organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[Bis(4-fluoro­phen­yl)meth­yl]-4-[2-(2-methyl­phen­­oxy)eth­yl]piperazine

aSchool of Pharmacy, Nanjing Medical University, Hanzhong Road No. 140 Nanjing, Nanjing 210029, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Southeast University, Sipailou No. 2 Nanjing, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wubin@njmu.edu.cn

(Received 9 March 2012; accepted 12 March 2012; online 17 March 2012)

In the title mol­ecule, C26H28F2N2O, the piperazine ring adopts a chair conformation, with the N-bonded substituents in equatorial orientations. The dihedral angle between the fluoro­benzene rings is 69.10 (15).

Related literature

For related structures and background to 1-(bis­(4-fluoro­phen­yl)meth­yl)piperazine derivatives, see: Wu et al. (2008[Wu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163-1166.]); Dayananda et al. (2012[Dayananda, A. S., Yathirajan, H. S. & Flörke, U. (2012). Acta Cryst. E68, o968.]); Zhong et al. (2011[Zhong, Y., Zhang, X. P. & Wu, B. (2011). Acta Cryst. E67, o3342.]).

[Scheme 1]

Experimental

Crystal data
  • C26H28F2N2O

  • Mr = 422.50

  • Monoclinic, P 21 /c

  • a = 10.021 (2) Å

  • b = 15.203 (3) Å

  • c = 15.868 (3) Å

  • β = 100.54 (3)°

  • V = 2376.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonious CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968)[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.] Tmin = 0.976, Tmax = 0.992

  • 4618 measured reflections

  • 4355 independent reflections

  • 2404 reflections with I > 2σ(I)

  • Rint = 0.040

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.191

  • S = 1.03

  • 4355 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a continuation of our study of 1-(bis(4-fluorophenyl)methyl)piperazine derivatives (Wu et al., 2008; Zhong et al., 2011), we present here the title compound (I). In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in related compounds (Zhong et al., 2011). The piperazine ring adopts a chair conformation with puchering parameters Q = 0.591 (3), Theta = 1.7 (3), Phi = 333 (6). The dihedral angle between the fluorobenzene rings is 69.10 (15).

Related literature top

For related structures and background to 1-(bis(4-fluorophenyl)methyl)piperazine derivatives, see: Wu et al. (2008); Dayananda et al. (2012); Zhong et al. (2011).

Experimental top

A mixture of 1-(2-bromoethoxy)-2-methylbenzene (10 mmol), 1-(bis(4-fluorophenyl)methyl)piperazine (15 mmol) and triethylamine (5 ml) were mixed along with 40 ml acetonitrile and then refluxed for about 24 h. The progress of the reaction was monitored by TLC. After confirming that the reaction was completed, the solvent was removed under reduced pressure. The resultant mixture was cooled. The solid, 1-(bis(4-fluorophenyl)methyl)-4-(2-(2-methylphenoxy)ethyl)piperazine obtained was filtered and was recrystallized from ethanol. The colorless blocks of the title compound were grown in ethanol by a slow evaporation at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 Å to 0.98 Å and refined as riding on their parent atoms with Uĩso~(H) = 1.2 or 1.5U~eq~ of the carrier atom.

Structure description top

As a continuation of our study of 1-(bis(4-fluorophenyl)methyl)piperazine derivatives (Wu et al., 2008; Zhong et al., 2011), we present here the title compound (I). In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in related compounds (Zhong et al., 2011). The piperazine ring adopts a chair conformation with puchering parameters Q = 0.591 (3), Theta = 1.7 (3), Phi = 333 (6). The dihedral angle between the fluorobenzene rings is 69.10 (15).

For related structures and background to 1-(bis(4-fluorophenyl)methyl)piperazine derivatives, see: Wu et al. (2008); Dayananda et al. (2012); Zhong et al. (2011).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for non-H drawn at 70% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound.
1-[Bis(4-fluorophenyl)methyl]-4-[2-(2-methylphenoxy)ethyl]piperazine top
Crystal data top
C26H28F2N2OF(000) = 896
Mr = 422.50Dx = 1.181 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.021 (2) ÅCell parameters from 25 reflections
b = 15.203 (3) Åθ = 10–13°
c = 15.868 (3) ŵ = 0.08 mm1
β = 100.54 (3)°T = 293 K
V = 2376.7 (8) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonious CAD-4
diffractometer
2404 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 25.4°, θmin = 1.9°
ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.976, Tmax = 0.992l = 1918
4618 measured reflections3 standard reflections every 200 reflections
4355 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4355 reflectionsΔρmax = 0.16 e Å3
281 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Crystal data top
C26H28F2N2OV = 2376.7 (8) Å3
Mr = 422.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.021 (2) ŵ = 0.08 mm1
b = 15.203 (3) ÅT = 293 K
c = 15.868 (3) Å0.30 × 0.20 × 0.10 mm
β = 100.54 (3)°
Data collection top
Enraf–Nonious CAD-4
diffractometer
2404 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.040
Tmin = 0.976, Tmax = 0.9923 standard reflections every 200 reflections
4618 measured reflections intensity decay: 1%
4355 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
4355 reflectionsΔρmin = 0.19 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.7306 (2)1.14171 (14)0.42351 (12)0.0810 (7)
N10.7468 (2)0.84241 (14)0.22937 (13)0.0581 (6)
F10.8567 (2)0.43605 (12)0.19160 (11)0.1000 (7)
C10.7161 (3)0.65379 (19)0.18894 (18)0.0643 (8)
H1A0.63650.68070.19780.077*
N20.7479 (2)0.95279 (15)0.37811 (14)0.0686 (7)
F20.5198 (2)0.89761 (15)0.16486 (11)0.1113 (7)
C20.7277 (3)0.5639 (2)0.19660 (18)0.0721 (9)
H2A0.65760.53040.21110.087*
C30.8442 (4)0.5253 (2)0.18250 (17)0.0708 (8)
C40.9473 (3)0.5721 (2)0.1593 (2)0.0756 (9)
H4A1.02470.54410.14820.091*
C50.9339 (3)0.6618 (2)0.15294 (18)0.0681 (8)
H5A1.00420.69450.13760.082*
C60.8195 (3)0.70541 (18)0.16848 (15)0.0552 (7)
C70.8082 (3)0.80441 (18)0.16018 (16)0.0561 (7)
H7A0.90010.82840.16520.067*
C80.7296 (3)0.82920 (17)0.07345 (16)0.0546 (7)
C90.5904 (3)0.8252 (3)0.05368 (19)0.0904 (11)
H9A0.54270.80640.09540.108*
C100.5197 (3)0.8480 (3)0.0254 (2)0.1014 (13)
H10A0.42530.84550.03690.122*
C110.5892 (3)0.8743 (2)0.08663 (18)0.0724 (9)
C120.7263 (3)0.87824 (19)0.07114 (18)0.0685 (8)
H12A0.77270.89610.11380.082*
C130.7958 (3)0.85550 (17)0.00850 (17)0.0597 (7)
H13A0.89010.85780.01910.072*
C140.7401 (3)0.93889 (19)0.22319 (18)0.0713 (8)
H14A0.68830.95580.16780.086*
H14B0.83110.96260.22780.086*
C150.6743 (3)0.9766 (2)0.29339 (17)0.0745 (9)
H15A0.67091.04020.28820.089*
H15B0.58180.95520.28670.089*
C160.7577 (4)0.85698 (18)0.38358 (18)0.0739 (9)
H16A0.66740.83200.37820.089*
H16B0.80910.84030.43910.089*
C170.8258 (3)0.82076 (18)0.31398 (16)0.0643 (8)
H17A0.91630.84540.31950.077*
H17B0.83420.75740.31990.077*
C180.6835 (4)0.9899 (2)0.44565 (19)0.0815 (9)
H18A0.68560.94620.49040.098*
H18B0.58911.00190.42190.098*
C190.7477 (4)1.07238 (19)0.48507 (19)0.0823 (10)
H19A0.70631.08890.53350.099*
H19B0.84361.06240.50590.099*
C200.7721 (3)1.2243 (2)0.4525 (2)0.0683 (8)
C210.7494 (3)1.2900 (2)0.3902 (2)0.0737 (9)
C220.7859 (4)1.3752 (2)0.4162 (3)0.0940 (11)
H22A0.77151.42050.37620.113*
C230.8430 (4)1.3944 (2)0.5001 (3)0.0995 (12)
H23A0.86601.45210.51600.119*
C240.8657 (3)1.3293 (2)0.5596 (2)0.0859 (10)
H24A0.90421.34230.61610.103*
C250.8314 (3)1.2432 (2)0.5358 (2)0.0778 (9)
H25A0.84841.19820.57610.093*
C260.6884 (4)1.2689 (3)0.2986 (2)0.1020 (12)
H26A0.68001.32190.26510.153*
H26B0.60031.24320.29620.153*
H26C0.74591.22810.27590.153*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.1193 (18)0.0623 (13)0.0637 (13)0.0113 (12)0.0232 (12)0.0065 (10)
N10.0634 (14)0.0592 (15)0.0511 (13)0.0048 (11)0.0091 (11)0.0049 (10)
F10.1421 (18)0.0689 (13)0.0948 (14)0.0127 (11)0.0372 (13)0.0029 (10)
C10.0565 (17)0.066 (2)0.0750 (19)0.0016 (15)0.0229 (15)0.0084 (15)
N20.0968 (18)0.0572 (15)0.0523 (13)0.0053 (13)0.0147 (13)0.0038 (11)
F20.1128 (16)0.1552 (19)0.0604 (11)0.0259 (14)0.0010 (11)0.0235 (12)
C20.083 (2)0.068 (2)0.070 (2)0.0132 (17)0.0276 (17)0.0105 (15)
C30.100 (2)0.0559 (19)0.0590 (18)0.0070 (18)0.0206 (17)0.0017 (14)
C40.076 (2)0.075 (2)0.079 (2)0.0236 (17)0.0225 (17)0.0128 (17)
C50.0527 (17)0.077 (2)0.077 (2)0.0093 (15)0.0180 (15)0.0144 (16)
C60.0532 (16)0.0625 (18)0.0507 (15)0.0007 (14)0.0118 (13)0.0001 (13)
C70.0465 (15)0.0654 (18)0.0574 (16)0.0024 (13)0.0121 (13)0.0024 (13)
C80.0532 (16)0.0569 (17)0.0560 (16)0.0008 (13)0.0158 (13)0.0014 (13)
C90.0542 (19)0.158 (3)0.0602 (19)0.005 (2)0.0144 (15)0.022 (2)
C100.0563 (19)0.179 (4)0.067 (2)0.005 (2)0.0075 (17)0.024 (2)
C110.081 (2)0.085 (2)0.0493 (17)0.0114 (18)0.0069 (16)0.0079 (15)
C120.085 (2)0.069 (2)0.0567 (18)0.0005 (16)0.0274 (16)0.0079 (14)
C130.0613 (17)0.0570 (17)0.0652 (18)0.0030 (13)0.0235 (15)0.0035 (14)
C140.091 (2)0.063 (2)0.0593 (17)0.0127 (16)0.0123 (16)0.0119 (14)
C150.099 (2)0.0620 (18)0.0628 (19)0.0173 (17)0.0166 (17)0.0043 (15)
C160.107 (3)0.0568 (18)0.0571 (17)0.0023 (16)0.0118 (17)0.0059 (14)
C170.082 (2)0.0520 (16)0.0561 (17)0.0041 (14)0.0047 (15)0.0035 (13)
C180.119 (3)0.069 (2)0.0622 (18)0.0002 (19)0.0302 (18)0.0009 (15)
C190.128 (3)0.062 (2)0.0609 (18)0.0072 (18)0.0258 (19)0.0022 (15)
C200.071 (2)0.0590 (19)0.081 (2)0.0123 (15)0.0305 (17)0.0012 (17)
C210.0648 (19)0.073 (2)0.089 (2)0.0119 (16)0.0293 (17)0.0168 (18)
C220.083 (2)0.072 (3)0.134 (3)0.0067 (19)0.038 (2)0.030 (2)
C230.078 (2)0.066 (2)0.157 (4)0.0027 (19)0.030 (3)0.001 (3)
C240.067 (2)0.077 (3)0.114 (3)0.0067 (17)0.0155 (19)0.011 (2)
C250.082 (2)0.061 (2)0.092 (2)0.0117 (16)0.0218 (19)0.0016 (17)
C260.107 (3)0.109 (3)0.096 (3)0.018 (2)0.034 (2)0.037 (2)
Geometric parameters (Å, º) top
O—C201.375 (3)C12—H12A0.9300
O—C191.426 (3)C13—H13A0.9300
N1—C171.466 (3)C14—C151.508 (4)
N1—C141.471 (3)C14—H14A0.9700
N1—C71.472 (3)C14—H14B0.9700
F1—C31.367 (3)C15—H15A0.9700
C1—C21.375 (4)C15—H15B0.9700
C1—C61.385 (4)C16—C171.505 (4)
C1—H1A0.9300C16—H16A0.9700
N2—C151.456 (3)C16—H16B0.9700
N2—C181.462 (4)C17—H17A0.9700
N2—C161.461 (3)C17—H17B0.9700
F2—C111.355 (3)C18—C191.493 (4)
C2—C31.362 (4)C18—H18A0.9700
C2—H2A0.9300C18—H18B0.9700
C3—C41.360 (4)C19—H19A0.9700
C4—C51.373 (4)C19—H19B0.9700
C4—H4A0.9300C20—C251.376 (4)
C5—C61.385 (4)C20—C211.394 (4)
C5—H5A0.9300C21—C221.389 (5)
C6—C71.513 (4)C21—C261.505 (5)
C7—C81.503 (3)C22—C231.380 (5)
C7—H7A0.9800C22—H22A0.9300
C8—C91.374 (4)C23—C241.357 (5)
C8—C131.383 (3)C23—H23A0.9300
C9—C101.368 (4)C24—C251.388 (4)
C9—H9A0.9300C24—H24A0.9300
C10—C111.356 (4)C25—H25A0.9300
C10—H10A0.9300C26—H26A0.9600
C11—C121.352 (4)C26—H26B0.9600
C12—C131.371 (4)C26—H26C0.9600
C20—O—C19117.0 (2)N2—C15—C14111.8 (2)
C17—N1—C14107.2 (2)N2—C15—H15A109.3
C17—N1—C7111.4 (2)C14—C15—H15A109.3
C14—N1—C7111.2 (2)N2—C15—H15B109.3
C2—C1—C6122.0 (3)C14—C15—H15B109.3
C2—C1—H1A119.0H15A—C15—H15B107.9
C6—C1—H1A119.0N2—C16—C17110.8 (2)
C15—N2—C18111.3 (2)N2—C16—H16A109.5
C15—N2—C16108.7 (2)C17—C16—H16A109.5
C18—N2—C16112.0 (2)N2—C16—H16B109.5
C3—C2—C1118.4 (3)C17—C16—H16B109.5
C3—C2—H2A120.8H16A—C16—H16B108.1
C1—C2—H2A120.8N1—C17—C16110.4 (2)
C4—C3—C2122.4 (3)N1—C17—H17A109.6
C4—C3—F1119.2 (3)C16—C17—H17A109.6
C2—C3—F1118.4 (3)N1—C17—H17B109.6
C3—C4—C5118.2 (3)C16—C17—H17B109.6
C3—C4—H4A120.9H17A—C17—H17B108.1
C5—C4—H4A120.9N2—C18—C19114.7 (3)
C4—C5—C6122.3 (3)N2—C18—H18A108.6
C4—C5—H5A118.8C19—C18—H18A108.6
C6—C5—H5A118.8N2—C18—H18B108.6
C5—C6—C1116.7 (3)C19—C18—H18B108.6
C5—C6—C7120.8 (2)H18A—C18—H18B107.6
C1—C6—C7122.5 (2)O—C19—C18110.2 (3)
N1—C7—C8111.3 (2)O—C19—H19A109.6
N1—C7—C6111.1 (2)C18—C19—H19A109.6
C8—C7—C6110.3 (2)O—C19—H19B109.6
N1—C7—H7A108.0C18—C19—H19B109.6
C8—C7—H7A108.0H19A—C19—H19B108.1
C6—C7—H7A108.0O—C20—C25124.2 (3)
C9—C8—C13116.6 (3)O—C20—C21114.6 (3)
C9—C8—C7122.6 (2)C25—C20—C21121.2 (3)
C13—C8—C7120.8 (2)C22—C21—C20117.2 (3)
C10—C9—C8122.2 (3)C22—C21—C26121.7 (3)
C10—C9—H9A118.9C20—C21—C26121.1 (3)
C8—C9—H9A118.9C23—C22—C21121.6 (3)
C11—C10—C9118.9 (3)C23—C22—H22A119.2
C11—C10—H10A120.5C21—C22—H22A119.2
C9—C10—H10A120.5C24—C23—C22120.3 (4)
C12—C11—F2119.3 (3)C24—C23—H23A119.9
C12—C11—C10121.4 (3)C22—C23—H23A119.9
F2—C11—C10119.3 (3)C23—C24—C25119.8 (4)
C11—C12—C13119.0 (3)C23—C24—H24A120.1
C11—C12—H12A120.5C25—C24—H24A120.1
C13—C12—H12A120.5C20—C25—C24120.0 (3)
C12—C13—C8121.9 (3)C20—C25—H25A120.0
C12—C13—H13A119.1C24—C25—H25A120.0
C8—C13—H13A119.1C21—C26—H26A109.5
N1—C14—C15110.5 (2)C21—C26—H26B109.5
N1—C14—H14A109.5H26A—C26—H26B109.5
C15—C14—H14A109.5C21—C26—H26C109.5
N1—C14—H14B109.5H26A—C26—H26C109.5
C15—C14—H14B109.5H26B—C26—H26C109.5
H14A—C14—H14B108.1
C6—C1—C2—C30.8 (4)C9—C8—C13—C121.3 (4)
C1—C2—C3—C41.5 (5)C7—C8—C13—C12179.9 (2)
C1—C2—C3—F1178.9 (2)C17—N1—C14—C1559.2 (3)
C2—C3—C4—C52.2 (5)C7—N1—C14—C15178.8 (2)
F1—C3—C4—C5178.2 (3)C18—N2—C15—C14179.8 (3)
C3—C4—C5—C60.5 (5)C16—N2—C15—C1456.4 (3)
C4—C5—C6—C11.6 (4)N1—C14—C15—N258.9 (3)
C4—C5—C6—C7179.6 (3)C15—N2—C16—C1757.3 (3)
C2—C1—C6—C52.3 (4)C18—N2—C16—C17179.3 (3)
C2—C1—C6—C7179.8 (2)C14—N1—C17—C1660.6 (3)
C17—N1—C7—C8178.1 (2)C7—N1—C17—C16177.5 (2)
C14—N1—C7—C858.6 (3)N2—C16—C17—N161.3 (3)
C17—N1—C7—C658.5 (3)C15—N2—C18—C1999.0 (3)
C14—N1—C7—C6178.0 (2)C16—N2—C18—C19139.1 (3)
C5—C6—C7—N1139.5 (2)C20—O—C19—C18173.6 (3)
C1—C6—C7—N142.6 (3)N2—C18—C19—O66.0 (4)
C5—C6—C7—C896.5 (3)C19—O—C20—C251.7 (4)
C1—C6—C7—C881.3 (3)C19—O—C20—C21178.2 (3)
N1—C7—C8—C945.1 (4)O—C20—C21—C22178.3 (3)
C6—C7—C8—C978.7 (3)C25—C20—C21—C221.6 (4)
N1—C7—C8—C13136.4 (2)O—C20—C21—C261.9 (4)
C6—C7—C8—C1399.7 (3)C25—C20—C21—C26178.2 (3)
C13—C8—C9—C101.5 (5)C20—C21—C22—C230.4 (5)
C7—C8—C9—C10179.9 (3)C26—C21—C22—C23179.4 (3)
C8—C9—C10—C110.9 (6)C21—C22—C23—C240.4 (5)
C9—C10—C11—C120.1 (6)C22—C23—C24—C250.0 (5)
C9—C10—C11—F2179.5 (3)O—C20—C25—C24177.8 (3)
F2—C11—C12—C13179.3 (3)C21—C20—C25—C242.1 (5)
C10—C11—C12—C130.3 (5)C23—C24—C25—C201.2 (5)
C11—C12—C13—C80.4 (4)

Experimental details

Crystal data
Chemical formulaC26H28F2N2O
Mr422.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.021 (2), 15.203 (3), 15.868 (3)
β (°) 100.54 (3)
V3)2376.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonious CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.976, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
4618, 4355, 2404
Rint0.040
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.191, 1.03
No. of reflections4355
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for the diffraction measurements. This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK2010538).

References

First citationDayananda, A. S., Yathirajan, H. S. & Flörke, U. (2012). Acta Cryst. E68, o968.  CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163–1166.  Web of Science CrossRef CAS Google Scholar
First citationZhong, Y., Zhang, X. P. & Wu, B. (2011). Acta Cryst. E67, o3342.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds