organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1138-o1139

(2S,3R)-tert-Butyl N-[4-(N-benzyl-4-fluoro­benzene­sulfonamido)-3-hy­dr­oxy-1-phenyl­butan-2-yl]carbamate

aInstituto de Tecnologia em Fármacos–Farmanguinhos, FioCruz–Fundação Oswaldo Cruz, R. Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, cCHEMSOL, 1 Harcourt Road, Aberdeen, AB15 5NY, Scotland, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 March 2012; accepted 16 March 2012; online 21 March 2012)

In the title mol­ecule, C28H33FN2O5S, the mean plane about the tertiary amine group (sum of the angles subtended at the sp2-hybridized N atom = 359.7°) forms a dihedral angle of 16.66 (6)° with the phenyl ring adjacent to the carbamate group. The sulfonamide benzene ring and the hy­droxy group lie to either side of the C2NS plane, whereas the benzyl­phenyl (connected to the N atom) and carbamate substituents lie to the other side. Supra­molecular layers propagating in the ac plane are found in the crystal, linked by hy­droxy–sulfonamide O—H⋯O and carbamate–carbamate N—H⋯O hydrogen bonds along with C—H⋯O and C—H⋯π inter­actions.

Related literature

For background to tuberculosis (TB) infection, see: de Souza (2006[Souza, M. V. N. de (2006). Recent. Pat. Anti-Infect. Drug Discovery, 1, 33-44.]). For the development of β-amino­alcohols for the treatment of patients co-infected with TB and HIV, see: Yendapally & Lee (2008[Yendapally, R. & Lee, R. E. (2008). Bioorg. Med. Chem. Lett. 18, 1607-1611.]); Ferreira et al. (2009[Ferreira, M. L., Vasconcelos, T. R. A., de Carvalho, E. M., Lourenço, M. C. S., Wardell, S. M. S. V., Wardell, J. L., Ferreira, V. F. & de Souza, M. V. N. (2009). Carbohyd. Res. 344, 2042-2047.]); Cunico et al. (2008[Cunico, W., Ferreira, M. L. G., Ferreira, T. G., Penido, C., Henriques, M. G. M. O., Krettli, L. G., Varotti, F. P. & Krettli, A. U. (2008). Lett. Drug. Des. Discov. 5, 178-181.], 2011[Cunico, W., Gomes, C. R. B., Ferreira, M. L. G., Ferreira, T. G., Cardinot, D., de Souza, M. V. N. & Lourenço, M. C. S. (2011). Eur. J. Med. Chem. 46, 974-978.]); Gomes et al. (2011[Gomes, C. R. B., Moreth, M., Cardinot, D., Kopke, V., Cunico, W., da Silva Lourenço, M. C. & de Souza, M. V. N. (2011). Chem. Biol. Drug Des. 78, 1031-1034.]).

[Scheme 1]

Experimental

Crystal data
  • C28H33FN2O5S

  • Mr = 528.62

  • Monoclinic, P 21

  • a = 5.4116 (1) Å

  • b = 25.5513 (8) Å

  • c = 9.8615 (3) Å

  • β = 101.641 (2)°

  • V = 1335.54 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 120 K

  • 0.50 × 0.24 × 0.18 mm

Data collection
  • Bruker–Nonius Roper CCD camera on a κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.654, Tmax = 0.746

  • 12832 measured reflections

  • 5956 independent reflections

  • 5075 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.103

  • S = 1.01

  • 5956 reflections

  • 343 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2848 Friedel pairs

  • Flack parameter: 0.06 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C23–C28 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O4i 0.88 (2) 2.36 (2) 3.179 (2) 154 (2)
O3—H3o⋯O2i 0.84 (2) 2.08 (2) 2.904 (2) 166 (3)
C7—H7A⋯O2i 0.99 2.56 3.405 (3) 143
C22—H22A⋯O4i 0.99 2.57 3.358 (2) 137
C20—H20CCg1ii 0.98 2.78 3.719 (2) 160
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z-1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Tuberculosis, TB, once again is becoming a worldwide problem due mainly to the increase in numbers of people infected with the HIV virus (de Souza, 2006). In 2010, there were 1.1 million new cases of TB among people living with HIV. Of the 1.8 million HIV-related deaths in 2010, 350,000 were due to TB (www.who.int/hiv/topics/tb/hiv_tb_factsheet_june_2011). Beta-aminoalcohols are actively being considered as a promising class of compounds in the combat of co-infection by TB and HIV, due to its versatility and significant application in anti-TB and anti-HIV treatment (Yendapally et al., 2008; Ferreira et al., 2009; Cunico et al., 2008; Cunico et al., 2011; Gomes et al., 2011). We now wish to report the structure of the title compound, 3, prepared as shown in Fig. 1.

Compound 3, Fig. 2, the tertiary amine is sp2 hybridized as evidenced by the sum of the angles subtended at the N1 atom of 359.7°. The sulfonamide-benzene and benzyl-phenyl rings connected to the N1 atom are almost orthogonal to each other, with the dihedral angle between them being 73.86 (11)°, and lie to either side of the C2NS plane. The hydroxy group is orientated to the same side of the molecule as the sulfonamide-benzene ring, and the carbamate group to the same side as the benzyl-phenyl ring. The dihedral angle between the carbamate group and adjacent phenyl ring is 66.35 (8)°, with the latter approximately parallel with the C2NS plane, forming a dihedral angle of 16.66 (6)°.

In the crystal packing, the hydroxy group forms a hydrogen bond with a sulfonamide-O atom, and the carbamate-N—H and O atoms self-associate, Table 1. These interactions are reinforced by C—H···O and C—H···π interactions, Table 1, to form a supramolecular layer in the ac plane, Fig. 3. Layers stack along the b axis with no specific intermolecular interactions between them, Fig. 4.

Related literature top

For background to tuberculosis (TB) infection, see: de Souza (2006). For the development of β-aminoalcohols for the treatment of patients co-infected with TB and HIV, see: Yendapally & Lee (2008); Ferreira et al. (2009); Cunico et al. (2008, 2011); Gomes et al. (2011).

Experimental top

A solution of (2S,3S)-boc-phenylalanine epoxide, 1, (1.6 mmol) and benzylamine (1.5 mmol) in i-PrOH (10 ml) was refluxed for 16 h. The reaction mixture was rotary evaporated and the crude product, 2, was crystallized from aqueous MeOH. To a solution of 2 in CH2Cl2 (10 ml) was successively added trifluoroacetic acid (2.2 mmol) and DMF (0.2 mmol). The mixture was stirred for 30 min under nitrogen, 4-fluorobenzenesulfonyl chloride (2.0 mmol) was added portion wise, After stirring for 8 h, the reaction mixture was washed with 5% HCl aqueous solution, water, brine, dried over MgSO4 and rotary evaporated to give the title compound, 3, which was recrystallized from EtOH to provide colourless blocks, M.pt: 418–420 K.

1H NMR δ: 7.92–7.88 (m, 2H, Ph); 7.43–7.38 (m, 2H, Ph); 7.32–7.25 (m, 5H, Ph); 7.23–7.19 (m, 2H, Ph); 7.15–7.11 (m, 3H, Ph); 6.60 (d, 1H, JH,H = 8.8, NH); 4.97 (d, 1H, JH,H = 6.0, OH); 4.57 (d, 1H, JH,H = 15.6; H5a); 4,41 (d, 1H, JH,H = 15.6, H5b); 3.51–3.45 (m, 2H, H3 and H2); 3.38–3.32 (m, 1H, H4a); 3.00 (dd, 1H, JH,H = 14.8, 2JH,H = 8.8, H4b); 2.90 (dd, 1H, JH,H = 14.4, 2JH,H = 2.8, H1a); 2.45 (dd, 1H, JH,H = 13.6, 2JH,H = 10.4, H1b); 1.21 (s, 9H, C(CH3)3). 13C NMR δ: 164.2 (d, JC,F= 254.6, C4'); 155.2 (C O); 139.4; 136.6 (d, 4JC,F = 2.6, C1'); 136.5; 129.9 (d, 3JC,F = 9.4, C2' and C6'); 128.2, 128.0, 127.8, 116.2 (d, 2JC,F = 22.4, C3' and C5'); 77.4 (C(CH3)3); 71.7 (C3); 54.9 (C2); 51.2 (C5); 50.4 (C4); 35.2 (C1); 28.1 (C(CH3)3).

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O-bound H-atom was located in a difference Fourier map and refined with an O—H restraint of 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O); the N—H H-atom was treated similarly with N—H = 0.88±0.01 Å and with Uiso(H) = 1.2Ueq(N).

Structure description top

Tuberculosis, TB, once again is becoming a worldwide problem due mainly to the increase in numbers of people infected with the HIV virus (de Souza, 2006). In 2010, there were 1.1 million new cases of TB among people living with HIV. Of the 1.8 million HIV-related deaths in 2010, 350,000 were due to TB (www.who.int/hiv/topics/tb/hiv_tb_factsheet_june_2011). Beta-aminoalcohols are actively being considered as a promising class of compounds in the combat of co-infection by TB and HIV, due to its versatility and significant application in anti-TB and anti-HIV treatment (Yendapally et al., 2008; Ferreira et al., 2009; Cunico et al., 2008; Cunico et al., 2011; Gomes et al., 2011). We now wish to report the structure of the title compound, 3, prepared as shown in Fig. 1.

Compound 3, Fig. 2, the tertiary amine is sp2 hybridized as evidenced by the sum of the angles subtended at the N1 atom of 359.7°. The sulfonamide-benzene and benzyl-phenyl rings connected to the N1 atom are almost orthogonal to each other, with the dihedral angle between them being 73.86 (11)°, and lie to either side of the C2NS plane. The hydroxy group is orientated to the same side of the molecule as the sulfonamide-benzene ring, and the carbamate group to the same side as the benzyl-phenyl ring. The dihedral angle between the carbamate group and adjacent phenyl ring is 66.35 (8)°, with the latter approximately parallel with the C2NS plane, forming a dihedral angle of 16.66 (6)°.

In the crystal packing, the hydroxy group forms a hydrogen bond with a sulfonamide-O atom, and the carbamate-N—H and O atoms self-associate, Table 1. These interactions are reinforced by C—H···O and C—H···π interactions, Table 1, to form a supramolecular layer in the ac plane, Fig. 3. Layers stack along the b axis with no specific intermolecular interactions between them, Fig. 4.

For background to tuberculosis (TB) infection, see: de Souza (2006). For the development of β-aminoalcohols for the treatment of patients co-infected with TB and HIV, see: Yendapally & Lee (2008); Ferreira et al. (2009); Cunico et al. (2008, 2011); Gomes et al. (2011).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Reaction scheme for the synthesis of the title compound, 3.
[Figure 2] Fig. 2. The molecular structure of 3 showing displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. A view of the supramolecular layer in in the ac plane (I) in 3. The O—H···O, N—H···O, C—H···O and C—H···π interactions are shown as orange, blue, brown and purple dashed lines, respectively.
[Figure 4] Fig. 4. A view in projection down the c axis of the stacking of supramolecular layers in 3 along the b axis. The O—H···O, N—H···O, C—H···O and C—H···π interactions are shown as orange, blue, brown and purple dashed lines, respectively.
(2S,3R)-tert-Butyl N-[4-(N-benzyl-4-fluorobenzenesulfonamido)-3-hydroxy-1- phenylbutan-2-yl]carbamate top
Crystal data top
C28H33FN2O5SF(000) = 560
Mr = 528.62Dx = 1.315 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 11534 reflections
a = 5.4116 (1) Åθ = 2.9–27.5°
b = 25.5513 (8) ŵ = 0.17 mm1
c = 9.8615 (3) ÅT = 120 K
β = 101.641 (2)°Block, colourless
V = 1335.54 (6) Å30.50 × 0.24 × 0.18 mm
Z = 2
Data collection top
Bruker–Nonius Roper CCD camera on a κ-goniostat
diffractometer
5956 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode5075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
φ and ω scansh = 76
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 3233
Tmin = 0.654, Tmax = 0.746l = 1212
12832 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5956 reflectionsΔρmax = 0.21 e Å3
343 parametersΔρmin = 0.33 e Å3
3 restraintsAbsolute structure: Flack (1983), 2848 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (6)
Crystal data top
C28H33FN2O5SV = 1335.54 (6) Å3
Mr = 528.62Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.4116 (1) ŵ = 0.17 mm1
b = 25.5513 (8) ÅT = 120 K
c = 9.8615 (3) Å0.50 × 0.24 × 0.18 mm
β = 101.641 (2)°
Data collection top
Bruker–Nonius Roper CCD camera on a κ-goniostat
diffractometer
5956 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
5075 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.746Rint = 0.040
12832 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103Δρmax = 0.21 e Å3
S = 1.01Δρmin = 0.33 e Å3
5956 reflectionsAbsolute structure: Flack (1983), 2848 Friedel pairs
343 parametersAbsolute structure parameter: 0.06 (6)
3 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.52180 (9)0.91034 (2)0.52242 (6)0.02540 (14)
F11.2856 (3)0.99049 (6)0.98111 (16)0.0480 (4)
O10.4439 (3)0.95265 (6)0.42835 (19)0.0382 (4)
O20.3377 (3)0.88381 (6)0.58349 (18)0.0320 (4)
O30.9825 (3)0.81562 (6)0.68221 (15)0.0258 (3)
H3O1.088 (4)0.8377 (8)0.667 (3)0.039*
O40.4133 (2)0.69554 (6)0.41684 (14)0.0213 (3)
O50.6340 (3)0.65982 (6)0.26540 (15)0.0221 (3)
N10.6512 (3)0.86650 (7)0.44103 (19)0.0247 (4)
N20.8407 (3)0.70276 (7)0.44759 (18)0.0196 (4)
H2N0.976 (3)0.6946 (9)0.415 (2)0.024*
C10.7491 (4)0.93595 (8)0.6604 (2)0.0227 (5)
C20.7357 (4)0.92322 (9)0.7956 (3)0.0305 (5)
H20.60340.90150.81340.037*
C30.9165 (5)0.94237 (10)0.9048 (3)0.0369 (6)
H30.90920.93440.99800.044*
C41.1047 (5)0.97287 (9)0.8743 (3)0.0335 (6)
C51.1211 (4)0.98673 (10)0.7422 (3)0.0333 (6)
H51.25401.00860.72600.040*
C60.9407 (4)0.96826 (9)0.6328 (3)0.0274 (5)
H60.94730.97750.54020.033*
C70.7982 (5)0.88253 (9)0.3363 (2)0.0286 (5)
H7A0.97900.87470.37140.034*
H7B0.78090.92080.32090.034*
C80.7080 (4)0.85424 (8)0.2005 (2)0.0237 (5)
C90.4706 (4)0.86529 (9)0.1202 (2)0.0286 (5)
H90.36430.89010.15200.034*
C100.3890 (4)0.84028 (10)0.0058 (2)0.0294 (5)
H100.22620.84770.05930.035*
C110.5432 (4)0.80475 (9)0.0538 (2)0.0299 (5)
H110.48760.78810.14070.036*
C120.7775 (5)0.79355 (10)0.0244 (3)0.0353 (6)
H120.88410.76900.00810.042*
C130.8579 (4)0.81823 (10)0.1514 (2)0.0311 (5)
H131.01950.81010.20530.037*
C140.6509 (4)0.81084 (8)0.4777 (2)0.0227 (5)
H14A0.59500.79030.39190.027*
H14B0.52540.80540.53680.027*
C150.9042 (4)0.78940 (8)0.5533 (2)0.0188 (4)
H151.03310.79490.49490.023*
C160.8788 (4)0.73051 (8)0.5795 (2)0.0185 (4)
H160.72620.72510.62050.022*
C170.6120 (4)0.68657 (8)0.3804 (2)0.0184 (4)
C180.4078 (4)0.64183 (8)0.1668 (2)0.0216 (5)
C190.2370 (4)0.68815 (9)0.1142 (2)0.0282 (5)
H19A0.33970.71730.09180.042*
H19B0.14660.69920.18600.042*
H19C0.11520.67780.03090.042*
C200.5227 (4)0.61986 (10)0.0506 (2)0.0308 (5)
H20A0.64100.59180.08680.046*
H20B0.61250.64770.01230.046*
H20C0.38860.60590.02230.046*
C210.2728 (4)0.59978 (9)0.2324 (3)0.0297 (5)
H21A0.18350.61590.29890.045*
H21B0.39630.57450.28040.045*
H21C0.15140.58180.16030.045*
C221.1081 (4)0.70785 (8)0.6797 (2)0.0207 (4)
H22A1.26200.71460.64270.025*
H22B1.12730.72590.77000.025*
C231.0838 (4)0.64964 (8)0.7015 (2)0.0198 (4)
C241.2408 (4)0.61396 (9)0.6537 (2)0.0240 (5)
H241.36460.62630.60550.029*
C251.2194 (4)0.56056 (10)0.6754 (3)0.0312 (5)
H251.32940.53660.64350.037*
C261.0372 (5)0.54250 (9)0.7437 (3)0.0320 (6)
H261.02120.50600.75820.038*
C270.8783 (4)0.57718 (9)0.7909 (3)0.0287 (5)
H270.75210.56450.83700.034*
C280.9026 (4)0.63017 (9)0.7710 (2)0.0236 (5)
H280.79440.65380.80520.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0209 (3)0.0212 (3)0.0315 (3)0.0010 (2)0.0008 (2)0.0019 (2)
F10.0509 (9)0.0460 (9)0.0388 (9)0.0038 (8)0.0106 (7)0.0181 (7)
O10.0352 (10)0.0244 (9)0.0473 (11)0.0013 (7)0.0099 (8)0.0079 (8)
O20.0186 (8)0.0303 (9)0.0468 (11)0.0037 (6)0.0056 (7)0.0027 (8)
O30.0302 (8)0.0282 (9)0.0167 (8)0.0058 (7)0.0009 (6)0.0049 (7)
O40.0173 (7)0.0293 (8)0.0178 (8)0.0033 (6)0.0050 (6)0.0059 (6)
O50.0160 (7)0.0316 (8)0.0176 (8)0.0012 (6)0.0012 (6)0.0076 (6)
N10.0297 (10)0.0237 (10)0.0206 (10)0.0041 (8)0.0050 (8)0.0039 (8)
N20.0165 (9)0.0280 (10)0.0140 (9)0.0019 (7)0.0025 (7)0.0040 (7)
C10.0194 (10)0.0211 (11)0.0269 (13)0.0018 (9)0.0028 (9)0.0028 (9)
C20.0316 (12)0.0276 (13)0.0335 (14)0.0022 (10)0.0091 (10)0.0039 (10)
C30.0454 (15)0.0358 (14)0.0272 (14)0.0024 (12)0.0016 (11)0.0034 (11)
C40.0383 (14)0.0243 (12)0.0329 (14)0.0041 (10)0.0044 (11)0.0102 (10)
C50.0262 (12)0.0296 (13)0.0436 (16)0.0063 (10)0.0059 (11)0.0124 (11)
C60.0282 (12)0.0237 (11)0.0309 (13)0.0039 (9)0.0073 (10)0.0052 (10)
C70.0288 (12)0.0325 (13)0.0235 (12)0.0097 (10)0.0028 (10)0.0057 (10)
C80.0231 (11)0.0250 (11)0.0221 (12)0.0057 (9)0.0027 (9)0.0073 (9)
C90.0288 (12)0.0340 (13)0.0222 (12)0.0030 (10)0.0034 (9)0.0024 (10)
C100.0241 (11)0.0432 (14)0.0192 (12)0.0031 (10)0.0001 (9)0.0014 (10)
C110.0362 (13)0.0315 (13)0.0223 (12)0.0071 (10)0.0064 (10)0.0000 (10)
C120.0348 (13)0.0356 (14)0.0365 (15)0.0038 (11)0.0094 (11)0.0026 (11)
C130.0225 (11)0.0396 (14)0.0300 (14)0.0011 (11)0.0024 (9)0.0064 (11)
C140.0224 (10)0.0229 (11)0.0217 (11)0.0047 (9)0.0018 (8)0.0005 (9)
C150.0187 (10)0.0230 (11)0.0146 (10)0.0048 (8)0.0028 (8)0.0019 (8)
C160.0185 (10)0.0244 (10)0.0126 (10)0.0033 (8)0.0031 (8)0.0034 (8)
C170.0213 (10)0.0187 (10)0.0150 (10)0.0010 (8)0.0033 (8)0.0003 (8)
C180.0178 (10)0.0270 (11)0.0179 (11)0.0037 (9)0.0015 (8)0.0059 (9)
C190.0291 (12)0.0306 (13)0.0228 (12)0.0025 (10)0.0004 (9)0.0007 (10)
C200.0281 (12)0.0425 (14)0.0212 (12)0.0018 (11)0.0035 (9)0.0140 (11)
C210.0283 (12)0.0263 (12)0.0344 (14)0.0023 (10)0.0063 (10)0.0048 (10)
C220.0188 (10)0.0265 (11)0.0164 (11)0.0017 (9)0.0024 (8)0.0024 (9)
C230.0179 (10)0.0273 (12)0.0121 (10)0.0003 (9)0.0015 (8)0.0015 (8)
C240.0221 (10)0.0316 (12)0.0183 (11)0.0004 (9)0.0044 (9)0.0028 (9)
C250.0314 (13)0.0309 (13)0.0311 (14)0.0052 (10)0.0058 (11)0.0085 (10)
C260.0330 (13)0.0256 (12)0.0349 (15)0.0027 (10)0.0007 (11)0.0016 (10)
C270.0248 (12)0.0338 (13)0.0275 (13)0.0020 (10)0.0051 (10)0.0028 (10)
C280.0210 (11)0.0292 (12)0.0202 (12)0.0016 (9)0.0030 (8)0.0002 (9)
Geometric parameters (Å, º) top
S1—O11.4313 (17)C12—C131.391 (3)
S1—O21.4341 (17)C12—H120.9500
S1—N11.618 (2)C13—H130.9500
S1—C11.765 (2)C14—C151.524 (3)
F1—C41.362 (3)C14—H14A0.9900
O3—C151.424 (2)C14—H14B0.9900
O3—H3O0.840 (10)C15—C161.537 (3)
O4—C171.222 (2)C15—H151.0000
O5—C171.350 (2)C16—C221.535 (3)
O5—C181.475 (2)C16—H161.0000
N1—C141.468 (3)C18—C201.517 (3)
N1—C71.483 (3)C18—C211.516 (3)
N2—C171.346 (3)C18—C191.527 (3)
N2—C161.459 (3)C19—H19A0.9800
N2—H2N0.877 (10)C19—H19B0.9800
C1—C21.389 (3)C19—H19C0.9800
C1—C61.394 (3)C20—H20A0.9800
C2—C31.390 (3)C20—H20B0.9800
C2—H20.9500C20—H20C0.9800
C3—C41.363 (4)C21—H21A0.9800
C3—H30.9500C21—H21B0.9800
C4—C51.371 (4)C21—H21C0.9800
C5—C61.383 (3)C22—C231.512 (3)
C5—H50.9500C22—H22A0.9900
C6—H60.9500C22—H22B0.9900
C7—C81.514 (3)C23—C241.392 (3)
C7—H7A0.9900C23—C281.397 (3)
C7—H7B0.9900C24—C251.390 (3)
C8—C131.377 (3)C24—H240.9500
C8—C91.395 (3)C25—C261.380 (4)
C9—C101.388 (3)C25—H250.9500
C9—H90.9500C26—C271.380 (3)
C10—C111.380 (3)C26—H260.9500
C10—H100.9500C27—C281.378 (3)
C11—C121.375 (3)C27—H270.9500
C11—H110.9500C28—H280.9500
O1—S1—O2119.38 (10)O3—C15—C16109.35 (16)
O1—S1—N1107.57 (11)C14—C15—C16109.39 (16)
O2—S1—N1106.73 (10)O3—C15—H15109.3
O1—S1—C1106.72 (10)C14—C15—H15109.3
O2—S1—C1106.66 (10)C16—C15—H15109.3
N1—S1—C1109.56 (10)N2—C16—C22109.95 (16)
C15—O3—H3O104.1 (18)N2—C16—C15109.11 (16)
C17—O5—C18120.63 (16)C22—C16—C15112.91 (16)
C14—N1—C7117.84 (19)N2—C16—H16108.3
C14—N1—S1121.78 (15)C22—C16—H16108.3
C7—N1—S1120.07 (16)C15—C16—H16108.3
C17—N2—C16122.62 (17)O4—C17—N2125.01 (19)
C17—N2—H2N119.9 (15)O4—C17—O5125.03 (18)
C16—N2—H2N117.3 (15)N2—C17—O5109.95 (17)
C2—C1—C6120.7 (2)O5—C18—C20101.61 (16)
C2—C1—S1119.32 (17)O5—C18—C21110.29 (17)
C6—C1—S1119.95 (18)C20—C18—C21111.49 (18)
C3—C2—C1119.8 (2)O5—C18—C19110.33 (17)
C3—C2—H2120.1C20—C18—C19110.02 (19)
C1—C2—H2120.1C21—C18—C19112.58 (18)
C4—C3—C2118.1 (2)C18—C19—H19A109.5
C4—C3—H3121.0C18—C19—H19B109.5
C2—C3—H3121.0H19A—C19—H19B109.5
F1—C4—C3118.1 (2)C18—C19—H19C109.5
F1—C4—C5118.4 (2)H19A—C19—H19C109.5
C3—C4—C5123.5 (2)H19B—C19—H19C109.5
C4—C5—C6118.8 (2)C18—C20—H20A109.5
C4—C5—H5120.6C18—C20—H20B109.5
C6—C5—H5120.6H20A—C20—H20B109.5
C5—C6—C1119.0 (2)C18—C20—H20C109.5
C5—C6—H6120.5H20A—C20—H20C109.5
C1—C6—H6120.5H20B—C20—H20C109.5
N1—C7—C8111.22 (18)C18—C21—H21A109.5
N1—C7—H7A109.4C18—C21—H21B109.5
C8—C7—H7A109.4H21A—C21—H21B109.5
N1—C7—H7B109.4C18—C21—H21C109.5
C8—C7—H7B109.4H21A—C21—H21C109.5
H7A—C7—H7B108.0H21B—C21—H21C109.5
C13—C8—C9118.4 (2)C23—C22—C16112.36 (17)
C13—C8—C7121.49 (19)C23—C22—H22A109.1
C9—C8—C7120.1 (2)C16—C22—H22A109.1
C10—C9—C8120.3 (2)C23—C22—H22B109.1
C10—C9—H9119.8C16—C22—H22B109.1
C8—C9—H9119.8H22A—C22—H22B107.9
C11—C10—C9120.3 (2)C24—C23—C28118.0 (2)
C11—C10—H10119.8C24—C23—C22121.33 (19)
C9—C10—H10119.8C28—C23—C22120.64 (19)
C12—C11—C10119.8 (2)C25—C24—C23121.0 (2)
C12—C11—H11120.1C25—C24—H24119.5
C10—C11—H11120.1C23—C24—H24119.5
C11—C12—C13119.8 (2)C26—C25—C24119.6 (2)
C11—C12—H12120.1C26—C25—H25120.2
C13—C12—H12120.1C24—C25—H25120.2
C8—C13—C12121.3 (2)C25—C26—C27120.3 (2)
C8—C13—H13119.3C25—C26—H26119.8
C12—C13—H13119.3C27—C26—H26119.8
N1—C14—C15115.05 (17)C28—C27—C26119.9 (2)
N1—C14—H14A108.5C28—C27—H27120.0
C15—C14—H14A108.5C26—C27—H27120.0
N1—C14—H14B108.5C27—C28—C23121.1 (2)
C15—C14—H14B108.5C27—C28—H28119.4
H14A—C14—H14B107.5C23—C28—H28119.4
O3—C15—C14110.10 (17)
O1—S1—N1—C14152.35 (16)C7—C8—C13—C12177.9 (2)
O2—S1—N1—C1423.12 (19)C11—C12—C13—C80.5 (4)
C1—S1—N1—C1492.00 (18)C7—N1—C14—C1566.9 (2)
O1—S1—N1—C734.24 (19)S1—N1—C14—C15106.61 (19)
O2—S1—N1—C7163.48 (15)N1—C14—C15—O362.2 (2)
C1—S1—N1—C781.40 (18)N1—C14—C15—C16177.57 (18)
O1—S1—C1—C2135.22 (18)C17—N2—C16—C22135.09 (19)
O2—S1—C1—C26.6 (2)C17—N2—C16—C15100.6 (2)
N1—S1—C1—C2108.60 (19)O3—C15—C16—N2170.49 (15)
O1—S1—C1—C645.3 (2)C14—C15—C16—N268.9 (2)
O2—S1—C1—C6173.95 (17)O3—C15—C16—C2247.9 (2)
N1—S1—C1—C670.89 (19)C14—C15—C16—C22168.55 (17)
C6—C1—C2—C30.7 (3)C16—N2—C17—O44.3 (3)
S1—C1—C2—C3178.78 (18)C16—N2—C17—O5176.89 (17)
C1—C2—C3—C40.8 (4)C18—O5—C17—O44.3 (3)
C2—C3—C4—F1178.3 (2)C18—O5—C17—N2174.58 (17)
C2—C3—C4—C51.8 (4)C17—O5—C18—C20174.12 (18)
F1—C4—C5—C6178.8 (2)C17—O5—C18—C2167.5 (2)
C3—C4—C5—C61.2 (4)C17—O5—C18—C1957.5 (2)
C4—C5—C6—C10.3 (3)N2—C16—C22—C2356.3 (2)
C2—C1—C6—C51.3 (3)C15—C16—C22—C23178.44 (17)
S1—C1—C6—C5178.21 (18)C16—C22—C23—C24112.4 (2)
C14—N1—C7—C858.6 (3)C16—C22—C23—C2867.9 (2)
S1—N1—C7—C8127.76 (17)C28—C23—C24—C250.5 (3)
N1—C7—C8—C13112.8 (2)C22—C23—C24—C25179.28 (19)
N1—C7—C8—C968.8 (3)C23—C24—C25—C260.9 (3)
C13—C8—C9—C100.1 (3)C24—C25—C26—C270.4 (3)
C7—C8—C9—C10178.6 (2)C25—C26—C27—C280.6 (4)
C8—C9—C10—C110.9 (4)C26—C27—C28—C231.1 (3)
C9—C10—C11—C120.9 (4)C24—C23—C28—C270.5 (3)
C10—C11—C12—C130.2 (4)C22—C23—C28—C27179.71 (19)
C9—C8—C13—C120.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C23–C28 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···O4i0.88 (2)2.36 (2)3.179 (2)154 (2)
O3—H3o···O2i0.84 (2)2.08 (2)2.904 (2)166 (3)
C7—H7A···O2i0.992.563.405 (3)143
C22—H22A···O4i0.992.573.358 (2)137
C20—H20C···Cg1ii0.982.783.719 (2)160
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC28H33FN2O5S
Mr528.62
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)5.4116 (1), 25.5513 (8), 9.8615 (3)
β (°) 101.641 (2)
V3)1335.54 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.50 × 0.24 × 0.18
Data collection
DiffractometerBruker–Nonius Roper CCD camera on a κ-goniostat
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.654, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12832, 5956, 5075
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.01
No. of reflections5956
No. of parameters343
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.33
Absolute structureFlack (1983), 2848 Friedel pairs
Absolute structure parameter0.06 (6)

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C23–C28 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···O4i0.882 (17)2.363 (17)3.179 (2)154.0 (17)
O3—H3o···O2i0.84 (2)2.08 (2)2.904 (2)166 (3)
C7—H7A···O2i0.992.563.405 (3)143
C22—H22A···O4i0.992.573.358 (2)137
C20—H20C···Cg1ii0.982.783.719 (2)160
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z1.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCunico, W., Ferreira, M. L. G., Ferreira, T. G., Penido, C., Henriques, M. G. M. O., Krettli, L. G., Varotti, F. P. & Krettli, A. U. (2008). Lett. Drug. Des. Discov. 5, 178–181.  Web of Science CrossRef CAS Google Scholar
First citationCunico, W., Gomes, C. R. B., Ferreira, M. L. G., Ferreira, T. G., Cardinot, D., de Souza, M. V. N. & Lourenço, M. C. S. (2011). Eur. J. Med. Chem. 46, 974–978.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerreira, M. L., Vasconcelos, T. R. A., de Carvalho, E. M., Lourenço, M. C. S., Wardell, S. M. S. V., Wardell, J. L., Ferreira, V. F. & de Souza, M. V. N. (2009). Carbohyd. Res. 344, 2042–2047.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGomes, C. R. B., Moreth, M., Cardinot, D., Kopke, V., Cunico, W., da Silva Lourenço, M. C. & de Souza, M. V. N. (2011). Chem. Biol. Drug Des. 78, 1031–1034.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de (2006). Recent. Pat. Anti-Infect. Drug Discovery, 1, 33–44.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYendapally, R. & Lee, R. E. (2008). Bioorg. Med. Chem. Lett. 18, 1607–1611.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1138-o1139
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds