organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Sulfamoylphen­yl)acetamide

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 March 2012; accepted 18 March 2012; online 24 March 2012)

In the title compound, C8H10N2O3S, the dihedral angle between the acetamide group and the benzene ring is 15.59 (12)° and the amino group is close to being perpendicular to the benzene ring [N—S—Car—Car (ar = aromatic) torsion angle = 109.4 (2)°]. In the crystal, mol­ecules are linked into supra­molecular tubes parallel to [001] by amine–amide N—H⋯O inter­actions and these are connected into the three-dimensional architecture by amide–sulfonamide N—H⋯O hydrogen bonds. The crystal studied was a racemic twin.

Related literature

For background to the biological applications of related sulfonamides, see: Croitoru et al. (2004[Croitoru, M., Pintilie, L., Tanase, C., Caproiu, M. T. & Draghici, C. (2004). Rev. Chem. (Bucharest), 55, 993-997.]); Dogruer et al. (2010[Dogruer, D. S., Urlu, S., Onkol, T., Ozcelik, B. & Sahin, M. F. (2010). Turk. J. Chem. 34, 57-65.]). For related structures, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424.], 2012[Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o762-o763.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N2O3S

  • Mr = 214.24

  • Tetragonal, [P \overline 42_1 c ]

  • a = 15.2631 (4) Å

  • c = 8.0571 (4) Å

  • V = 1877.00 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 K

  • 0.40 × 0.05 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.880, Tmax = 0.984

  • 3827 measured reflections

  • 1862 independent reflections

  • 1698 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.079

  • S = 1.02

  • 1862 reflections

  • 140 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 625 Friedel pairs

  • Flack parameter: 0.48 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 (1) 2.08 (1) 2.935 (3) 163 (3)
N1—H2⋯O3ii 0.89 (1) 2.04 (1) 2.929 (3) 178 (3)
N2—H3⋯O1iii 0.88 (1) 2.34 (2) 3.156 (3) 155 (2)
Symmetry codes: (i) [-y+{\script{3\over 2}}, -x+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+2, z; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal and molecular structure of N-(4-sulfamoylphenyl)acetamide (I) is reported herein in continuation of on-going structural studies of sulfonamide derivatives (Asiri et al., 2011; Asiri et al., 2012), of interest owing to their biological activity, for example, to selectively inhibit COX–2 (Croitoru et al., 2004) and as they exhibit anti-microbial and anti-fungal activities (Dogruer et al. 2010).

In (I), Fig. 1. the amide residue is twisted out of the plane of the benzene ring to which it is attached as seen in the value of the C7—N2—C4—C3 torsion angle of -166.2 (2)°, and the amino group occupies a position perpendicular to the benzene ring with the N1—S1—C1—C2 torsion angle being 109.4 (2)°.

Each of the N—H hydrogen atoms forms a hydrogen bond to an oxygen atom with the amide-O3 atom being bifurcated, Table 1. The amino-H atoms bridge the amide-O atoms to generate supramolecular tubes along the c axis. These are connected into the three-dimensional architecture by amide-H···O(sulfonamide) hydrogen bonds, Fig. 2 and Table 1.

Related literature top

For background to the biological applications of related sulfonamides, see: Croitoru et al. (2004); Dogruer et al. (2010). For related structures, see: Asiri et al. (2011, 2012).

Experimental top

2-Acetyl chloride (0.784 g, 25 mmol) in pyridine (5 ml) was slowly added to a solution of sulfanilamide (2.00 g, 11 mmol) in pyridine (20 ml) and the reaction mixture was stirred at 258 K for 4 h under anhydrous conditions. After warming the solution to room temperature, the pyridine was removed in vacuo and the resulting white solid dissolved in ethyl acetate. The organic extract was washed with 3 M hydrochloric acid (30 ml) then with saturated sodium bicarbonate solution (30 ml) and finally with brine. Drying over magnesium sulfate and evaporation yielded a white solid which was recrystallized from ethanol to give the title compound as colourless prisms. Yield: 74%. M.pt: 491–492 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N—H atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å; their Uiso values were refined. Owing to poor agreement, the (7 7 0) reflection was omitted from the final cycles of refinement. The Flack (Flack, 1983) parameter was calculated from 625 Friedel pairs. The refined value, i.e. 0.48 (9). indicates that the crystal examined was a racemic twin.

Structure description top

The crystal and molecular structure of N-(4-sulfamoylphenyl)acetamide (I) is reported herein in continuation of on-going structural studies of sulfonamide derivatives (Asiri et al., 2011; Asiri et al., 2012), of interest owing to their biological activity, for example, to selectively inhibit COX–2 (Croitoru et al., 2004) and as they exhibit anti-microbial and anti-fungal activities (Dogruer et al. 2010).

In (I), Fig. 1. the amide residue is twisted out of the plane of the benzene ring to which it is attached as seen in the value of the C7—N2—C4—C3 torsion angle of -166.2 (2)°, and the amino group occupies a position perpendicular to the benzene ring with the N1—S1—C1—C2 torsion angle being 109.4 (2)°.

Each of the N—H hydrogen atoms forms a hydrogen bond to an oxygen atom with the amide-O3 atom being bifurcated, Table 1. The amino-H atoms bridge the amide-O atoms to generate supramolecular tubes along the c axis. These are connected into the three-dimensional architecture by amide-H···O(sulfonamide) hydrogen bonds, Fig. 2 and Table 1.

For background to the biological applications of related sulfonamides, see: Croitoru et al. (2004); Dogruer et al. (2010). For related structures, see: Asiri et al. (2011, 2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the c axis of the unit-cell contents of (I). The N—H···O hydrogen bonds are shown as orange dashed lines.
N-(4-Sulfamoylphenyl)acetamide top
Crystal data top
C8H10N2O3SDx = 1.516 Mg m3
Mr = 214.24Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 2081 reflections
Hall symbol: P -4 2nθ = 2.7–27.5°
a = 15.2631 (4) ŵ = 0.33 mm1
c = 8.0571 (4) ÅT = 100 K
V = 1877.00 (11) Å3Prism, colourless
Z = 80.40 × 0.05 × 0.05 mm
F(000) = 896
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1862 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1698 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.7°
ω scanh = 1219
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1810
Tmin = 0.880, Tmax = 0.984l = 106
3827 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.7254P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
1862 reflectionsΔρmax = 0.25 e Å3
140 parametersΔρmin = 0.27 e Å3
3 restraintsAbsolute structure: Flack (1983), 625 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.48 (9)
Crystal data top
C8H10N2O3SZ = 8
Mr = 214.24Mo Kα radiation
Tetragonal, P421cµ = 0.33 mm1
a = 15.2631 (4) ÅT = 100 K
c = 8.0571 (4) Å0.40 × 0.05 × 0.05 mm
V = 1877.00 (11) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1862 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1698 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.984Rint = 0.028
3827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079Δρmax = 0.25 e Å3
S = 1.02Δρmin = 0.27 e Å3
1862 reflectionsAbsolute structure: Flack (1983), 625 Friedel pairs
140 parametersAbsolute structure parameter: 0.48 (9)
3 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42050 (3)0.72593 (3)0.79689 (8)0.01459 (14)
O10.38712 (11)0.72467 (12)0.6291 (2)0.0220 (4)
O20.43783 (11)0.64415 (10)0.8775 (2)0.0212 (4)
O30.71401 (10)1.06596 (10)0.73297 (19)0.0184 (4)
N10.34929 (12)0.77773 (13)0.9064 (3)0.0165 (4)
H10.364 (2)0.783 (2)1.0119 (16)0.038 (9)*
H20.329 (2)0.8243 (14)0.853 (4)0.053 (11)*
N20.75181 (12)0.92922 (13)0.8186 (2)0.0165 (4)
H30.7976 (12)0.8991 (16)0.852 (3)0.025 (8)*
C10.51900 (14)0.78616 (14)0.7979 (3)0.0153 (4)
C20.59105 (15)0.75505 (15)0.8838 (3)0.0163 (5)
H2A0.58840.70020.93940.020*
C30.66665 (15)0.80408 (14)0.8881 (3)0.0164 (5)
H3A0.71650.78260.94590.020*
C40.67072 (14)0.88484 (15)0.8086 (3)0.0155 (5)
C50.59846 (15)0.91651 (16)0.7215 (4)0.0227 (5)
H50.60110.97140.66620.027*
C60.52250 (16)0.86653 (15)0.7170 (4)0.0226 (5)
H60.47270.88730.65830.027*
C70.77054 (15)1.01386 (14)0.7821 (3)0.0158 (4)
C80.86506 (15)1.03931 (15)0.8005 (3)0.0196 (5)
H8A0.86891.10010.83920.029*
H8B0.89461.03390.69300.029*
H8C0.89341.00060.88130.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0124 (3)0.0141 (3)0.0172 (2)0.0010 (2)0.0011 (2)0.0006 (3)
O10.0201 (8)0.0260 (9)0.0199 (8)0.0028 (8)0.0005 (7)0.0042 (8)
O20.0197 (9)0.0116 (8)0.0323 (9)0.0012 (7)0.0006 (8)0.0017 (7)
O30.0197 (8)0.0153 (8)0.0202 (8)0.0024 (6)0.0016 (7)0.0017 (7)
N10.0122 (9)0.0199 (10)0.0176 (9)0.0014 (8)0.0033 (9)0.0026 (9)
N20.0103 (9)0.0147 (9)0.0247 (10)0.0011 (7)0.0004 (8)0.0038 (9)
C10.0129 (10)0.0167 (10)0.0163 (9)0.0010 (9)0.0012 (10)0.0009 (11)
C20.0174 (11)0.0119 (10)0.0197 (11)0.0028 (9)0.0001 (10)0.0017 (9)
C30.0138 (11)0.0140 (11)0.0215 (11)0.0039 (9)0.0002 (10)0.0041 (10)
C40.0119 (10)0.0148 (10)0.0197 (11)0.0010 (8)0.0020 (10)0.0012 (10)
C50.0167 (11)0.0188 (11)0.0326 (13)0.0003 (9)0.0011 (11)0.0109 (12)
C60.0147 (11)0.0237 (12)0.0296 (12)0.0015 (10)0.0034 (12)0.0107 (12)
C70.0180 (11)0.0145 (10)0.0150 (10)0.0012 (9)0.0035 (10)0.0010 (10)
C80.0188 (11)0.0186 (11)0.0214 (11)0.0034 (9)0.0003 (11)0.0012 (11)
Geometric parameters (Å, º) top
S1—O21.4316 (17)C2—C31.376 (3)
S1—O11.4446 (17)C2—H2A0.9500
S1—N11.608 (2)C3—C41.391 (3)
S1—C11.762 (2)C3—H3A0.9500
O3—C71.238 (3)C4—C51.394 (3)
N1—H10.880 (10)C5—C61.388 (3)
N1—H20.885 (10)C5—H50.9500
N2—C71.355 (3)C6—H60.9500
N2—C41.413 (3)C7—C81.501 (3)
N2—H30.878 (10)C8—H8A0.9800
C1—C21.384 (3)C8—H8B0.9800
C1—C61.390 (3)C8—H8C0.9800
O2—S1—O1118.55 (11)C4—C3—H3A119.7
O2—S1—N1107.74 (11)C3—C4—C5120.3 (2)
O1—S1—N1106.36 (10)C3—C4—N2115.9 (2)
O2—S1—C1107.16 (10)C5—C4—N2123.8 (2)
O1—S1—C1108.19 (11)C6—C5—C4118.9 (2)
N1—S1—C1108.52 (11)C6—C5—H5120.5
S1—N1—H1114 (2)C4—C5—H5120.5
S1—N1—H2111 (2)C5—C6—C1120.3 (2)
H1—N1—H2119 (3)C5—C6—H6119.9
C7—N2—C4128.99 (19)C1—C6—H6119.9
C7—N2—H3113.4 (18)O3—C7—N2122.3 (2)
C4—N2—H3117.6 (18)O3—C7—C8122.33 (19)
C2—C1—C6120.5 (2)N2—C7—C8115.34 (19)
C2—C1—S1120.10 (17)C7—C8—H8A109.5
C6—C1—S1119.40 (18)C7—C8—H8B109.5
C3—C2—C1119.5 (2)H8A—C8—H8B109.5
C3—C2—H2A120.2C7—C8—H8C109.5
C1—C2—H2A120.2H8A—C8—H8C109.5
C2—C3—C4120.5 (2)H8B—C8—H8C109.5
C2—C3—H3A119.7
O2—S1—C1—C26.7 (2)C2—C3—C4—N2179.1 (2)
O1—S1—C1—C2135.60 (19)C7—N2—C4—C3166.2 (2)
N1—S1—C1—C2109.4 (2)C7—N2—C4—C515.6 (4)
O2—S1—C1—C6175.7 (2)C3—C4—C5—C60.5 (4)
O1—S1—C1—C646.8 (2)N2—C4—C5—C6178.6 (2)
N1—S1—C1—C668.2 (2)C4—C5—C6—C10.1 (4)
C6—C1—C2—C30.3 (4)C2—C1—C6—C50.0 (4)
S1—C1—C2—C3177.88 (19)S1—C1—C6—C5177.6 (2)
C1—C2—C3—C40.7 (3)C4—N2—C7—O30.5 (4)
C2—C3—C4—C50.8 (4)C4—N2—C7—C8177.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.88 (1)2.08 (1)2.935 (3)163 (3)
N1—H2···O3ii0.89 (1)2.04 (1)2.929 (3)178 (3)
N2—H3···O1iii0.88 (1)2.34 (2)3.156 (3)155 (2)
Symmetry codes: (i) y+3/2, x+3/2, z+1/2; (ii) x+1, y+2, z; (iii) x+1/2, y+3/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H10N2O3S
Mr214.24
Crystal system, space groupTetragonal, P421c
Temperature (K)100
a, c (Å)15.2631 (4), 8.0571 (4)
V3)1877.00 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.40 × 0.05 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.880, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
3827, 1862, 1698
Rint0.028
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.02
No. of reflections1862
No. of parameters140
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.27
Absolute structureFlack (1983), 625 Friedel pairs
Absolute structure parameter0.48 (9)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.88 (1)2.08 (1)2.935 (3)163 (3)
N1—H2···O3ii0.89 (1)2.04 (1)2.929 (3)178 (3)
N2—H3···O1iii0.88 (1)2.34 (2)3.156 (3)155 (2)
Symmetry codes: (i) y+3/2, x+3/2, z+1/2; (ii) x+1, y+2, z; (iii) x+1/2, y+3/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o762–o763.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCroitoru, M., Pintilie, L., Tanase, C., Caproiu, M. T. & Draghici, C. (2004). Rev. Chem. (Bucharest), 55, 993–997.  CAS Google Scholar
First citationDogruer, D. S., Urlu, S., Onkol, T., Ozcelik, B. & Sahin, M. F. (2010). Turk. J. Chem. 34, 57–65.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds