organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-4-methyl­quinolin-2(1H)-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 5 March 2012; accepted 6 March 2012; online 14 March 2012)

The title compound, C10H8ClNO, is almost planar (r.m.s. deviation for the 13 non-H atoms = 0.023 Å). In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) rings. Weak aromatic ππ stacking inter­actions [centroid–centroid distance = 3.7622 (12) Å] also occur.

Related literature

For the biological activity of quinoline, see: Michael et al. (1996[Michael, J. P., De Koning, C. B. & Stanbury, T. V. (1996). Tetrahedron Lett. 37, 9403-9406.]). For the synthesis, see: Hodgkinson & Staskun (1969[Hodgkinson, A. J. & Staskun, B. (1969). J. Org. Chem. 34, 1709-1713.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Vasuki et al. (2001)[Vasuki, G., Parthasarathi, V., Ramamurthi, K., Jaisankar, P. & Varghese, B. (2001). Acta Cryst. E57, o234-o235.]. For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8ClNO

  • Mr = 193.62

  • Monoclinic, P 21 /c

  • a = 3.9361 (2) Å

  • b = 12.9239 (6) Å

  • c = 17.1019 (7) Å

  • β = 100.197 (4)°

  • V = 856.23 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.56 mm−1

  • T = 296 K

  • 0.92 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.138, Tmax = 0.720

  • 5522 measured reflections

  • 1434 independent reflections

  • 1178 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.00

  • 1434 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.93 1.91 2.816 (2) 166
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

For the previous reports of the chemistry and the biological activity of quinolines, see Michael et al. (1996).

In the title compound (Fig. 1), the quinoline ring (N1/C1–C9) is essentially planar with a maximum deviation of 0.012 (2) Å at atom C1. The bond lengths (Allen et al., 1987) and angles are within normal ranges are comparable to the related structure (Vasuki et al., 2001).

In the crystal structure (Fig. 2), the adjacent molecules are linked via pair of N1—H1···O1 (Table 1) hydrogen bonds, forming dimers with an R22 (8) ring motif (Bernstein et al., 1995). The crystal structure is further stabilized by weak ππ interactions between the benzene ring (Cg1; C4–C9) and quinoline ring (Cg2; N1/C1–C9). [Cg1···Cg2 = 3.7622 (12) Å; 1+x, y, z].

Related literature top

For the biological activity of quinoline, see: Michael et al. (1996). For the synthesis, see: Hodgkinson & Staskun (1969). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Vasuki et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

This compound was prepared according to the reported method (Hodgkinson & Staskun, 1969). Colorless needles of the title compound were grown from a mixed solution of EtOH/DMF (V/V = 2/1) by slow evaporation at room temperature.

Refinement top

Atom H1 was located from the difference map and was fixed at their found positions with Uiso(H) = 1.2 Ueq(N) [N–H = 0.9256 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) (C—H = 0.93 and 0.96 Å). A rotating group model was applied to the methyl group.

Structure description top

For the previous reports of the chemistry and the biological activity of quinolines, see Michael et al. (1996).

In the title compound (Fig. 1), the quinoline ring (N1/C1–C9) is essentially planar with a maximum deviation of 0.012 (2) Å at atom C1. The bond lengths (Allen et al., 1987) and angles are within normal ranges are comparable to the related structure (Vasuki et al., 2001).

In the crystal structure (Fig. 2), the adjacent molecules are linked via pair of N1—H1···O1 (Table 1) hydrogen bonds, forming dimers with an R22 (8) ring motif (Bernstein et al., 1995). The crystal structure is further stabilized by weak ππ interactions between the benzene ring (Cg1; C4–C9) and quinoline ring (Cg2; N1/C1–C9). [Cg1···Cg2 = 3.7622 (12) Å; 1+x, y, z].

For the biological activity of quinoline, see: Michael et al. (1996). For the synthesis, see: Hodgkinson & Staskun (1969). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Vasuki et al. (2001). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
3-Chloro-4-methylquinolin-2(1H)-one top
Crystal data top
C10H8ClNOF(000) = 400
Mr = 193.62Dx = 1.502 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 615 reflections
a = 3.9361 (2) Åθ = 4.3–63.6°
b = 12.9239 (6) ŵ = 3.56 mm1
c = 17.1019 (7) ÅT = 296 K
β = 100.197 (4)°Needle, colourless
V = 856.23 (7) Å30.92 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1434 independent reflections
Radiation source: fine-focus sealed tube1178 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 64.9°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 43
Tmin = 0.138, Tmax = 0.720k = 1514
5522 measured reflectionsl = 2017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0755P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1434 reflectionsΔρmax = 0.18 e Å3
120 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (9)
Crystal data top
C10H8ClNOV = 856.23 (7) Å3
Mr = 193.62Z = 4
Monoclinic, P21/cCu Kα radiation
a = 3.9361 (2) ŵ = 3.56 mm1
b = 12.9239 (6) ÅT = 296 K
c = 17.1019 (7) Å0.92 × 0.10 × 0.10 mm
β = 100.197 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
1434 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1178 reflections with I > 2σ(I)
Tmin = 0.138, Tmax = 0.720Rint = 0.040
5522 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
1434 reflectionsΔρmin = 0.21 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.04066 (14)0.51266 (4)0.76645 (3)0.0516 (2)
O11.0673 (4)0.46152 (12)0.60239 (9)0.0560 (4)
N10.7804 (4)0.60196 (13)0.54512 (9)0.0422 (4)
H10.79280.57800.49470.051*
C10.9152 (5)0.54435 (15)0.60939 (12)0.0414 (4)
C20.8689 (5)0.58782 (15)0.68546 (11)0.0386 (4)
C30.7149 (4)0.68001 (14)0.69302 (11)0.0371 (4)
C40.5836 (5)0.73765 (14)0.62192 (11)0.0368 (4)
C50.4234 (5)0.83478 (16)0.62245 (12)0.0446 (5)
H5A0.39350.86370.67060.054*
C60.3104 (6)0.88763 (17)0.55307 (14)0.0529 (6)
H6A0.20940.95250.55460.064*
C70.3468 (6)0.84441 (18)0.48054 (14)0.0552 (6)
H7A0.26900.88040.43370.066*
C80.4965 (5)0.74913 (17)0.47760 (12)0.0477 (5)
H8A0.51660.71980.42900.057*
C90.6184 (5)0.69643 (15)0.54803 (11)0.0385 (4)
C100.6782 (6)0.72335 (16)0.77284 (11)0.0468 (5)
H10A0.75370.67280.81330.070*
H10B0.44070.74030.77280.070*
H10C0.81680.78460.78330.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0660 (4)0.0475 (3)0.0416 (3)0.0056 (2)0.0105 (2)0.0074 (2)
O10.0806 (11)0.0439 (9)0.0462 (9)0.0171 (8)0.0183 (7)0.0027 (7)
N10.0548 (10)0.0398 (9)0.0339 (9)0.0011 (7)0.0134 (7)0.0035 (7)
C10.0486 (11)0.0363 (10)0.0412 (10)0.0011 (8)0.0129 (8)0.0036 (8)
C20.0443 (10)0.0376 (10)0.0351 (10)0.0038 (7)0.0104 (7)0.0000 (8)
C30.0386 (10)0.0392 (10)0.0349 (10)0.0065 (7)0.0105 (7)0.0042 (8)
C40.0369 (10)0.0363 (10)0.0382 (10)0.0046 (7)0.0090 (7)0.0041 (8)
C50.0451 (11)0.0415 (11)0.0474 (12)0.0002 (8)0.0086 (8)0.0062 (9)
C60.0528 (12)0.0430 (11)0.0610 (14)0.0065 (9)0.0046 (10)0.0014 (10)
C70.0574 (13)0.0547 (14)0.0506 (13)0.0009 (10)0.0014 (10)0.0121 (10)
C80.0559 (12)0.0498 (12)0.0374 (11)0.0005 (9)0.0084 (8)0.0017 (9)
C90.0395 (10)0.0389 (10)0.0380 (10)0.0045 (7)0.0096 (7)0.0026 (8)
C100.0551 (12)0.0491 (12)0.0380 (10)0.0024 (9)0.0128 (8)0.0080 (9)
Geometric parameters (Å, º) top
Cl1—C21.728 (2)C5—C61.373 (3)
O1—C11.243 (3)C5—H5A0.9300
N1—C11.355 (3)C6—C71.391 (3)
N1—C91.382 (3)C6—H6A0.9300
N1—H10.9256C7—C81.370 (3)
C1—C21.458 (3)C7—H7A0.9300
C2—C31.353 (3)C8—C91.393 (3)
C3—C41.442 (3)C8—H8A0.9300
C3—C101.506 (2)C10—H10A0.9600
C4—C91.400 (3)C10—H10B0.9600
C4—C51.406 (3)C10—H10C0.9600
C1—N1—C9124.95 (17)C5—C6—C7120.2 (2)
C1—N1—H1119.6C5—C6—H6A119.9
C9—N1—H1115.4C7—C6—H6A119.9
O1—C1—N1121.42 (18)C8—C7—C6120.4 (2)
O1—C1—C2123.80 (19)C8—C7—H7A119.8
N1—C1—C2114.78 (17)C6—C7—H7A119.8
C3—C2—C1123.60 (18)C7—C8—C9119.5 (2)
C3—C2—Cl1122.45 (15)C7—C8—H8A120.3
C1—C2—Cl1113.93 (15)C9—C8—H8A120.3
C2—C3—C4118.30 (17)N1—C9—C8119.43 (18)
C2—C3—C10122.04 (18)N1—C9—C4119.21 (18)
C4—C3—C10119.65 (17)C8—C9—C4121.37 (19)
C9—C4—C5117.48 (18)C3—C10—H10A109.5
C9—C4—C3119.13 (18)C3—C10—H10B109.5
C5—C4—C3123.38 (18)H10A—C10—H10B109.5
C6—C5—C4121.0 (2)C3—C10—H10C109.5
C6—C5—H5A119.5H10A—C10—H10C109.5
C4—C5—H5A119.5H10B—C10—H10C109.5
C9—N1—C1—O1177.64 (19)C9—C4—C5—C60.9 (3)
C9—N1—C1—C21.9 (3)C3—C4—C5—C6178.36 (19)
O1—C1—C2—C3177.3 (2)C4—C5—C6—C71.4 (3)
N1—C1—C2—C32.2 (3)C5—C6—C7—C80.3 (3)
O1—C1—C2—Cl10.8 (3)C6—C7—C8—C91.2 (3)
N1—C1—C2—Cl1179.65 (14)C1—N1—C9—C8178.74 (18)
C1—C2—C3—C41.2 (3)C1—N1—C9—C40.6 (3)
Cl1—C2—C3—C4179.19 (13)C7—C8—C9—N1177.72 (19)
C1—C2—C3—C10178.76 (18)C7—C8—C9—C41.6 (3)
Cl1—C2—C3—C100.7 (3)C5—C4—C9—N1178.79 (17)
C2—C3—C4—C90.2 (3)C3—C4—C9—N10.5 (3)
C10—C3—C4—C9179.84 (16)C5—C4—C9—C80.5 (3)
C2—C3—C4—C5179.06 (18)C3—C4—C9—C8179.88 (17)
C10—C3—C4—C50.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.931.912.816 (2)166
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H8ClNO
Mr193.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)3.9361 (2), 12.9239 (6), 17.1019 (7)
β (°) 100.197 (4)
V3)856.23 (7)
Z4
Radiation typeCu Kα
µ (mm1)3.56
Crystal size (mm)0.92 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.138, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
5522, 1434, 1178
Rint0.040
(sin θ/λ)max1)0.587
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.00
No. of reflections1434
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.931.912.816 (2)166
Symmetry code: (i) x+2, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Government and USM for the award of the post of research assistant under the Research University Grant (1001/PFIZIK/811151). The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHodgkinson, A. J. & Staskun, B. (1969). J. Org. Chem. 34, 1709–1713.  CrossRef CAS Web of Science Google Scholar
First citationMichael, J. P., De Koning, C. B. & Stanbury, T. V. (1996). Tetrahedron Lett. 37, 9403–9406.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasuki, G., Parthasarathi, V., Ramamurthi, K., Jaisankar, P. & Varghese, B. (2001). Acta Cryst. E57, o234–o235.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds