organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Fluoro-N′-[(2-meth­­oxy­naphthalen-1-yl)methyl­­idene]benzohydrazide

aDepartment of Chemistry and Life Sciences, Xiangnan University, Chenzhou 423000, People's Republic of China
*Correspondence e-mail: lihebing07@163.com

(Received 5 March 2012; accepted 17 March 2012; online 24 March 2012)

The asymmetric unit of the title compound, C19H15FN2O2, contains two mol­ecules, A and B, in which the dihedral angles between the ring systems are 46.4 (2) and 17.24 (14)°, respectively. In the crystal, mol­ecules are linked into [010] chains of alternating A and B species by N—H⋯O hydrogen bonds.

Related literature

For a related structure and background to hydrazones, see: Li (2011[Li, H.-B. (2011). Acta Cryst. E67, o1532.]). For related structures, see: Qiu et al. (2006[Qiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685-o2686.]); Yang & Guo (2006[Yang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, o4414-o4415.]); Yang (2006[Yang, D.-S. (2006). Acta Cryst. E62, o3792-o3793.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15FN2O2

  • Mr = 322.33

  • Monoclinic, P 21 /c

  • a = 9.462 (2) Å

  • b = 17.030 (3) Å

  • c = 20.470 (2) Å

  • β = 96.575 (2)°

  • V = 3276.9 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.18 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.984

  • 19271 measured reflections

  • 6420 independent reflections

  • 3070 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.188

  • S = 1.01

  • 6420 reflections

  • 441 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.90 (1) 2.02 (1) 2.901 (3) 166 (3)
N3—H3⋯O1ii 0.90 (1) 2.07 (2) 2.917 (3) 156 (3)
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of hydrazones (Li, 2011), the structure of the title compound is now reported.

The bond lengths and bond angles in the title compound (Fig. 1) are comprable with those observed in similar compounds (Qiu et al., 2006; Yang & Guo, 2006; Yang, 2006). The dihedral angle between the C9—C18 naphthyl ring and C1—C1 benzene ring is 46.3 (2)° and the equivalent angle in the second molecule is 17.24 (14)°. In the crystal, the molecules are linked into chains along the b axis by N—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For a related structure and background to hydrazones, see: Li (2011). For related structures, see: Qiu et al. (2006); Yang & Guo (2006); Yang (2006).

Experimental top

2-Methoxy-1-naphthaldehyde (0.1 mmol, 18.6 mg) and 2-fluorobenzohydrazide (0.1 mmol, 12.4 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 10 min to give a clear colorless solution. Colourless needles of the title compound were formed by gradual evaporation of the solvent over a week at room temperature (yield 78%).

Refinement top

Atoms H1 and H3 were located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The other H atoms of the compound were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C19 and C38).

Structure description top

As part of our ongoing studies of hydrazones (Li, 2011), the structure of the title compound is now reported.

The bond lengths and bond angles in the title compound (Fig. 1) are comprable with those observed in similar compounds (Qiu et al., 2006; Yang & Guo, 2006; Yang, 2006). The dihedral angle between the C9—C18 naphthyl ring and C1—C1 benzene ring is 46.3 (2)° and the equivalent angle in the second molecule is 17.24 (14)°. In the crystal, the molecules are linked into chains along the b axis by N—H···O hydrogen bonds (Table 1 and Fig. 2).

For a related structure and background to hydrazones, see: Li (2011). For related structures, see: Qiu et al. (2006); Yang & Guo (2006); Yang (2006).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
2-Fluoro-N'-[(2-methoxynaphthalen-1-yl)methylidene]benzohydrazide top
Crystal data top
C19H15FN2O2F(000) = 1344
Mr = 322.33Dx = 1.307 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2255 reflections
a = 9.462 (2) Åθ = 2.4–24.5°
b = 17.030 (3) ŵ = 0.09 mm1
c = 20.470 (2) ÅT = 298 K
β = 96.575 (2)°Cut from needle, colorless
V = 3276.9 (10) Å30.18 × 0.18 × 0.17 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
6420 independent reflections
Radiation source: fine-focus sealed tube3070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.983, Tmax = 0.984k = 2020
19271 measured reflectionsl = 1825
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0767P)2 + 0.7482P]
where P = (Fo2 + 2Fc2)/3
6420 reflections(Δ/σ)max < 0.001
441 parametersΔρmax = 0.53 e Å3
2 restraintsΔρmin = 0.30 e Å3
Crystal data top
C19H15FN2O2V = 3276.9 (10) Å3
Mr = 322.33Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.462 (2) ŵ = 0.09 mm1
b = 17.030 (3) ÅT = 298 K
c = 20.470 (2) Å0.18 × 0.18 × 0.17 mm
β = 96.575 (2)°
Data collection top
Bruker SMART CCD
diffractometer
6420 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3070 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.984Rint = 0.060
19271 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0642 restraints
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.53 e Å3
6420 reflectionsΔρmin = 0.30 e Å3
441 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.0022 (4)0.3477 (2)0.06984 (17)0.1590 (14)
F21.3946 (2)0.57294 (11)0.16914 (12)0.0780 (7)
H10.008 (4)0.4855 (11)0.2092 (17)0.080*
H31.086 (4)0.7327 (10)0.2401 (18)0.080*
N10.0394 (3)0.43870 (15)0.22248 (13)0.0457 (7)
N20.0044 (3)0.41427 (15)0.28601 (13)0.0469 (7)
N31.0565 (3)0.68423 (14)0.22805 (13)0.0468 (7)
N40.9273 (3)0.65685 (15)0.24414 (13)0.0463 (7)
O10.1478 (3)0.32290 (13)0.19477 (12)0.0626 (7)
O20.1075 (3)0.59232 (16)0.39855 (13)0.0798 (8)
O31.0985 (2)0.57402 (13)0.17140 (11)0.0580 (6)
O40.7134 (3)0.83626 (14)0.29575 (15)0.0837 (9)
C10.1047 (6)0.3992 (3)0.0618 (3)0.0899 (14)
C20.1593 (4)0.4240 (2)0.11484 (17)0.0554 (9)
C30.2676 (6)0.4823 (3)0.1082 (3)0.1151 (19)
H3A0.30910.50270.14360.138*
C40.3049 (8)0.5056 (3)0.0437 (4)0.153 (3)
H40.37570.54340.03620.183*
C50.2457 (11)0.4774 (4)0.0104 (4)0.167 (4)
H50.27770.49560.05240.200*
C60.1433 (8)0.4244 (4)0.0018 (2)0.132 (3)
H60.09950.40500.03690.158*
C70.1146 (3)0.38962 (19)0.18080 (15)0.0427 (8)
C80.0679 (3)0.4674 (2)0.32235 (16)0.0498 (8)
H80.07990.51650.30390.060*
C90.1224 (3)0.4555 (2)0.39083 (16)0.0502 (9)
C100.1416 (4)0.5229 (2)0.42919 (18)0.0646 (10)
C110.1938 (6)0.5182 (3)0.4958 (2)0.1005 (16)
H110.20670.56370.52080.121*
C120.2255 (6)0.4478 (3)0.5238 (2)0.1048 (17)
H120.25940.44570.56830.126*
C130.2088 (4)0.3779 (3)0.48811 (18)0.0711 (11)
C140.2415 (5)0.3050 (3)0.5180 (2)0.0904 (14)
H140.27670.30350.56230.109*
C150.2231 (4)0.2367 (3)0.4841 (2)0.0800 (13)
H150.24380.18890.50490.096*
C160.1727 (4)0.2394 (2)0.4175 (2)0.0681 (11)
H160.15960.19290.39380.082*
C170.1425 (3)0.3090 (2)0.38666 (18)0.0556 (9)
H170.11140.30910.34190.067*
C180.1572 (3)0.3809 (2)0.42067 (16)0.0517 (9)
C190.1272 (6)0.6641 (2)0.4349 (2)0.1031 (16)
H19A0.07390.66210.47200.155*
H19B0.09470.70730.40710.155*
H19C0.22630.67080.44990.155*
C201.3748 (4)0.64862 (18)0.15306 (17)0.0503 (9)
C211.2493 (3)0.68480 (17)0.16285 (15)0.0407 (7)
C221.2363 (4)0.76311 (19)0.14472 (17)0.0535 (9)
H221.15360.79020.15100.064*
C231.3431 (4)0.8014 (2)0.11767 (19)0.0644 (10)
H231.33080.85340.10460.077*
C241.4673 (4)0.7636 (2)0.1098 (2)0.0735 (12)
H241.54000.79010.09210.088*
C251.4845 (4)0.6864 (2)0.1280 (2)0.0708 (11)
H251.56900.66010.12330.085*
C261.1294 (3)0.64171 (18)0.18800 (15)0.0424 (8)
C270.8576 (3)0.70852 (19)0.27226 (15)0.0461 (8)
H270.90170.75680.28110.055*
C280.7151 (3)0.69900 (18)0.29183 (14)0.0419 (7)
C290.6442 (4)0.7680 (2)0.30429 (17)0.0538 (9)
C300.5059 (4)0.7667 (2)0.32251 (19)0.0678 (11)
H300.45930.81360.32950.081*
C310.4411 (4)0.6978 (2)0.32980 (19)0.0681 (11)
H310.34920.69760.34180.082*
C320.5078 (3)0.6258 (2)0.31977 (17)0.0549 (9)
C330.4409 (4)0.5537 (3)0.3293 (2)0.0742 (12)
H330.35060.55360.34310.089*
C340.5048 (4)0.4843 (2)0.3190 (2)0.0772 (12)
H340.45890.43720.32570.093*
C350.6399 (4)0.4842 (2)0.29817 (19)0.0663 (10)
H350.68360.43670.29040.080*
C360.7081 (4)0.55235 (18)0.28913 (17)0.0534 (9)
H360.79870.55080.27570.064*
C370.6458 (3)0.62534 (18)0.29945 (14)0.0422 (8)
C380.6786 (5)0.9035 (2)0.3292 (2)0.0879 (14)
H38A0.58370.91970.31320.132*
H38B0.74420.94470.32200.132*
H38C0.68380.89230.37540.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.181 (4)0.188 (3)0.119 (3)0.030 (3)0.062 (3)0.018 (2)
F20.0723 (14)0.0502 (13)0.1137 (19)0.0092 (10)0.0203 (13)0.0088 (12)
N10.0481 (16)0.0476 (17)0.0404 (16)0.0057 (13)0.0003 (13)0.0044 (14)
N20.0487 (16)0.0549 (17)0.0366 (16)0.0028 (13)0.0026 (13)0.0052 (14)
N30.0456 (16)0.0439 (16)0.0534 (17)0.0090 (13)0.0170 (13)0.0083 (14)
N40.0436 (16)0.0489 (16)0.0489 (17)0.0040 (13)0.0160 (13)0.0021 (13)
O10.0756 (17)0.0448 (14)0.0638 (16)0.0116 (12)0.0074 (13)0.0118 (12)
O20.112 (2)0.0629 (18)0.0635 (18)0.0032 (15)0.0045 (16)0.0105 (15)
O30.0672 (15)0.0424 (14)0.0685 (16)0.0146 (11)0.0257 (13)0.0102 (12)
O40.0845 (19)0.0444 (15)0.130 (3)0.0030 (14)0.0466 (18)0.0075 (15)
C10.106 (4)0.081 (3)0.082 (4)0.007 (3)0.008 (3)0.003 (3)
C20.075 (2)0.050 (2)0.039 (2)0.0166 (19)0.0042 (19)0.0007 (17)
C30.131 (4)0.092 (3)0.105 (4)0.018 (3)0.061 (3)0.053 (3)
C40.221 (8)0.092 (4)0.125 (5)0.026 (4)0.071 (6)0.010 (4)
C50.278 (11)0.105 (6)0.092 (5)0.049 (6)0.088 (6)0.040 (4)
C60.221 (8)0.138 (6)0.035 (3)0.055 (5)0.008 (4)0.001 (3)
C70.0421 (18)0.0409 (19)0.044 (2)0.0030 (15)0.0016 (15)0.0016 (16)
C80.049 (2)0.055 (2)0.045 (2)0.0051 (17)0.0051 (16)0.0006 (17)
C90.0438 (19)0.069 (2)0.038 (2)0.0102 (17)0.0039 (15)0.0053 (18)
C100.079 (3)0.071 (3)0.044 (2)0.012 (2)0.0066 (19)0.003 (2)
C110.154 (5)0.097 (4)0.047 (3)0.019 (3)0.005 (3)0.019 (3)
C120.161 (5)0.105 (4)0.044 (3)0.014 (4)0.012 (3)0.000 (3)
C130.086 (3)0.088 (3)0.038 (2)0.007 (2)0.001 (2)0.010 (2)
C140.109 (4)0.111 (4)0.050 (3)0.001 (3)0.002 (2)0.020 (3)
C150.077 (3)0.092 (3)0.072 (3)0.008 (2)0.012 (2)0.029 (3)
C160.053 (2)0.074 (3)0.077 (3)0.0002 (19)0.005 (2)0.014 (2)
C170.049 (2)0.065 (2)0.052 (2)0.0016 (18)0.0004 (17)0.008 (2)
C180.0451 (19)0.069 (3)0.041 (2)0.0073 (17)0.0056 (15)0.0037 (19)
C190.145 (5)0.071 (3)0.098 (4)0.012 (3)0.033 (3)0.027 (3)
C200.055 (2)0.0336 (19)0.063 (2)0.0042 (16)0.0136 (18)0.0009 (16)
C210.0411 (18)0.0403 (19)0.0413 (18)0.0021 (14)0.0076 (14)0.0017 (15)
C220.054 (2)0.045 (2)0.064 (2)0.0011 (16)0.0148 (18)0.0060 (17)
C230.065 (2)0.049 (2)0.082 (3)0.0026 (19)0.018 (2)0.0143 (19)
C240.062 (3)0.061 (3)0.104 (3)0.008 (2)0.039 (2)0.006 (2)
C250.052 (2)0.065 (3)0.101 (3)0.0006 (19)0.032 (2)0.000 (2)
C260.0468 (19)0.0384 (19)0.0424 (19)0.0009 (15)0.0059 (15)0.0013 (15)
C270.0460 (19)0.0466 (19)0.046 (2)0.0071 (16)0.0083 (16)0.0024 (16)
C280.0410 (18)0.0499 (19)0.0355 (17)0.0009 (15)0.0079 (14)0.0034 (15)
C290.055 (2)0.048 (2)0.060 (2)0.0018 (18)0.0138 (18)0.0034 (18)
C300.057 (2)0.064 (3)0.084 (3)0.017 (2)0.017 (2)0.007 (2)
C310.047 (2)0.081 (3)0.079 (3)0.004 (2)0.020 (2)0.002 (2)
C320.043 (2)0.066 (2)0.057 (2)0.0038 (18)0.0125 (16)0.0014 (19)
C330.053 (2)0.091 (3)0.082 (3)0.012 (2)0.023 (2)0.003 (2)
C340.073 (3)0.068 (3)0.094 (3)0.024 (2)0.023 (2)0.003 (2)
C350.071 (3)0.055 (2)0.076 (3)0.006 (2)0.023 (2)0.002 (2)
C360.054 (2)0.048 (2)0.060 (2)0.0031 (17)0.0193 (18)0.0012 (17)
C370.0404 (18)0.051 (2)0.0354 (18)0.0016 (15)0.0047 (14)0.0019 (15)
C380.107 (4)0.054 (2)0.104 (4)0.006 (2)0.016 (3)0.015 (2)
Geometric parameters (Å, º) top
F1—C11.304 (5)C15—H150.9300
F2—C201.338 (3)C16—C171.357 (5)
N1—C71.340 (4)C16—H160.9300
N1—N21.383 (3)C17—C181.407 (5)
N1—H10.903 (10)C17—H170.9300
N2—C81.277 (4)C19—H19A0.9600
N3—C261.342 (4)C19—H19B0.9600
N3—N41.383 (3)C19—H19C0.9600
N3—H30.897 (10)C20—C251.370 (5)
N4—C271.276 (4)C20—C211.374 (4)
O1—C71.221 (3)C21—C221.386 (4)
O2—C101.359 (4)C21—C261.491 (4)
O2—C191.431 (4)C22—C231.371 (4)
O3—C261.228 (3)C22—H220.9300
O4—C291.356 (4)C23—C241.366 (5)
O4—C381.392 (4)C23—H230.9300
C1—C21.325 (6)C24—C251.371 (5)
C1—C61.379 (7)C24—H240.9300
C2—C31.421 (6)C25—H250.9300
C2—C71.488 (4)C27—C281.458 (4)
C3—C41.385 (8)C27—H270.9300
C3—H3A0.9300C28—C291.390 (4)
C4—C51.383 (10)C28—C371.432 (4)
C4—H40.9300C29—C301.402 (5)
C5—C61.321 (9)C30—C311.342 (5)
C5—H50.9300C30—H300.9300
C6—H60.9300C31—C321.404 (5)
C8—C91.451 (4)C31—H310.9300
C8—H80.9300C32—C331.406 (5)
C9—C101.392 (5)C32—C371.415 (4)
C9—C181.431 (5)C33—C341.355 (5)
C10—C111.398 (5)C33—H330.9300
C11—C121.348 (6)C34—C351.393 (5)
C11—H110.9300C34—H340.9300
C12—C131.396 (6)C35—C361.351 (4)
C12—H120.9300C35—H350.9300
C13—C141.403 (5)C36—C371.402 (4)
C13—C181.412 (5)C36—H360.9300
C14—C151.355 (6)C38—H38A0.9600
C14—H140.9300C38—H38B0.9600
C15—C161.392 (6)C38—H38C0.9600
C7—N1—N2119.4 (3)O2—C19—H19B109.5
C7—N1—H1122 (2)H19A—C19—H19B109.5
N2—N1—H1118 (2)O2—C19—H19C109.5
C8—N2—N1113.9 (3)H19A—C19—H19C109.5
C26—N3—N4119.6 (2)H19B—C19—H19C109.5
C26—N3—H3120 (2)F2—C20—C25117.0 (3)
N4—N3—H3120 (2)F2—C20—C21119.7 (3)
C27—N4—N3113.1 (3)C25—C20—C21123.3 (3)
C10—O2—C19119.5 (3)C20—C21—C22116.4 (3)
C29—O4—C38119.8 (3)C20—C21—C26122.3 (3)
F1—C1—C2117.7 (4)C22—C21—C26121.2 (3)
F1—C1—C6116.3 (6)C23—C22—C21121.2 (3)
C2—C1—C6126.0 (5)C23—C22—H22119.4
C1—C2—C3119.3 (4)C21—C22—H22119.4
C1—C2—C7121.4 (4)C24—C23—C22120.5 (3)
C3—C2—C7119.2 (4)C24—C23—H23119.7
C4—C3—C2113.2 (6)C22—C23—H23119.7
C4—C3—H3A123.4C23—C24—C25119.8 (3)
C2—C3—H3A123.4C23—C24—H24120.1
C5—C4—C3125.6 (7)C25—C24—H24120.1
C5—C4—H4117.2C20—C25—C24118.7 (3)
C3—C4—H4117.2C20—C25—H25120.6
C6—C5—C4119.2 (6)C24—C25—H25120.6
C6—C5—H5120.4O3—C26—N3123.6 (3)
C4—C5—H5120.4O3—C26—C21122.2 (3)
C5—C6—C1116.8 (6)N3—C26—C21114.2 (3)
C5—C6—H6121.6N4—C27—C28126.1 (3)
C1—C6—H6121.6N4—C27—H27116.9
O1—C7—N1124.3 (3)C28—C27—H27116.9
O1—C7—C2121.7 (3)C29—C28—C37118.9 (3)
N1—C7—C2114.0 (3)C29—C28—C27115.9 (3)
N2—C8—C9123.7 (3)C37—C28—C27125.2 (3)
N2—C8—H8118.1O4—C29—C28116.8 (3)
C9—C8—H8118.1O4—C29—C30121.7 (3)
C10—C9—C18118.9 (3)C28—C29—C30121.4 (3)
C10—C9—C8116.0 (3)C31—C30—C29119.7 (3)
C18—C9—C8125.1 (3)C31—C30—H30120.1
O2—C10—C9116.7 (3)C29—C30—H30120.1
O2—C10—C11122.6 (4)C30—C31—C32121.9 (3)
C9—C10—C11120.7 (4)C30—C31—H31119.0
C12—C11—C10120.2 (4)C32—C31—H31119.0
C12—C11—H11119.9C31—C32—C33121.7 (3)
C10—C11—H11119.9C31—C32—C37119.6 (3)
C11—C12—C13121.9 (4)C33—C32—C37118.7 (3)
C11—C12—H12119.0C34—C33—C32121.6 (3)
C13—C12—H12119.0C34—C33—H33119.2
C12—C13—C14121.3 (4)C32—C33—H33119.2
C12—C13—C18119.2 (4)C33—C34—C35119.4 (4)
C14—C13—C18119.5 (4)C33—C34—H34120.3
C15—C14—C13121.9 (4)C35—C34—H34120.3
C15—C14—H14119.1C36—C35—C34120.7 (4)
C13—C14—H14119.1C36—C35—H35119.7
C14—C15—C16118.8 (4)C34—C35—H35119.7
C14—C15—H15120.6C35—C36—C37121.7 (3)
C16—C15—H15120.6C35—C36—H36119.2
C17—C16—C15121.0 (4)C37—C36—H36119.2
C17—C16—H16119.5C36—C37—C32117.9 (3)
C15—C16—H16119.5C36—C37—C28123.7 (3)
C16—C17—C18121.7 (3)C32—C37—C28118.4 (3)
C16—C17—H17119.2O4—C38—H38A109.5
C18—C17—H17119.2O4—C38—H38B109.5
C17—C18—C13117.1 (3)H38A—C38—H38B109.5
C17—C18—C9123.8 (3)O4—C38—H38C109.5
C13—C18—C9119.1 (3)H38A—C38—H38C109.5
O2—C19—H19A109.5H38B—C38—H38C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.90 (1)2.02 (1)2.901 (3)166 (3)
N3—H3···O1ii0.90 (1)2.07 (2)2.917 (3)156 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H15FN2O2
Mr322.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.462 (2), 17.030 (3), 20.470 (2)
β (°) 96.575 (2)
V3)3276.9 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
19271, 6420, 3070
Rint0.060
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.188, 1.01
No. of reflections6420
No. of parameters441
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.30

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.903 (10)2.017 (13)2.901 (3)166 (3)
N3—H3···O1ii0.897 (10)2.074 (18)2.917 (3)156 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The author acknowledges a research grant from Xiangnan University.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H.-B. (2011). Acta Cryst. E67, o1532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685–o2686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2006). Acta Cryst. E62, o3792–o3793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, o4414–o4415.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds