organic compounds
6-Methylideneandrost-4-ene-3,17-dione
aCEMDRX, Department of Physics, Faculty of Sciences and Technology, University of Coimbra, P-3004-516 Coimbra, Portugal, and bCenter for Pharmaceutical Studies, Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, P-3000-548 Coimbra, Portugal
*Correspondence e-mail: ze@pollux.fis.uc.pt
In the title compound, C20H26O2, which is the 6-methylene derivative of androstenedione and a synthetic percursor of exemestane, the steroid A ring approximates to a sofa (or envelope) conformation, with the methylene group adjacent to the link to the B ring lying out of the plane of the other atoms. The B and C rings have slightly flattened chair conformations and the D ring is an envelope, with the CH group forming the flap. In the crystal, molecules are linked by two distinct C—H⋯O hydrogen bonds, involving acidic H atoms close to C=C and C=O double bonds.
Related literature
For the synthesis of the title compound, see: Annen et al. (1982). For exemestane aromatase inhibitor potency, see: Furr (2006). For elucidation of structural requirements needed to achieve antitumor activity, see: Cepa et al. (2005). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Duax & Norton (1975); Altona et al. (1968). For reference bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812013207/hb6686sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812013207/hb6686Isup2.hkl
6-Methylenandrost-4-ene-3,17-dione was prepared according to a described procedure (Annen et al., 1982) as follows. A suspension of anhydrous sodium acetate (1.0 g, 12.19 mmol) in dry chloroform (30.0 cm3) containing formaldehyde dimethyl acetal (30.0 cm3, 340.0 mmol) and phosphoryl choride (1.9 cm3, 20.0 mmol) was heated at reflux for 1 h. Androstenedione (773.5 mg, 2.70 mmol) was then added and the mixture was supplemented dropwise with phosphoryl choride (1.9 cm3, 20.0 mmol) over a period of 3 h 30 min. The reaction mixture was subsequently refluxed under nitrogen for 10 h, after which was allowed to cool to room temperature. A saturated aqueous solution of sodium carbonate was then added under vigorous stirring until the aqueous layer became alkaline. This mixture was extracted with chloroform (200 cm3) and then the organic phase was washed with water (4x100 cm3), dried over anhydrous MgSO4, filtered and concentrated to dryness. The resulting residue was purified by a silica gel 60 νmax (NaCl plates, CHCl3) cm-1: 3084 (=C–H), 1738 (C17=O), 1671 (C3=O), 1599 (C═C); 1H NMR (600 MHz, CDCl3): δ 0.78 (3H, s, 18–H3), 1.00 (3H, s, 19–H3), 4.87 (1H, t, ═CH2), 4.97 (1H, t, ═CH2), 5.79 (1H, s, 4–H); 13C NMR (150 MHz, CDCl3): δ 11.5 (C18), 14.9 (C19), 18.2, 19.5, 29.0, 31.6, 32.9, 33.0, 33.6, 36.6, 36.9, 45.3, 48.9, 50.3, 112.4 (═CH2), 119.6 (C4), 143.2 (C6), 166.3 (C5), 197.4 (C3), 217.8 (C17).
(hexane/diethyl ether) affording the pure 6-methylenandrost-4-ene-3,17-dione (134.8 mg, 17%). Suitable crystals for X-ray studies were grown from slow evaporation from acetone/n-hexane: Mp. 435–437 K [lit 440 K (Annen et al., 1982)]; IRAll hydrogen atoms were refined as riding on their parent atoms. Number of Friedel pairs measured: 1606 (45%). Due to the lack of any strong anomalous scatterer atom at the Mo Kα wavelength, of was inconclusive. However the of the molecule is known from the synthetic route.
The title compound is the 6-methylene derivative of androstenedione, the natural substrate of aromatase, and is a key synthetic precursor of exemestane, the most potent steroid aromatase inhibitor clinically used in the breast cancer treatment (Furr, 2006). Following our work on the determination of several androstane structures of potential aromatase inhibitors and intermediates of their syntheses, the X-ray analysis of compound (I) aims to contribute to the elucidation of structural requirements needed to achieve antitumor activity (Cepa et al., 2005). From the single-crystal diffraction measurements one can conclude that bond lengths are within normal values (Allen et al., 1987) with an average Csp3–Csp3 bond length of 1.534 (13) Å. Due to the C4═C5 double bond ring A addopts a 1α–sofa conformation, slightly distorted towards a 1α,2β–halfchair one [asymmetry parameters (Duax and Norton, 1975): ΔCs(1)=7.8 (3), ΔC2(1,2)=17.5 (3) and ΔC2(2,3)=51.4 (4)°]. Rings B and C have slightly flattened chair conformations evidenced by average torsion angle values of 50 (3) and 55 (3)°, respectively. The five member D ring assumes a 14α–envelope conformation [puckering parameters (Cremer and Pople, 1975): q2=0.414 (3) Å and φ2=211.3 (4)°; pseudo-rotation (Altona et al., 1968) and asymmetry parameters: Δ=25.4 (4), φm=42.7 (2)°, ΔCs(14)=4.8 (3) and ΔC2(13,14)=14.9 (3)°]. The pseudo-torsion angle C19–C10···C13–C18 of 2.2 (2)° indicates that the molecule is only slightly twisted. The 6-methylene group is in a beta equatorial position with an angle of 63.8 (2)°. Due to the acidic character of hydrogen atoms close to C═C or C═O double bonds, cohesion of the crystal can be attributed to a net of two C–H···O pseudohydrogen bonds, namely C2–H2A···O17 and C66–H66A···O3, connecting molecules aligned almost along [101], respectively head to tail and head to head.
For the synthesis of the title compound, see: Annen et al. (1982). For exemestane aromatase inhibitor potency, see: Furr (2006). For elucidation of structural requirements needed to achieve antitumor activity, see: Cepa et al. (2005). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Duax & Norton (1975); Altona et al. (1968). For reference bond-length data, see: Allen et al. (1987).
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. A view of the title compound. Displacement ellipsoids are drawn at the 50% level. |
C20H26O2 | F(000) = 324 |
Mr = 298.41 | Dx = 1.170 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2343 (4) Å | Cell parameters from 4974 reflections |
b = 8.7162 (4) Å | θ = 3.0–22.5° |
c = 11.0798 (5) Å | µ = 0.07 mm−1 |
β = 108.197 (2)° | T = 293 K |
V = 847.19 (7) Å3 | Prism, colourless |
Z = 2 | 0.24 × 0.17 × 0.05 mm |
Bruker APEX CCD diffractometer | 1979 independent reflections |
Radiation source: fine-focus sealed tube | 1433 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
φ and ω scans | θmax = 28.2°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −11→11 |
Tmin = 0.835, Tmax = 0.996 | k = −11→11 |
18560 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0289P] where P = (Fo2 + 2Fc2)/3 |
1979 reflections | (Δ/σ)max < 0.001 |
201 parameters | Δρmax = 0.14 e Å−3 |
1 restraint | Δρmin = −0.13 e Å−3 |
C20H26O2 | V = 847.19 (7) Å3 |
Mr = 298.41 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 9.2343 (4) Å | µ = 0.07 mm−1 |
b = 8.7162 (4) Å | T = 293 K |
c = 11.0798 (5) Å | 0.24 × 0.17 × 0.05 mm |
β = 108.197 (2)° |
Bruker APEX CCD diffractometer | 1979 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 1433 reflections with I > 2σ(I) |
Tmin = 0.835, Tmax = 0.996 | Rint = 0.036 |
18560 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 1 restraint |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.14 e Å−3 |
1979 reflections | Δρmin = −0.13 e Å−3 |
201 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.4355 (3) | 0.2091 (3) | −0.50154 (16) | 0.0901 (7) | |
O17 | 0.8776 (2) | 0.1624 (3) | 0.50156 (17) | 0.0859 (7) | |
C1 | 0.6765 (3) | 0.0835 (3) | −0.1938 (2) | 0.0482 (6) | |
H1A | 0.7557 | 0.0070 | −0.1627 | 0.058* | |
H1B | 0.5887 | 0.0510 | −0.1700 | 0.058* | |
C2 | 0.6322 (3) | 0.0896 (3) | −0.3384 (2) | 0.0587 (7) | |
H2A | 0.7234 | 0.1037 | −0.3628 | 0.070* | |
H2B | 0.5867 | −0.0076 | −0.3730 | 0.070* | |
C3 | 0.5234 (3) | 0.2148 (3) | −0.3938 (2) | 0.0579 (7) | |
C4 | 0.5301 (3) | 0.3509 (3) | −0.31480 (19) | 0.0519 (6) | |
H4 | 0.4632 | 0.4312 | −0.3481 | 0.062* | |
C5 | 0.6281 (3) | 0.3660 (3) | −0.19633 (19) | 0.0406 (5) | |
C6 | 0.6402 (3) | 0.5144 (3) | −0.12840 (19) | 0.0429 (5) | |
C7 | 0.6506 (3) | 0.5032 (3) | 0.00948 (19) | 0.0466 (6) | |
H7A | 0.5514 | 0.4757 | 0.0158 | 0.056* | |
H7B | 0.6779 | 0.6028 | 0.0491 | 0.056* | |
C8 | 0.7671 (3) | 0.3855 (3) | 0.08090 (18) | 0.0393 (5) | |
H8 | 0.8690 | 0.4198 | 0.0832 | 0.047* | |
C9 | 0.7337 (3) | 0.2294 (3) | 0.01266 (18) | 0.0366 (5) | |
H9 | 0.6293 | 0.2027 | 0.0087 | 0.044* | |
C10 | 0.7340 (2) | 0.2374 (2) | −0.12870 (18) | 0.0393 (5) | |
C11 | 0.8350 (3) | 0.1008 (3) | 0.0884 (2) | 0.0539 (6) | |
H11A | 0.9384 | 0.1168 | 0.0871 | 0.065* | |
H11B | 0.7999 | 0.0036 | 0.0468 | 0.065* | |
C12 | 0.8365 (3) | 0.0905 (3) | 0.2274 (2) | 0.0568 (7) | |
H12A | 0.7370 | 0.0584 | 0.2302 | 0.068* | |
H12B | 0.9107 | 0.0146 | 0.2722 | 0.068* | |
C13 | 0.8765 (3) | 0.2447 (3) | 0.29190 (19) | 0.0473 (6) | |
C14 | 0.7637 (3) | 0.3646 (3) | 0.21692 (19) | 0.0423 (5) | |
H14 | 0.6623 | 0.3240 | 0.2093 | 0.051* | |
C15 | 0.7863 (3) | 0.5024 (4) | 0.3071 (2) | 0.0586 (7) | |
H15A | 0.6977 | 0.5690 | 0.2840 | 0.070* | |
H15B | 0.8756 | 0.5616 | 0.3079 | 0.070* | |
C16 | 0.8078 (4) | 0.4237 (4) | 0.4357 (2) | 0.0741 (9) | |
H16A | 0.8849 | 0.4765 | 0.5028 | 0.089* | |
H16B | 0.7130 | 0.4240 | 0.4561 | 0.089* | |
C17 | 0.8573 (3) | 0.2610 (4) | 0.4218 (2) | 0.0597 (7) | |
C18 | 1.0444 (3) | 0.2877 (4) | 0.3115 (2) | 0.0665 (8) | |
H18A | 1.1098 | 0.2100 | 0.3615 | 0.100* | |
H18B | 1.0667 | 0.3845 | 0.3546 | 0.100* | |
H18C | 1.0611 | 0.2953 | 0.2304 | 0.100* | |
C19 | 0.8931 (3) | 0.2731 (3) | −0.1379 (2) | 0.0536 (6) | |
H19A | 0.8879 | 0.2794 | −0.2257 | 0.080* | |
H19B | 0.9625 | 0.1930 | −0.0971 | 0.080* | |
H19C | 0.9282 | 0.3691 | −0.0968 | 0.080* | |
C66 | 0.6447 (3) | 0.6472 (3) | −0.1846 (2) | 0.0609 (7) | |
H66A | 0.6403 | 0.6498 | −0.2696 | 0.073* | |
H66B | 0.6523 | 0.7382 | −0.1391 | 0.073* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.1235 (18) | 0.0890 (16) | 0.0410 (9) | −0.0040 (15) | 0.0016 (11) | −0.0116 (10) |
O17 | 0.0974 (16) | 0.1097 (18) | 0.0578 (10) | 0.0235 (14) | 0.0349 (10) | 0.0346 (12) |
C1 | 0.0620 (15) | 0.0377 (14) | 0.0482 (12) | −0.0032 (12) | 0.0218 (11) | −0.0054 (11) |
C2 | 0.0806 (18) | 0.0504 (16) | 0.0498 (13) | −0.0085 (15) | 0.0272 (12) | −0.0157 (12) |
C3 | 0.0765 (18) | 0.0587 (17) | 0.0386 (11) | −0.0084 (15) | 0.0182 (12) | −0.0052 (12) |
C4 | 0.0636 (15) | 0.0513 (15) | 0.0383 (11) | 0.0048 (14) | 0.0121 (10) | 0.0033 (12) |
C5 | 0.0513 (14) | 0.0367 (13) | 0.0371 (10) | −0.0006 (11) | 0.0188 (10) | 0.0038 (10) |
C6 | 0.0525 (14) | 0.0361 (13) | 0.0389 (11) | 0.0049 (12) | 0.0125 (10) | 0.0032 (10) |
C7 | 0.0623 (15) | 0.0358 (13) | 0.0402 (11) | 0.0095 (13) | 0.0138 (10) | −0.0020 (10) |
C8 | 0.0412 (12) | 0.0393 (14) | 0.0362 (9) | 0.0002 (10) | 0.0103 (9) | 0.0002 (9) |
C9 | 0.0408 (12) | 0.0322 (13) | 0.0376 (10) | 0.0003 (10) | 0.0133 (9) | 0.0017 (9) |
C10 | 0.0488 (14) | 0.0333 (13) | 0.0385 (10) | −0.0033 (11) | 0.0174 (9) | −0.0018 (9) |
C11 | 0.0662 (16) | 0.0441 (16) | 0.0491 (12) | 0.0100 (13) | 0.0146 (11) | 0.0050 (11) |
C12 | 0.0657 (17) | 0.0513 (17) | 0.0520 (13) | 0.0094 (14) | 0.0161 (11) | 0.0140 (12) |
C13 | 0.0435 (13) | 0.0575 (17) | 0.0395 (11) | 0.0015 (12) | 0.0111 (10) | 0.0080 (11) |
C14 | 0.0407 (12) | 0.0480 (14) | 0.0367 (10) | 0.0015 (12) | 0.0098 (9) | −0.0005 (11) |
C15 | 0.0689 (17) | 0.0625 (17) | 0.0412 (12) | 0.0014 (15) | 0.0124 (11) | −0.0081 (12) |
C16 | 0.085 (2) | 0.095 (2) | 0.0402 (13) | 0.0036 (19) | 0.0172 (13) | −0.0058 (15) |
C17 | 0.0503 (15) | 0.086 (2) | 0.0418 (12) | 0.0018 (15) | 0.0129 (10) | 0.0095 (14) |
C18 | 0.0447 (15) | 0.093 (2) | 0.0583 (15) | 0.0041 (15) | 0.0103 (11) | 0.0095 (15) |
C19 | 0.0528 (14) | 0.0550 (16) | 0.0605 (14) | −0.0022 (13) | 0.0284 (11) | −0.0029 (12) |
C66 | 0.086 (2) | 0.0426 (15) | 0.0537 (14) | 0.0026 (15) | 0.0218 (13) | 0.0052 (12) |
O3—C3 | 1.217 (3) | C11—C12 | 1.539 (3) |
O17—C17 | 1.205 (3) | C11—H11A | 0.9700 |
C1—C2 | 1.526 (3) | C11—H11B | 0.9700 |
C1—C10 | 1.537 (3) | C12—C13 | 1.512 (4) |
C1—H1A | 0.9700 | C12—H12A | 0.9700 |
C1—H1B | 0.9700 | C12—H12B | 0.9700 |
C2—C3 | 1.481 (4) | C13—C17 | 1.511 (3) |
C2—H2A | 0.9700 | C13—C14 | 1.525 (3) |
C2—H2B | 0.9700 | C13—C18 | 1.543 (4) |
C3—C4 | 1.464 (4) | C14—C15 | 1.534 (4) |
C4—C5 | 1.348 (3) | C14—H14 | 0.9800 |
C4—H4 | 0.9300 | C15—C16 | 1.538 (4) |
C5—C6 | 1.483 (3) | C15—H15A | 0.9700 |
C5—C10 | 1.521 (3) | C15—H15B | 0.9700 |
C6—C66 | 1.322 (4) | C16—C17 | 1.512 (5) |
C6—C7 | 1.504 (3) | C16—H16A | 0.9700 |
C7—C8 | 1.518 (3) | C16—H16B | 0.9700 |
C7—H7A | 0.9700 | C18—H18A | 0.9600 |
C7—H7B | 0.9700 | C18—H18B | 0.9600 |
C8—C14 | 1.528 (3) | C18—H18C | 0.9600 |
C8—C9 | 1.540 (3) | C19—H19A | 0.9600 |
C8—H8 | 0.9800 | C19—H19B | 0.9600 |
C9—C11 | 1.531 (3) | C19—H19C | 0.9600 |
C9—C10 | 1.568 (3) | C66—H66A | 0.9300 |
C9—H9 | 0.9800 | C66—H66B | 0.9300 |
C10—C19 | 1.536 (3) | ||
C2—C1—C10 | 113.72 (19) | C9—C11—H11B | 108.8 |
C2—C1—H1A | 108.8 | C12—C11—H11B | 108.8 |
C10—C1—H1A | 108.8 | H11A—C11—H11B | 107.7 |
C2—C1—H1B | 108.8 | C13—C12—C11 | 110.2 (2) |
C10—C1—H1B | 108.8 | C13—C12—H12A | 109.6 |
H1A—C1—H1B | 107.7 | C11—C12—H12A | 109.6 |
C3—C2—C1 | 112.7 (2) | C13—C12—H12B | 109.6 |
C3—C2—H2A | 109.0 | C11—C12—H12B | 109.6 |
C1—C2—H2A | 109.0 | H12A—C12—H12B | 108.1 |
C3—C2—H2B | 109.0 | C17—C13—C12 | 116.7 (2) |
C1—C2—H2B | 109.0 | C17—C13—C14 | 101.05 (19) |
H2A—C2—H2B | 107.8 | C12—C13—C14 | 109.11 (18) |
O3—C3—C4 | 120.7 (3) | C17—C13—C18 | 104.76 (19) |
O3—C3—C2 | 122.3 (2) | C12—C13—C18 | 111.6 (2) |
C4—C3—C2 | 116.9 (2) | C14—C13—C18 | 113.3 (2) |
C5—C4—C3 | 123.5 (2) | C13—C14—C8 | 113.47 (18) |
C5—C4—H4 | 118.3 | C13—C14—C15 | 104.54 (17) |
C3—C4—H4 | 118.3 | C8—C14—C15 | 120.6 (2) |
C4—C5—C6 | 120.0 (2) | C13—C14—H14 | 105.7 |
C4—C5—C10 | 122.7 (2) | C8—C14—H14 | 105.7 |
C6—C5—C10 | 117.22 (17) | C15—C14—H14 | 105.7 |
C66—C6—C5 | 122.25 (18) | C14—C15—C16 | 101.9 (2) |
C66—C6—C7 | 122.3 (2) | C14—C15—H15A | 111.4 |
C5—C6—C7 | 115.46 (19) | C16—C15—H15A | 111.4 |
C6—C7—C8 | 112.53 (18) | C14—C15—H15B | 111.4 |
C6—C7—H7A | 109.1 | C16—C15—H15B | 111.4 |
C8—C7—H7A | 109.1 | H15A—C15—H15B | 109.3 |
C6—C7—H7B | 109.1 | C17—C16—C15 | 106.3 (2) |
C8—C7—H7B | 109.1 | C17—C16—H16A | 110.5 |
H7A—C7—H7B | 107.8 | C15—C16—H16A | 110.5 |
C7—C8—C14 | 111.40 (17) | C17—C16—H16B | 110.5 |
C7—C8—C9 | 109.92 (16) | C15—C16—H16B | 110.5 |
C14—C8—C9 | 108.45 (18) | H16A—C16—H16B | 108.7 |
C7—C8—H8 | 109.0 | O17—C17—C13 | 126.4 (3) |
C14—C8—H8 | 109.0 | O17—C17—C16 | 125.3 (2) |
C9—C8—H8 | 109.0 | C13—C17—C16 | 108.3 (2) |
C11—C9—C8 | 112.54 (16) | C13—C18—H18A | 109.5 |
C11—C9—C10 | 112.90 (17) | C13—C18—H18B | 109.5 |
C8—C9—C10 | 112.83 (16) | H18A—C18—H18B | 109.5 |
C11—C9—H9 | 105.9 | C13—C18—H18C | 109.5 |
C8—C9—H9 | 105.9 | H18A—C18—H18C | 109.5 |
C10—C9—H9 | 105.9 | H18B—C18—H18C | 109.5 |
C5—C10—C19 | 107.41 (18) | C10—C19—H19A | 109.5 |
C5—C10—C1 | 109.70 (17) | C10—C19—H19B | 109.5 |
C19—C10—C1 | 110.02 (19) | H19A—C19—H19B | 109.5 |
C5—C10—C9 | 108.90 (16) | C10—C19—H19C | 109.5 |
C19—C10—C9 | 112.03 (17) | H19A—C19—H19C | 109.5 |
C1—C10—C9 | 108.75 (16) | H19B—C19—H19C | 109.5 |
C9—C11—C12 | 113.8 (2) | C6—C66—H66A | 120.0 |
C9—C11—H11A | 108.8 | C6—C66—H66B | 120.0 |
C12—C11—H11A | 108.8 | H66A—C66—H66B | 120.0 |
C10—C1—C2—C3 | −52.5 (3) | C8—C9—C10—C19 | 66.5 (2) |
C1—C2—C3—O3 | −153.9 (3) | C11—C9—C10—C1 | 59.3 (2) |
C1—C2—C3—C4 | 28.6 (3) | C8—C9—C10—C1 | −171.65 (17) |
O3—C3—C4—C5 | −177.9 (3) | C8—C9—C11—C12 | 50.9 (3) |
C2—C3—C4—C5 | −0.4 (4) | C10—C9—C11—C12 | −180.0 (2) |
C3—C4—C5—C6 | 172.8 (2) | C9—C11—C12—C13 | −53.2 (3) |
C3—C4—C5—C10 | −4.8 (4) | C11—C12—C13—C17 | 170.15 (19) |
C4—C5—C6—C66 | −43.6 (3) | C11—C12—C13—C14 | 56.5 (3) |
C10—C5—C6—C66 | 134.1 (2) | C11—C12—C13—C18 | −69.4 (2) |
C4—C5—C6—C7 | 137.7 (2) | C17—C13—C14—C8 | 174.9 (2) |
C10—C5—C6—C7 | −44.6 (3) | C12—C13—C14—C8 | −61.5 (2) |
C66—C6—C7—C8 | −130.9 (3) | C18—C13—C14—C8 | 63.4 (3) |
C5—C6—C7—C8 | 47.7 (3) | C17—C13—C14—C15 | 41.7 (2) |
C6—C7—C8—C14 | −174.15 (19) | C12—C13—C14—C15 | 165.22 (19) |
C6—C7—C8—C9 | −53.9 (3) | C18—C13—C14—C15 | −69.8 (2) |
C7—C8—C9—C11 | −172.96 (18) | C7—C8—C14—C13 | 178.7 (2) |
C14—C8—C9—C11 | −51.0 (2) | C9—C8—C14—C13 | 57.6 (2) |
C7—C8—C9—C10 | 57.8 (2) | C7—C8—C14—C15 | −56.3 (3) |
C14—C8—C9—C10 | 179.86 (17) | C9—C8—C14—C15 | −177.35 (19) |
C4—C5—C10—C19 | 101.4 (2) | C13—C14—C15—C16 | −39.5 (2) |
C6—C5—C10—C19 | −76.3 (2) | C8—C14—C15—C16 | −168.6 (2) |
C4—C5—C10—C1 | −18.2 (3) | C14—C15—C16—C17 | 21.5 (3) |
C6—C5—C10—C1 | 164.16 (18) | C12—C13—C17—O17 | 34.0 (4) |
C4—C5—C10—C9 | −137.1 (2) | C14—C13—C17—O17 | 152.1 (3) |
C6—C5—C10—C9 | 45.3 (2) | C18—C13—C17—O17 | −90.0 (3) |
C2—C1—C10—C5 | 46.0 (3) | C12—C13—C17—C16 | −146.0 (2) |
C2—C1—C10—C19 | −72.0 (2) | C14—C13—C17—C16 | −27.8 (3) |
C2—C1—C10—C9 | 164.96 (19) | C18—C13—C17—C16 | 90.0 (3) |
C11—C9—C10—C5 | 178.85 (19) | C15—C16—C17—O17 | −176.0 (3) |
C8—C9—C10—C5 | −52.1 (2) | C15—C16—C17—C13 | 3.9 (3) |
C11—C9—C10—C19 | −62.5 (2) | C19—C10—C13—C18 | 2.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O17i | 0.97 | 2.43 | 3.345 (3) | 158 |
C66—H66A···O3ii | 0.93 | 2.47 | 3.365 (3) | 163 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1, y+1/2, −z−1. |
Experimental details
Crystal data | |
Chemical formula | C20H26O2 |
Mr | 298.41 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 293 |
a, b, c (Å) | 9.2343 (4), 8.7162 (4), 11.0798 (5) |
β (°) | 108.197 (2) |
V (Å3) | 847.19 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.24 × 0.17 × 0.05 |
Data collection | |
Diffractometer | Bruker APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.835, 0.996 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18560, 1979, 1433 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.100, 1.02 |
No. of reflections | 1979 |
No. of parameters | 201 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.13 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O17i | 0.97 | 2.43 | 3.345 (3) | 158 |
C66—H66A···O3ii | 0.93 | 2.47 | 3.365 (3) | 163 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1, y+1/2, −z−1. |
Acknowledgements
This work was supported by funds from FEDER via the COMPETE (Programa Operacional Factores de Competitividade) programme and by the FCT (Fundação para a Ciência e a Tecnologia, project PEst-C/FIS/UI0036/2011).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13–32. CrossRef CAS Web of Science Google Scholar
Annen, K., Hofmeister, H., Laurent, H. & Wiechert, R. (1982). Synthesis, 2, 34–40. CrossRef Google Scholar
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cepa, M., Tavares da Silva, E. J., Correia-da-Silva, G., Roleira, F. M. & Teixeira, N. A. (2005). J. Med. Chem. 48, 6379–6385. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structure. New York: Plenum Press. Google Scholar
Furr, B. J. A. (2006). In Aromatase Inhibitors (Milestones in Drug Therapy).Basel: Birkhäuser Verlag. Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148-155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound is the 6-methylene derivative of androstenedione, the natural substrate of aromatase, and is a key synthetic precursor of exemestane, the most potent steroid aromatase inhibitor clinically used in the breast cancer treatment (Furr, 2006). Following our work on the determination of several androstane structures of potential aromatase inhibitors and intermediates of their syntheses, the X-ray analysis of compound (I) aims to contribute to the elucidation of structural requirements needed to achieve antitumor activity (Cepa et al., 2005). From the single-crystal diffraction measurements one can conclude that bond lengths are within normal values (Allen et al., 1987) with an average Csp3–Csp3 bond length of 1.534 (13) Å. Due to the C4═C5 double bond ring A addopts a 1α–sofa conformation, slightly distorted towards a 1α,2β–halfchair one [asymmetry parameters (Duax and Norton, 1975): ΔCs(1)=7.8 (3), ΔC2(1,2)=17.5 (3) and ΔC2(2,3)=51.4 (4)°]. Rings B and C have slightly flattened chair conformations evidenced by average torsion angle values of 50 (3) and 55 (3)°, respectively. The five member D ring assumes a 14α–envelope conformation [puckering parameters (Cremer and Pople, 1975): q2=0.414 (3) Å and φ2=211.3 (4)°; pseudo-rotation (Altona et al., 1968) and asymmetry parameters: Δ=25.4 (4), φm=42.7 (2)°, ΔCs(14)=4.8 (3) and ΔC2(13,14)=14.9 (3)°]. The pseudo-torsion angle C19–C10···C13–C18 of 2.2 (2)° indicates that the molecule is only slightly twisted. The 6-methylene group is in a beta equatorial position with an angle of 63.8 (2)°. Due to the acidic character of hydrogen atoms close to C═C or C═O double bonds, cohesion of the crystal can be attributed to a net of two C–H···O pseudohydrogen bonds, namely C2–H2A···O17 and C66–H66A···O3, connecting molecules aligned almost along [101], respectively head to tail and head to head.