organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

(4Z)-4-Benzyl­­idene-2-phenyl-1,3-oxazol-5(4H)-one

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 March 2012; accepted 17 March 2012; online 24 March 2012)

In the title compound, C17H13NO2, the benzene ring is twisted slightly out of the plane of the oxazole ring to which it is attached [dihedral angle = 7.98 (8)°]. Similarly, there is a twist [dihedral angle = 5.50 (8)°] between the oxazole and phenyl rings that are linked via the C=C bond [1.348 (2) Å]; the conformation about the latter is Z. In the crystal, the presence of C—H⋯O, C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.5259 (9) Å] link the mol­ecules into a three-dimensional architecture.

Related literature

For background to the biological activity of oxazolone derivatives, see: Fidanza & Dernoeden (1996[Fidanza, M. A. & Dernoeden, P. H. (1996). Crop Sci. 36, 1631-1638.]); Khan et al. (2006[Khan, K. M., Mughal, U. R., Khan, M. T., Zia-Ullah, Perveen, S. & Choudhary, M. I. (2006). Bioorg. Med. Chem. 14, 6027-6033.]); Puig et al. (2000[Puig, C., Crespo, M. I., Godessart, N., Feixas, J., Ibarzo, J., Jiménez, J. M., Soca, L., Cardelús, I., Heredia, A., Miralpeix, M., Puig, J., Beleta, J., Huerta, J. M., López, M., Segarra, V., Ryder, H. & Palacios, J. M. (2000). J. Med. Chem. 43, 214-223.]) For the synthesis, see: Mariappan et al. (2011[Mariappan, G., Saha, B. P., Datta, S., Kumar, D. & Haldar, P. K. (2011). Chem. Sci. (Bangalore, India), 123, 335-341.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13NO2

  • Mr = 263.28

  • Orthorhombic, P b c a

  • a = 12.0827 (6) Å

  • b = 7.7848 (3) Å

  • c = 27.6527 (16) Å

  • V = 2601.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.974, Tmax = 0.983

  • 7121 measured reflections

  • 2990 independent reflections

  • 2206 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.109

  • S = 1.03

  • 2990 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.95 2.56 3.463 (2) 158
C6—H6⋯Cg1ii 0.95 2.93 3.8311 (17) 158
C9—H9⋯Cg1iii 0.95 2.92 3.6532 (17) 135
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x, -y-{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Several oxazolone derivatives (Fidanza & Dernoeden, 1996) have proved effective as insecticides, herbicides and fungicides that control brown patch (Rhizoctonia solani (Kühn)). Oxazol-5-ones are known to inhibit the activity of the tyrosinase enzyme with a maximum inhibition by the derivative which bears a cinnamoyl residue at the C-4 position (Khan et al., 2006). Further, some 3,4-diaryloxazolones show inhibition of cyclooxygenase-2 (COX-2) and in vivo anti-inflammatory activity making them excellent candidates for the treatment of arthritis and hyperalgesia (Puig et al., 2000). In this connection, the title compound, 4(Z)-2-phenyl-4-(phenylmethylidene)-4,5-dihydro-1,3-oxazol-5-one (I), was synthesized and characterized by X-ray crystallography.

In (I), Fig. 1, the oxazole ring is planar with a r.m.s. deviation for the fitted atoms of 0.007 Å. The pendent benzene ring is slightly twisted out of this plane and forms a dihedral angle of 7.98 (8)°; the N1—C1—C11—C12 torsion angle = -171.85 (15)°. The conformation about the C3C4 bond [1.348 (2) Å] is Z. There is a slight twist in this region of the molecule so that the dihedral angle between the oxazol and phenyl rings is 5.50 (8)°; the C4—C5—C10—C9 torsion angle = 177.79 (14)°. The r.m.s. deviation of the 20 non-hydrogen atoms comprising (I) = 0.131 Å with the maximum deviations being 0.258 (1) Å for the C16 atom and -0.224 (2) Å for the C13 atom.

The crystal packing is sustained by C—H···O and C—H···π interactions, Table 1, as well as ππ interactions occurring between the oxazole and benzene rings [ring centroid···ring centroid distance = 3.5259 (9) Å for symmetry operation 1 - x, 1 - y, 1 - z]. Globally, molecules assemble into undulating layers that stack along the b axis, Fig. 2.

Related literature top

For background to the biological activity of oxazolone derivatives, see: Fidanza & Dernoeden (1996); Khan et al. (2006); Puig et al. (2000) For the synthesis, see: Mariappan et al. (2011).

Experimental top

4-Methoxybenzoylglycine was prepared in accord with the literature procedure (Mariappan et al., 2011). A mixture of 4-methoxybenzoylglycine (2.1 g, 0.01 mmol), benzaldehyde (1.1 g, 0.02 mmol), anhydrous sodium acetate (0.8 g, 0.01 mmol) and acetic anhydride (4.0 g, 0.04 mmol) was refluxed for 1 h on a water bath with occasional stirring. The resulting mixture was left in a refrigerator overnight. The solid thus obtained was filtered, washed with cold water, dried in an hot-air oven at 333 K and recrystallized from ethanol as yellow polyhedra. Yield: 84%. M.pt: 470–471 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

Several oxazolone derivatives (Fidanza & Dernoeden, 1996) have proved effective as insecticides, herbicides and fungicides that control brown patch (Rhizoctonia solani (Kühn)). Oxazol-5-ones are known to inhibit the activity of the tyrosinase enzyme with a maximum inhibition by the derivative which bears a cinnamoyl residue at the C-4 position (Khan et al., 2006). Further, some 3,4-diaryloxazolones show inhibition of cyclooxygenase-2 (COX-2) and in vivo anti-inflammatory activity making them excellent candidates for the treatment of arthritis and hyperalgesia (Puig et al., 2000). In this connection, the title compound, 4(Z)-2-phenyl-4-(phenylmethylidene)-4,5-dihydro-1,3-oxazol-5-one (I), was synthesized and characterized by X-ray crystallography.

In (I), Fig. 1, the oxazole ring is planar with a r.m.s. deviation for the fitted atoms of 0.007 Å. The pendent benzene ring is slightly twisted out of this plane and forms a dihedral angle of 7.98 (8)°; the N1—C1—C11—C12 torsion angle = -171.85 (15)°. The conformation about the C3C4 bond [1.348 (2) Å] is Z. There is a slight twist in this region of the molecule so that the dihedral angle between the oxazol and phenyl rings is 5.50 (8)°; the C4—C5—C10—C9 torsion angle = 177.79 (14)°. The r.m.s. deviation of the 20 non-hydrogen atoms comprising (I) = 0.131 Å with the maximum deviations being 0.258 (1) Å for the C16 atom and -0.224 (2) Å for the C13 atom.

The crystal packing is sustained by C—H···O and C—H···π interactions, Table 1, as well as ππ interactions occurring between the oxazole and benzene rings [ring centroid···ring centroid distance = 3.5259 (9) Å for symmetry operation 1 - x, 1 - y, 1 - z]. Globally, molecules assemble into undulating layers that stack along the b axis, Fig. 2.

For background to the biological activity of oxazolone derivatives, see: Fidanza & Dernoeden (1996); Khan et al. (2006); Puig et al. (2000) For the synthesis, see: Mariappan et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents of (I). The C—H···O, C—H···π and ππ interactions are shown as orange, brown and purple dashed lines, respectively.
(4Z)-4-Benzylidene-2-phenyl-1,3-oxazol-5(4H)-one top
Crystal data top
C17H13NO2F(000) = 1104
Mr = 263.28Dx = 1.345 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2443 reflections
a = 12.0827 (6) Åθ = 2.6–27.5°
b = 7.7848 (3) ŵ = 0.09 mm1
c = 27.6527 (16) ÅT = 100 K
V = 2601.1 (2) Å3Polyhedron, yellow
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2990 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2206 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.0°
ω scanh = 159
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 710
Tmin = 0.974, Tmax = 0.983l = 3620
7121 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.043P)2 + 0.6059P]
where P = (Fo2 + 2Fc2)/3
2990 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H13NO2V = 2601.1 (2) Å3
Mr = 263.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.0827 (6) ŵ = 0.09 mm1
b = 7.7848 (3) ÅT = 100 K
c = 27.6527 (16) Å0.30 × 0.25 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2990 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2206 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.983Rint = 0.033
7121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
2990 reflectionsΔρmin = 0.24 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70006 (8)0.51990 (13)0.55832 (4)0.0199 (3)
O20.76383 (9)0.68781 (14)0.61933 (4)0.0270 (3)
N10.53733 (10)0.42459 (15)0.58986 (4)0.0174 (3)
C10.60411 (12)0.42309 (18)0.55339 (6)0.0176 (3)
C20.69316 (13)0.59344 (19)0.60408 (6)0.0197 (3)
C30.58820 (12)0.52949 (18)0.62455 (6)0.0176 (3)
C40.55689 (12)0.56871 (18)0.67001 (6)0.0186 (3)
H40.60500.64450.68680.022*
C50.46027 (12)0.51218 (18)0.69718 (6)0.0176 (3)
C60.44944 (13)0.5668 (2)0.74539 (6)0.0220 (4)
H60.50370.64090.75900.026*
C70.36046 (14)0.51376 (19)0.77344 (6)0.0238 (4)
H70.35380.55200.80590.029*
C80.28135 (14)0.40496 (19)0.75395 (6)0.0233 (4)
H80.22050.36830.77310.028*
C90.29095 (13)0.3493 (2)0.70625 (6)0.0226 (4)
H90.23680.27410.69310.027*
C100.37888 (12)0.40289 (19)0.67789 (6)0.0200 (3)
H100.38420.36560.64530.024*
C110.59187 (12)0.32991 (18)0.50822 (5)0.0169 (3)
C120.67737 (13)0.3232 (2)0.47430 (6)0.0221 (4)
H120.74410.38470.47990.027*
C130.66513 (13)0.2269 (2)0.43248 (6)0.0249 (4)
H130.72410.22220.40980.030*
C140.56739 (13)0.13662 (19)0.42313 (6)0.0216 (3)
C150.48133 (13)0.14847 (19)0.45658 (6)0.0211 (3)
H150.41360.09060.45040.025*
C160.49287 (12)0.24313 (18)0.49867 (6)0.0195 (3)
H160.43350.24910.52110.023*
C170.55537 (15)0.0289 (2)0.37818 (6)0.0292 (4)
H17A0.50600.06820.38480.044*
H17B0.62820.01440.36840.044*
H17C0.52410.09900.35210.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0168 (5)0.0235 (5)0.0194 (6)0.0029 (4)0.0007 (4)0.0022 (5)
O20.0260 (6)0.0308 (6)0.0242 (6)0.0105 (5)0.0044 (5)0.0035 (5)
N10.0182 (6)0.0171 (6)0.0168 (7)0.0012 (5)0.0021 (5)0.0014 (5)
C10.0160 (7)0.0164 (7)0.0204 (8)0.0007 (6)0.0025 (6)0.0053 (6)
C20.0216 (8)0.0197 (7)0.0176 (8)0.0005 (7)0.0043 (6)0.0046 (6)
C30.0181 (7)0.0154 (7)0.0193 (8)0.0001 (6)0.0042 (6)0.0030 (6)
C40.0189 (7)0.0167 (7)0.0201 (8)0.0004 (6)0.0050 (6)0.0000 (6)
C50.0197 (7)0.0149 (7)0.0182 (8)0.0029 (6)0.0014 (6)0.0019 (6)
C60.0249 (8)0.0205 (7)0.0207 (8)0.0017 (7)0.0030 (7)0.0012 (7)
C70.0315 (9)0.0230 (8)0.0167 (8)0.0075 (7)0.0003 (7)0.0002 (7)
C80.0242 (8)0.0223 (8)0.0232 (9)0.0035 (7)0.0051 (7)0.0045 (7)
C90.0225 (8)0.0201 (8)0.0251 (9)0.0020 (7)0.0002 (7)0.0004 (7)
C100.0214 (8)0.0202 (7)0.0184 (8)0.0012 (6)0.0004 (6)0.0010 (6)
C110.0181 (7)0.0166 (7)0.0159 (8)0.0037 (6)0.0004 (6)0.0032 (6)
C120.0192 (7)0.0249 (8)0.0222 (9)0.0008 (7)0.0001 (7)0.0015 (7)
C130.0250 (8)0.0293 (8)0.0203 (9)0.0052 (7)0.0049 (7)0.0001 (7)
C140.0294 (8)0.0164 (7)0.0189 (8)0.0036 (7)0.0019 (7)0.0030 (6)
C150.0230 (8)0.0180 (7)0.0225 (8)0.0012 (6)0.0030 (7)0.0028 (6)
C160.0199 (8)0.0185 (7)0.0202 (8)0.0013 (7)0.0006 (6)0.0044 (6)
C170.0386 (10)0.0238 (8)0.0253 (9)0.0016 (8)0.0009 (8)0.0033 (7)
Geometric parameters (Å, º) top
O1—C21.3913 (19)C9—C101.385 (2)
O1—C11.3895 (18)C9—H90.9500
O2—C21.2028 (18)C10—H100.9500
N1—C11.2915 (19)C11—C121.396 (2)
N1—C31.4017 (19)C11—C161.399 (2)
C1—C111.452 (2)C12—C131.386 (2)
C2—C31.475 (2)C12—H120.9500
C3—C41.348 (2)C13—C141.399 (2)
C4—C51.456 (2)C13—H130.9500
C4—H40.9500C14—C151.395 (2)
C5—C101.406 (2)C14—C171.507 (2)
C5—C61.405 (2)C15—C161.385 (2)
C6—C71.388 (2)C15—H150.9500
C6—H60.9500C16—H160.9500
C7—C81.386 (2)C17—H17A0.9800
C7—H70.9500C17—H17B0.9800
C8—C91.393 (2)C17—H17C0.9800
C8—H80.9500
C2—O1—C1105.22 (11)C8—C9—H9119.8
C1—N1—C3105.41 (12)C9—C10—C5120.29 (15)
N1—C1—O1116.08 (13)C9—C10—H10119.9
N1—C1—C11127.78 (14)C5—C10—H10119.9
O1—C1—C11116.13 (13)C12—C11—C16119.18 (14)
O2—C2—O1121.84 (14)C12—C11—C1121.42 (14)
O2—C2—C3133.00 (15)C16—C11—C1119.39 (13)
O1—C2—C3105.16 (12)C13—C12—C11120.13 (15)
C4—C3—N1130.33 (14)C13—C12—H12119.9
C4—C3—C2121.51 (14)C11—C12—H12119.9
N1—C3—C2108.12 (13)C12—C13—C14121.08 (15)
C3—C4—C5129.62 (14)C12—C13—H13119.5
C3—C4—H4115.2C14—C13—H13119.5
C5—C4—H4115.2C15—C14—C13118.27 (15)
C10—C5—C6118.55 (14)C15—C14—C17120.80 (15)
C10—C5—C4123.23 (14)C13—C14—C17120.93 (15)
C6—C5—C4118.21 (14)C16—C15—C14121.17 (15)
C7—C6—C5120.80 (15)C16—C15—H15119.4
C7—C6—H6119.6C14—C15—H15119.4
C5—C6—H6119.6C15—C16—C11120.13 (14)
C8—C7—C6119.90 (15)C15—C16—H16119.9
C8—C7—H7120.1C11—C16—H16119.9
C6—C7—H7120.1C14—C17—H17A109.5
C7—C8—C9120.05 (15)C14—C17—H17B109.5
C7—C8—H8120.0H17A—C17—H17B109.5
C9—C8—H8120.0C14—C17—H17C109.5
C10—C9—C8120.41 (15)H17A—C17—H17C109.5
C10—C9—H9119.8H17B—C17—H17C109.5
C3—N1—C1—O10.47 (16)C6—C7—C8—C90.2 (2)
C3—N1—C1—C11178.31 (14)C7—C8—C9—C100.4 (2)
C2—O1—C1—N10.24 (16)C8—C9—C10—C50.9 (2)
C2—O1—C1—C11179.16 (12)C6—C5—C10—C90.7 (2)
C1—O1—C2—O2179.03 (14)C4—C5—C10—C9177.79 (14)
C1—O1—C2—C30.80 (14)N1—C1—C11—C12171.85 (15)
C1—N1—C3—C4176.66 (15)O1—C1—C11—C126.9 (2)
C1—N1—C3—C20.95 (15)N1—C1—C11—C167.3 (2)
O2—C2—C3—C43.4 (3)O1—C1—C11—C16173.88 (12)
O1—C2—C3—C4176.76 (13)C16—C11—C12—C132.1 (2)
O2—C2—C3—N1178.70 (16)C1—C11—C12—C13177.12 (14)
O1—C2—C3—N11.10 (15)C11—C12—C13—C140.7 (2)
N1—C3—C4—C50.6 (3)C12—C13—C14—C151.2 (2)
C2—C3—C4—C5176.76 (14)C12—C13—C14—C17178.58 (14)
C3—C4—C5—C101.3 (2)C13—C14—C15—C161.7 (2)
C3—C4—C5—C6177.19 (15)C17—C14—C15—C16178.08 (14)
C10—C5—C6—C70.1 (2)C14—C15—C16—C110.3 (2)
C4—C5—C6—C7178.48 (14)C12—C11—C16—C151.6 (2)
C5—C6—C7—C80.3 (2)C1—C11—C16—C15177.63 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.952.563.463 (2)158
C6—H6···Cg1ii0.952.933.8311 (17)158
C9—H9···Cg1iii0.952.923.6532 (17)135
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+3/2, y+1/2, z+1; (iii) x, y3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H13NO2
Mr263.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)12.0827 (6), 7.7848 (3), 27.6527 (16)
V3)2601.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.974, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7121, 2990, 2206
Rint0.033
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.109, 1.03
No. of reflections2990
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.952.563.463 (2)158
C6—H6···Cg1ii0.952.933.8311 (17)158
C9—H9···Cg1iii0.952.923.6532 (17)135
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+3/2, y+1/2, z+1; (iii) x, y3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFidanza, M. A. & Dernoeden, P. H. (1996). Crop Sci. 36, 1631–1638.  CrossRef Google Scholar
First citationKhan, K. M., Mughal, U. R., Khan, M. T., Zia-Ullah, Perveen, S. & Choudhary, M. I. (2006). Bioorg. Med. Chem. 14, 6027–6033.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMariappan, G., Saha, B. P., Datta, S., Kumar, D. & Haldar, P. K. (2011). Chem. Sci. (Bangalore, India), 123, 335–341.  Google Scholar
First citationPuig, C., Crespo, M. I., Godessart, N., Feixas, J., Ibarzo, J., Jiménez, J. M., Soca, L., Cardelús, I., Heredia, A., Miralpeix, M., Puig, J., Beleta, J., Huerta, J. M., López, M., Segarra, V., Ryder, H. & Palacios, J. M. (2000). J. Med. Chem. 43, 214–223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds