organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1086-o1087

1-(4-Methyl­phen­yl)-3-phenyl-1H-pyrazol-5-yl 4-nitro­benzene­sulfonate

aCHEMSOL, 1 Harcourt Road, Aberdeen, AB15 5NY, Scotland, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 8 March 2012; accepted 9 March 2012; online 17 March 2012)

In the title mol­ecule, C22H17N3O5S, the pyrazole ring is planar (r.m.s. deviation = 0.018 Å) and forms dihedral angles of 21.45 (10) and 6.96 (10)° with the N- and C-bound benzene rings, respectively. Supra­molecular layers in the bc plane are formed in the crystal via C—H⋯O and ππ inter­actions involving the sulfonamide benzene ring inter­acting with the N- and C-bound benzene rings [centroid–centroid distances = 3.790 (2) and 3.730 (2) Å, respectively]. The crystal studied was found to be a merohedral twin (twin law 1 0 0.678, 0 -1 0, 0 0 -1), the fractional contribution of the minor component being approximately 36%.

Related literature

For related structures and background references to pyrazoles, see: Wardell et al. (2012[Wardell, S. M. S. V., Howie, A. H., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o992-o993.]); Baddeley et al. (2012[Baddeley, T. C., Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1016-o1017.]). For the synthesis, see: Galoyan et al. (1969[Galoyan, G. A., Agbalyan, S. G. & Esayan, G. T. (1969). Arm. Khim. Zhur. 22, 430-433.]). For the treatment of twinned diffraction data, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17N3O5S

  • Mr = 435.46

  • Monoclinic, P 21 /c

  • a = 13.5339 (12) Å

  • b = 10.4827 (10) Å

  • c = 14.9303 (13) Å

  • β = 111.975 (3)°

  • V = 1964.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 120 K

  • 0.58 × 0.38 × 0.04 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.620, Tmax = 0.746

  • 4454 measured reflections

  • 4454 independent reflections

  • 3951 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.179

  • S = 1.19

  • 4454 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4i 0.95 2.50 3.387 (5) 155
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structure of the title compound is now reported in continuation of related structural studies (Wardell et al. 2012; Baddeley et al., 2012).

In the title compound, Fig. 2, the pyrazole ring is planar with a r.m.s. deviation for the fitted atoms of 0.018 Å; the maximum deviations from this plane are 0.015 (1) Å (for the N1 atom) and -0.015 (1) Å (C8). The N– and C-bound benzene rings are inclined to this plane forming dihedral angles of 21.45 (10) and 6.96 (10)°, respectively; the dihedral angle between the benzene rings is 20.42 (10)° consistent with a non-planar molecule.

In the crystal, molecules are assembled into supramolecular layers in the bc plane via C—H···O, Table 1, and ππ interactions involving the sulfonamide benzene ring interacting with the N– and C-bound benzene rings {ring centroid···ring centroid distances = 3.790 (2) Å [angle of inclination = 0.96 (17)° for symmetry operation 1 - x, 1 - y, -z] and 3.730 (2) Å [angle of inclination = 10.02 (17)° for symmetry operation 1 - x, -1/2 + y, -1/2 - z], respectively}, Fig. 3. Layers stack along the a axis with no specific interactions between them, Fig. 4.

Related literature top

For related structures and background references to pyrazoles, see: Wardell et al. (2012); Baddeley et al. (2012). For the synthesis, see: Galoyan et al. (1969). For the treatment of twinned diffraction data, see: Spek (2009).

Experimental top

A solution of 4-MeC6H4NHNH2.HCl (2 mmol) and PhCOCH2CONHPh (2 mmol) in Me2CO (20 ml) was refluxed for 1 h. A solution of 4-nitrobenzenesulfonyl chloride (2 mmol) in Me2CO (10 ml) was added and the reaction mixture was refluxed for 30 min, rotary evaporated and the residue was recrystallized twice from EtOH as yellow plates, M.pt: 445–447 K.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). Owing to poor agreement three reflections, i.e. (7 0 10), (7 1 13) and (12 5 13), were removed from the final cycles of refinement. The sample was a non-merohedral twin (twin law 1 0 0.678, 0 1 0, 0 0 1) and the fractional contribution of the minor component refined to 0.362 (2). The twin domains were separated by using the TwinRotMat routine in PLATON (Spek, 2009).

Structure description top

The structure of the title compound is now reported in continuation of related structural studies (Wardell et al. 2012; Baddeley et al., 2012).

In the title compound, Fig. 2, the pyrazole ring is planar with a r.m.s. deviation for the fitted atoms of 0.018 Å; the maximum deviations from this plane are 0.015 (1) Å (for the N1 atom) and -0.015 (1) Å (C8). The N– and C-bound benzene rings are inclined to this plane forming dihedral angles of 21.45 (10) and 6.96 (10)°, respectively; the dihedral angle between the benzene rings is 20.42 (10)° consistent with a non-planar molecule.

In the crystal, molecules are assembled into supramolecular layers in the bc plane via C—H···O, Table 1, and ππ interactions involving the sulfonamide benzene ring interacting with the N– and C-bound benzene rings {ring centroid···ring centroid distances = 3.790 (2) Å [angle of inclination = 0.96 (17)° for symmetry operation 1 - x, 1 - y, -z] and 3.730 (2) Å [angle of inclination = 10.02 (17)° for symmetry operation 1 - x, -1/2 + y, -1/2 - z], respectively}, Fig. 3. Layers stack along the a axis with no specific interactions between them, Fig. 4.

For related structures and background references to pyrazoles, see: Wardell et al. (2012); Baddeley et al. (2012). For the synthesis, see: Galoyan et al. (1969). For the treatment of twinned diffraction data, see: Spek (2009).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Reaction scheme. For further details see Baddeley et al. (2012).
[Figure 2] Fig. 2. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Supramolecular layer in the bc plane in (I) sustained by C—H···O and ππ interactions shown as orange and purple dashed lines, respectively.
[Figure 4] Fig. 4. A view in projection down the c axis of the crystal packing in (I) showing the stacking of layers. The C—H···O, and ππ interactions are shown as orange and purple dashed lines, respectively.
1-(4-Methylphenyl)-3-phenyl-1H-pyrazol-5-yl 4-nitrobenzenesulfonate top
Crystal data top
C22H17N3O5SF(000) = 904
Mr = 435.46Dx = 1.472 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 67707 reflections
a = 13.5339 (12) Åθ = 2.9–27.5°
b = 10.4827 (10) ŵ = 0.21 mm1
c = 14.9303 (13) ÅT = 120 K
β = 111.975 (3)°Plate, yellow
V = 1964.3 (3) Å30.58 × 0.38 × 0.04 mm
Z = 4
Data collection top
Rigaku Saturn724+
diffractometer
4454 independent reflections
Radiation source: Rotating Anode3951 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.000
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.2°
profile data from ω–scansh = 1716
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 013
Tmin = 0.620, Tmax = 0.746l = 019
4454 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0562P)2 + 4.737P]
where P = (Fo2 + 2Fc2)/3
4454 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C22H17N3O5SV = 1964.3 (3) Å3
Mr = 435.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5339 (12) ŵ = 0.21 mm1
b = 10.4827 (10) ÅT = 120 K
c = 14.9303 (13) Å0.58 × 0.38 × 0.04 mm
β = 111.975 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
4454 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3951 reflections with I > 2σ(I)
Tmin = 0.620, Tmax = 0.746Rint = 0.000
4454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.19Δρmax = 0.59 e Å3
4454 reflectionsΔρmin = 0.62 e Å3
282 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47829 (6)0.20331 (9)0.00726 (6)0.0203 (2)
O10.51909 (18)0.3508 (3)0.01445 (17)0.0203 (5)
O20.5619 (2)0.1219 (3)0.0044 (2)0.0268 (6)
O30.4369 (2)0.1938 (3)0.08223 (19)0.0315 (7)
O40.1490 (2)0.2303 (3)0.4513 (2)0.0360 (7)
O50.0359 (2)0.2650 (3)0.3824 (2)0.0377 (8)
N10.7023 (2)0.4081 (3)0.0618 (2)0.0156 (6)
N20.7780 (2)0.4243 (3)0.0225 (2)0.0156 (6)
N30.1265 (2)0.2427 (3)0.3796 (2)0.0254 (7)
C10.6074 (2)0.3760 (3)0.0095 (2)0.0169 (7)
C20.7290 (2)0.4006 (3)0.0717 (2)0.0141 (6)
C30.6198 (3)0.3718 (3)0.0957 (2)0.0183 (7)
H30.56730.35390.15760.022*
C40.3726 (3)0.2062 (3)0.1065 (3)0.0185 (7)
C50.2715 (3)0.2430 (4)0.1110 (3)0.0206 (7)
H50.25870.26090.05390.025*
C60.1898 (3)0.2525 (4)0.2022 (3)0.0222 (7)
H60.11960.27490.20810.027*
C70.2126 (3)0.2292 (3)0.2831 (3)0.0199 (7)
C80.3132 (3)0.1929 (4)0.2796 (3)0.0220 (7)
H80.32620.17770.33700.026*
C90.3942 (3)0.1796 (3)0.1886 (3)0.0189 (7)
H90.46330.15270.18290.023*
C100.7302 (3)0.4228 (3)0.1639 (2)0.0152 (6)
C110.8359 (3)0.3992 (3)0.2245 (3)0.0181 (7)
H110.88710.37570.19800.022*
C120.8651 (3)0.4106 (3)0.3239 (2)0.0198 (7)
H120.93690.39510.36510.024*
C130.7909 (3)0.4445 (3)0.3644 (3)0.0210 (7)
C140.6856 (3)0.4686 (4)0.3023 (3)0.0211 (7)
H140.63430.49190.32870.025*
C150.6551 (3)0.4590 (3)0.2020 (3)0.0197 (7)
H150.58380.47700.16040.024*
C160.8218 (3)0.4510 (4)0.4733 (3)0.0307 (9)
H16A0.76420.49120.48790.046*
H16B0.88710.50140.50200.046*
H16C0.83410.36450.50020.046*
C170.7883 (3)0.4054 (3)0.1369 (2)0.0157 (6)
C180.7359 (3)0.3973 (3)0.2370 (2)0.0166 (6)
H180.66090.38510.26400.020*
C190.7925 (3)0.4068 (3)0.2978 (2)0.0191 (7)
H190.75630.40070.36580.023*
C200.9031 (3)0.4255 (4)0.2584 (3)0.0210 (7)
H200.94170.43480.29970.025*
C210.9563 (3)0.4303 (3)0.1586 (3)0.0194 (7)
H211.03150.44090.13190.023*
C220.8997 (3)0.4196 (3)0.0977 (2)0.0185 (7)
H220.93650.42180.02970.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0124 (4)0.0288 (5)0.0195 (4)0.0052 (3)0.0057 (3)0.0020 (4)
O10.0110 (10)0.0319 (14)0.0212 (12)0.0056 (10)0.0097 (10)0.0077 (10)
O20.0167 (12)0.0245 (14)0.0359 (15)0.0004 (10)0.0058 (11)0.0053 (12)
O30.0206 (12)0.0545 (19)0.0206 (13)0.0108 (13)0.0090 (11)0.0067 (13)
O40.0335 (15)0.0501 (19)0.0210 (14)0.0070 (14)0.0061 (12)0.0007 (13)
O50.0202 (13)0.050 (2)0.0338 (16)0.0089 (13)0.0002 (12)0.0092 (14)
N10.0106 (12)0.0238 (15)0.0136 (13)0.0030 (11)0.0057 (11)0.0008 (11)
N20.0110 (12)0.0238 (15)0.0144 (13)0.0021 (11)0.0075 (11)0.0014 (11)
N30.0230 (15)0.0232 (16)0.0244 (17)0.0028 (13)0.0024 (13)0.0025 (13)
C10.0077 (13)0.0240 (17)0.0179 (15)0.0046 (12)0.0034 (12)0.0022 (14)
C20.0113 (14)0.0175 (16)0.0127 (15)0.0014 (12)0.0034 (12)0.0004 (12)
C30.0126 (14)0.0237 (18)0.0171 (16)0.0034 (13)0.0037 (12)0.0022 (13)
C40.0124 (14)0.0224 (17)0.0190 (16)0.0046 (13)0.0040 (12)0.0001 (14)
C50.0161 (15)0.0254 (18)0.0228 (18)0.0043 (14)0.0100 (13)0.0032 (14)
C60.0139 (15)0.0242 (18)0.0274 (19)0.0010 (14)0.0066 (14)0.0014 (15)
C70.0146 (15)0.0196 (17)0.0225 (17)0.0042 (13)0.0035 (13)0.0020 (14)
C80.0190 (16)0.0241 (18)0.0227 (17)0.0044 (14)0.0077 (14)0.0029 (14)
C90.0137 (14)0.0210 (17)0.0240 (18)0.0029 (13)0.0093 (13)0.0036 (14)
C100.0163 (15)0.0177 (16)0.0104 (15)0.0014 (12)0.0036 (12)0.0001 (12)
C110.0141 (15)0.0231 (17)0.0172 (16)0.0001 (13)0.0060 (13)0.0017 (13)
C120.0174 (16)0.0220 (18)0.0172 (17)0.0024 (13)0.0034 (13)0.0007 (13)
C130.0273 (18)0.0200 (17)0.0164 (16)0.0054 (14)0.0090 (14)0.0015 (14)
C140.0214 (17)0.0235 (18)0.0225 (18)0.0019 (14)0.0130 (15)0.0020 (14)
C150.0170 (15)0.0209 (16)0.0218 (17)0.0019 (13)0.0080 (14)0.0015 (14)
C160.037 (2)0.039 (2)0.0143 (17)0.0007 (18)0.0082 (16)0.0005 (16)
C170.0159 (15)0.0178 (16)0.0145 (15)0.0020 (12)0.0071 (13)0.0001 (12)
C180.0159 (15)0.0189 (16)0.0137 (15)0.0007 (12)0.0040 (12)0.0002 (13)
C190.0209 (16)0.0214 (17)0.0135 (16)0.0014 (13)0.0050 (13)0.0006 (13)
C200.0217 (17)0.0263 (19)0.0220 (18)0.0007 (14)0.0163 (15)0.0008 (14)
C210.0134 (15)0.0246 (18)0.0207 (17)0.0030 (13)0.0071 (13)0.0002 (14)
C220.0161 (15)0.0248 (18)0.0135 (15)0.0007 (13)0.0045 (13)0.0001 (13)
Geometric parameters (Å, º) top
S1—O31.430 (3)C10—C151.391 (5)
S1—O21.431 (3)C10—C111.399 (4)
S1—O11.632 (3)C11—C121.391 (5)
S1—C41.765 (3)C11—H110.9500
O1—C11.395 (4)C12—C131.397 (5)
O4—N31.225 (4)C12—H120.9500
O5—N31.233 (4)C13—C141.402 (5)
N1—N21.366 (4)C13—C161.522 (5)
N1—C11.368 (4)C14—C151.401 (5)
N1—C101.435 (4)C14—H140.9500
N2—C21.336 (4)C15—H150.9500
N3—C71.482 (5)C16—H16A0.9800
C1—C31.360 (5)C16—H16B0.9800
C2—C31.417 (4)C16—H16C0.9800
C2—C171.476 (4)C17—C181.397 (5)
C3—H30.9500C17—C221.406 (5)
C4—C91.390 (5)C18—C191.393 (5)
C4—C51.399 (5)C18—H180.9500
C5—C61.399 (5)C19—C201.402 (5)
C5—H50.9500C19—H190.9500
C6—C71.376 (5)C20—C211.391 (5)
C6—H60.9500C20—H200.9500
C7—C81.396 (5)C21—C221.396 (5)
C8—C91.397 (5)C21—H210.9500
C8—H80.9500C22—H220.9500
C9—H90.9500
O3—S1—O2121.83 (18)C15—C10—N1121.5 (3)
O3—S1—O1103.66 (16)C11—C10—N1117.8 (3)
O2—S1—O1108.38 (14)C12—C11—C10119.2 (3)
O3—S1—C4109.94 (16)C12—C11—H11120.4
O2—S1—C4110.29 (17)C10—C11—H11120.4
O1—S1—C4100.35 (15)C11—C12—C13121.4 (3)
C1—O1—S1117.6 (2)C11—C12—H12119.3
N2—N1—C1109.5 (3)C13—C12—H12119.3
N2—N1—C10120.0 (3)C12—C13—C14118.5 (3)
C1—N1—C10130.5 (3)C12—C13—C16121.3 (3)
C2—N2—N1105.8 (2)C14—C13—C16120.2 (3)
O4—N3—O5124.0 (3)C15—C14—C13120.9 (3)
O4—N3—C7118.5 (3)C15—C14—H14119.5
O5—N3—C7117.4 (3)C13—C14—H14119.5
C3—C1—N1109.4 (3)C10—C15—C14119.2 (3)
C3—C1—O1131.1 (3)C10—C15—H15120.4
N1—C1—O1119.5 (3)C14—C15—H15120.4
N2—C2—C3111.4 (3)C13—C16—H16A109.5
N2—C2—C17120.7 (3)C13—C16—H16B109.5
C3—C2—C17127.9 (3)H16A—C16—H16B109.5
C1—C3—C2103.9 (3)C13—C16—H16C109.5
C1—C3—H3128.0H16A—C16—H16C109.5
C2—C3—H3128.0H16B—C16—H16C109.5
C9—C4—C5122.5 (3)C18—C17—C22119.2 (3)
C9—C4—S1118.9 (3)C18—C17—C2121.3 (3)
C5—C4—S1118.5 (3)C22—C17—C2119.5 (3)
C4—C5—C6118.0 (3)C19—C18—C17120.7 (3)
C4—C5—H5121.0C19—C18—H18119.7
C6—C5—H5121.0C17—C18—H18119.7
C7—C6—C5119.1 (3)C18—C19—C20119.8 (3)
C7—C6—H6120.4C18—C19—H19120.1
C5—C6—H6120.4C20—C19—H19120.1
C6—C7—C8123.5 (3)C21—C20—C19119.9 (3)
C6—C7—N3118.9 (3)C21—C20—H20120.1
C8—C7—N3117.6 (3)C19—C20—H20120.1
C7—C8—C9117.5 (3)C20—C21—C22120.3 (3)
C7—C8—H8121.2C20—C21—H21119.9
C9—C8—H8121.2C22—C21—H21119.9
C4—C9—C8119.4 (3)C21—C22—C17120.1 (3)
C4—C9—H9120.3C21—C22—H22119.9
C8—C9—H9120.3C17—C22—H22119.9
C15—C10—C11120.7 (3)
O3—S1—O1—C1147.7 (2)C6—C7—C8—C90.2 (6)
O2—S1—O1—C117.0 (3)N3—C7—C8—C9179.7 (3)
C4—S1—O1—C198.6 (2)C5—C4—C9—C81.7 (5)
C1—N1—N2—C20.7 (4)S1—C4—C9—C8174.2 (3)
C10—N1—N2—C2178.1 (3)C7—C8—C9—C41.8 (5)
N2—N1—C1—C30.5 (4)N2—N1—C10—C15153.3 (3)
C10—N1—C1—C3179.1 (3)C1—N1—C10—C1528.3 (6)
N2—N1—C1—O1178.0 (3)N2—N1—C10—C1126.9 (5)
C10—N1—C1—O10.5 (6)C1—N1—C10—C11151.6 (4)
S1—O1—C1—C369.1 (5)C15—C10—C11—C120.9 (5)
S1—O1—C1—N1109.1 (3)N1—C10—C11—C12179.0 (3)
N1—N2—C2—C31.5 (4)C10—C11—C12—C130.4 (5)
N1—N2—C2—C17178.1 (3)C11—C12—C13—C140.8 (5)
N1—C1—C3—C21.3 (4)C11—C12—C13—C16177.2 (4)
O1—C1—C3—C2177.0 (4)C12—C13—C14—C150.1 (5)
N2—C2—C3—C11.8 (4)C16—C13—C14—C15177.9 (4)
C17—C2—C3—C1177.8 (3)C11—C10—C15—C141.6 (5)
O3—S1—C4—C9162.3 (3)N1—C10—C15—C14178.2 (3)
O2—S1—C4—C925.3 (3)C13—C14—C15—C101.1 (5)
O1—S1—C4—C988.9 (3)N2—C2—C17—C18171.6 (3)
O3—S1—C4—C521.6 (4)C3—C2—C17—C188.8 (5)
O2—S1—C4—C5158.7 (3)N2—C2—C17—C227.8 (5)
O1—S1—C4—C587.2 (3)C3—C2—C17—C22171.8 (3)
C9—C4—C5—C60.2 (5)C22—C17—C18—C191.9 (5)
S1—C4—C5—C6176.1 (3)C2—C17—C18—C19177.5 (3)
C4—C5—C6—C71.8 (5)C17—C18—C19—C200.4 (5)
C5—C6—C7—C81.6 (6)C18—C19—C20—C212.1 (6)
C5—C6—C7—N3178.4 (3)C19—C20—C21—C221.5 (6)
O4—N3—C7—C6175.1 (4)C20—C21—C22—C170.8 (5)
O5—N3—C7—C65.4 (5)C18—C17—C22—C212.5 (5)
O4—N3—C7—C85.0 (5)C2—C17—C22—C21177.0 (3)
O5—N3—C7—C8174.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.952.503.387 (5)155
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H17N3O5S
Mr435.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)13.5339 (12), 10.4827 (10), 14.9303 (13)
β (°) 111.975 (3)
V3)1964.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.58 × 0.38 × 0.04
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.620, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
4454, 4454, 3951
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.179, 1.19
No. of reflections4454
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.62

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.952.503.387 (5)155
Symmetry code: (i) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.

References

First citationBaddeley, T. C., Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1016–o1017.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGaloyan, G. A., Agbalyan, S. G. & Esayan, G. T. (1969). Arm. Khim. Zhur. 22, 430–433.  CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, S. M. S. V., Howie, A. H., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o992–o993.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1086-o1087
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds