730.33400.49400.043*0.918 (4)
C18'0.953 (2)0.282 (3)0.6333 (6)0.0331 (4)0.08
H18'0.91940.30550.67100.040*0.082 (4)
C191.0686 (4)0.1878 (6)0.5402 (2)0.0325 (13)0.918 (4)
H191.12030.14300.50890.039*0.918 (4)
C19'1.0749 (19)0.179 (3)0.6240 (13)0.0361 (13)0.082 (4)
H19'1.13210.12740.65490.043*0.082 (4)
C201.1022 (4)0.1564 (6)0.5979 (2)0.0361 (13)0.918 (4)
H201.18020.08750.61220.043*0.918 (4)
C20'1.1006 (14)0.1645 (15)0.5660 (15)0.0325 (13)0.08
H20'1.17710.10110.55140.039*0.082 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0230 (7)0.0336 (7)0.0420 (8)0.0037 (5)0.0030 (5)0.0073 (6)
S1'0.021 (3)0.045 (3)0.043 (3)0.005 (2)0.015 (2)0.020 (2)
N10.025 (2)0.035 (2)0.038 (2)0.0062 (16)0.0029 (17)0.0003 (17)
N20.0165 (16)0.0228 (17)0.0244 (19)0.0001 (15)0.0003 (14)0.0056 (15)
N30.0169 (17)0.0238 (19)0.036 (2)0.0003 (14)0.0039 (15)0.0071 (17)
C10.022 (2)0.021 (2)0.021 (2)0.0035 (17)0.0023 (16)0.0002 (17)
C20.024 (2)0.023 (2)0.032 (2)0.0028 (18)0.0044 (18)0.0083 (19)
C30.032 (2)0.035 (2)0.031 (3)0.005 (2)0.0030 (19)0.010 (2)
C40.034 (2)0.021 (2)0.032 (3)0.0097 (19)0.0055 (19)0.0035 (19)
C50.047 (3)0.041 (3)0.026 (3)0.004 (2)0.012 (2)0.006 (2)
C60.047 (3)0.027 (2)0.026 (2)0.002 (2)0.018 (2)0.007 (2)
C70.040 (2)0.020 (2)0.029 (2)0.0020 (19)0.016 (2)0.0036 (19)
C80.033 (2)0.022 (2)0.023 (2)0.0007 (19)0.0085 (18)0.0005 (18)
C90.030 (2)0.0173 (19)0.020 (2)0.0026 (18)0.0090 (17)0.0006 (17)
C100.023 (2)0.019 (2)0.018 (2)0.0003 (17)0.0038 (16)0.0037 (16)
C110.0177 (19)0.0141 (18)0.021 (2)0.0009 (16)0.0038 (16)0.0016 (16)
C120.021 (2)0.0190 (19)0.015 (2)0.0010 (17)0.0041 (16)0.0029 (16)
C130.0161 (19)0.0154 (18)0.020 (2)0.0000 (16)0.0063 (15)0.0004 (16)
C140.020 (2)0.020 (2)0.021 (2)0.0004 (16)0.0051 (16)0.0016 (17)
C150.032 (2)0.018 (2)0.020 (2)0.0007 (18)0.0020 (18)0.0004 (17)
C160.0144 (19)0.022 (2)0.021 (2)0.0030 (16)0.0006 (16)0.0018 (18)
C170.0176 (19)0.023 (2)0.030 (2)0.0044 (17)0.0021 (17)0.0049 (18)
C180.021 (3)0.045 (3)0.043 (3)0.005 (2)0.015 (2)0.020 (2)
C18'0.0230 (7)0.0336 (7)0.0420 (8)0.0037 (5)0.0030 (5)0.0073 (6)
C190.011 (2)0.033 (2)0.053 (3)0.0018 (19)0.000 (2)0.021 (2)
C19'0.018 (2)0.027 (2)0.064 (4)0.0064 (19)0.004 (2)0.008 (3)
C200.018 (2)0.027 (2)0.064 (4)0.0064 (19)0.004 (2)0.008 (3)
C20'0.011 (2)0.033 (2)0.053 (3)0.0018 (19)0.000 (2)0.021 (2)
Geometric parameters (Å, º) top
S1—C171.723 (4)C7—C81.395 (5)
S1—C201.727 (5)C7—H70.9500
S1'—C171.695 (9)C8—C91.408 (5)
S1'—C20'1.713 (10)C8—H80.9500
N1—C151.150 (5)C9—C101.486 (5)
N2—C121.351 (5)C10—C111.400 (5)
N2—H10.882 (10)C11—C121.422 (5)
N2—H20.880 (10)C11—C151.462 (5)
N3—C161.146 (5)C12—C131.407 (5)
C1—C141.369 (5)C13—C161.437 (5)
C1—C101.410 (5)C13—C141.439 (5)
C1—C21.513 (5)C14—C171.481 (5)
C2—C31.534 (5)C17—C181.329 (6)
C2—H2A0.9900C17—C18'1.367 (9)
C2—H2B0.9900C18—C191.445 (6)
C3—C41.531 (6)C18—H180.9500
C3—H3A0.9900C18'—C19'1.427 (9)
C3—H3B0.9900C18'—H18'0.9500
C4—C51.364 (6)C19—C201.354 (6)
C4—C91.408 (5)C19—H190.9500
C5—C61.390 (6)C19'—C20'1.360 (9)
C5—H50.9500C19'—H19'0.9500
C6—C71.367 (6)C20—H200.9500
C6—H60.9500C20'—H20'0.9500
C17—S1—C2092.0 (2)C1—C10—C9118.4 (3)
C17—S1'—C20'93.0 (5)C10—C11—C12121.9 (3)
C12—N2—H1121 (2)C10—C11—C15124.5 (3)
C12—N2—H2126 (3)C12—C11—C15113.5 (3)
H1—N2—H2113 (4)N2—C12—C13121.8 (3)
C14—C1—C10120.8 (3)N2—C12—C11121.2 (3)
C14—C1—C2121.6 (3)C13—C12—C11117.0 (3)
C10—C1—C2117.7 (3)C12—C13—C16117.9 (3)
C1—C2—C3109.1 (3)C12—C13—C14121.2 (3)
C1—C2—H2A109.9C16—C13—C14120.9 (3)
C3—C2—H2A109.9C1—C14—C13119.6 (3)
C1—C2—H2B109.9C1—C14—C17127.0 (3)
C3—C2—H2B109.9C13—C14—C17113.3 (3)
H2A—C2—H2B108.3N1—C15—C11172.9 (4)
C4—C3—C2109.5 (3)N3—C16—C13176.6 (4)
C4—C3—H3A109.8C18—C17—C14126.9 (4)
C2—C3—H3A109.8C18'—C17—C14115.1 (11)
C4—C3—H3B109.8C18'—C17—S1'111.3 (7)
C2—C3—H3B109.8C14—C17—S1'133.6 (8)
H3A—C3—H3B108.2C18—C17—S1111.5 (3)
C5—C4—C9120.4 (4)C14—C17—S1121.6 (3)
C5—C4—C3121.6 (4)C17—C18—C19113.4 (4)
C9—C4—C3117.9 (4)C17—C18—H18123.3
C4—C5—C6120.5 (4)C19—C18—H18123.3
C4—C5—H5119.7C17—C18'—C19'112.4 (6)
C6—C5—H5119.7C17—C18'—H18'123.8
C7—C6—C5120.2 (4)C19'—C18'—H18'123.8
C7—C6—H6119.9C20—C19—C18112.1 (4)
C5—C6—H6119.9C20—C19—H19124.0
C6—C7—C8120.5 (4)C18—C19—H19124.0
C6—C7—H7119.8C20'—C19'—C18'112.7 (7)
C8—C7—H7119.8C20'—C19'—H19'123.7
C7—C8—C9119.6 (4)C18'—C19'—H19'123.7
C7—C8—H8120.2C19—C20—S1111.1 (3)
C9—C8—H8120.2C19—C20—H20124.5
C8—C9—C4118.6 (4)S1—C20—H20124.5
C8—C9—C10122.1 (3)C19'—C20'—S1'110.8 (8)
C4—C9—C10119.3 (3)C19'—C20'—H20'124.6
C11—C10—C1119.4 (3)S1'—C20'—H20'124.6
C11—C10—C9122.2 (3)
C14—C1—C2—C3135.7 (4)C2—C1—C14—C13178.3 (3)
C10—C1—C2—C343.4 (5)C10—C1—C14—C17174.1 (3)
C1—C2—C3—C458.1 (4)C2—C1—C14—C175.0 (6)
C2—C3—C4—C5142.1 (4)C12—C13—C14—C12.2 (5)
C2—C3—C4—C934.1 (5)C16—C13—C14—C1179.3 (3)
C9—C4—C5—C60.3 (6)C12—C13—C14—C17174.9 (3)
C3—C4—C5—C6175.8 (4)C16—C13—C14—C172.2 (5)
C4—C5—C6—C72.3 (6)C1—C14—C17—C18118.5 (4)
C5—C6—C7—C81.5 (6)C13—C14—C17—C1864.6 (3)
C6—C7—C8—C91.8 (6)C1—C14—C17—C18'62.6 (12)
C7—C8—C9—C44.3 (5)C13—C14—C17—C18'114.3 (11)
C7—C8—C9—C10175.3 (3)C1—C14—C17—S1'117.4 (11)
C5—C4—C9—C83.6 (6)C13—C14—C17—S1'65.7 (11)
C3—C4—C9—C8172.7 (4)C1—C14—C17—S161.6 (4)
C5—C4—C9—C10176.1 (4)C13—C14—C17—S1115.3 (3)
C3—C4—C9—C107.6 (5)C20'—S1'—C17—C18173 (8)
C14—C1—C10—C110.1 (5)C20'—S1'—C17—C18'0.1 (3)
C2—C1—C10—C11179.2 (3)C20'—S1'—C17—C14179.92 (19)
C14—C1—C10—C9177.3 (3)C20'—S1'—C17—S11.0 (10)
C2—C1—C10—C91.8 (5)C20—S1—C17—C180.9 (2)
C8—C9—C10—C1128.0 (6)C20—S1—C17—C18'171 (9)
C4—C9—C10—C11151.7 (4)C20—S1—C17—C14178.99 (15)
C8—C9—C10—C1154.7 (4)C20—S1—C17—S1'1.8 (8)
C4—C9—C10—C125.6 (5)C18'—C17—C18—C190.2 (14)
C1—C10—C11—C123.0 (5)C14—C17—C18—C19178.7 (2)
C9—C10—C11—C12179.8 (3)S1'—C17—C18—C198 (7)
C1—C10—C11—C15172.9 (3)S1—C17—C18—C191.2 (3)
C9—C10—C11—C154.3 (6)C18—C17—C18'—C19'1.0 (12)
C10—C11—C12—N2178.5 (3)C14—C17—C18'—C19'180.0 (3)
C15—C11—C12—N25.2 (5)S1'—C17—C18'—C19'0.0 (3)
C10—C11—C12—C133.3 (5)S1—C17—C18'—C19'8 (9)
C15—C11—C12—C13173.0 (3)C17—C18—C19—C201.0 (4)
N2—C12—C13—C161.7 (5)C17—C18'—C19'—C20'0.1 (5)
C11—C12—C13—C16176.5 (3)C18—C19—C20—S10.2 (4)
N2—C12—C13—C14178.9 (3)C17—S1—C20—C190.4 (3)
C11—C12—C13—C140.7 (5)C18'—C19'—C20'—S1'0.1 (6)
C10—C1—C14—C132.6 (6)C17—S1'—C20'—C19'0.1 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1···N3i0.88 (3)2.18 (3)3.016 (5)160 (3)
C6—H6···Cg1ii0.952.853.660 (5)144
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H13N3S
Mr327.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.7882 (10), 7.1199 (7), 22.746 (3)
β (°) 93.171 (11)
V3)1582.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.06 × 0.03
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.940, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
5527, 2805, 1778
Rint0.056
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.164, 1.03
No. of reflections2805
No. of parameters236
No. of restraints56
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.55

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1···N3i0.88 (3)2.18 (3)3.016 (5)160 (3)
C6—H6···Cg1ii0.952.853.660 (5)144
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAly, A. S., El-Ezabawy, S. R. & Abdel-Fattah, A. M. (1991). Egypt. J. Pharm. Sci. 32, 827–834.  CAS Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011a). Acta Cryst. E67, o2438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o2449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res. 20, 1260–1272.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1027-o1028
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds