organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1265-o1266

7′-Phenyl-1′,3′,5′,6′,7′,7a'-hexa­hydro­dipiro[ace­naphthyl­ene-1,5′-pyrrolo­[1,2-c]thia­zole-6′,2′′-indane]-2,1′′(1H)-dione

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 22 March 2012; accepted 27 March 2012; online 31 March 2012)

In the title compound, C31H23NO2S, the pyrrolidine ring adopts an envelope conformation (with the spiro C atom as the flap), while the thia­zolidine ring and the two cyclo­pentane rings adopt twisted conformations. The mean plane through the hexa­hydro­pyrrolo­[1,2-c]thia­zole ring [r.m.s deviation = 0.400 (1) Å] forms dihedral angles of 76.83 (4), 80.70 (5) and 79.00 (4)° with the benzene ring and the mean planes of the dihydro­acenaphthyl­ene and the dihydro­indene rings, respectively. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into sheets lying parallel to the bc plane. One of the ketone O atoms accepts three such bonds. Weak C—H⋯π inter­actions are also observed.

Related literature

For related structures, see: Wei et al. (2011a[Wei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011a). Acta Cryst. E67, o2383.],b[Wei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011b). Acta Cryst. E67, o3218-o3219.], 2012[Wei, A. C., Ali, M. A., Choon, T. S., Razak, I. A. & Arshad, S. (2012). Acta Cryst. E68, o560-o561.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C31H23NO2S

  • Mr = 473.56

  • Monoclinic, P 21 /c

  • a = 8.4054 (1) Å

  • b = 11.3716 (1) Å

  • c = 23.5194 (2) Å

  • β = 92.259 (1)°

  • V = 2246.30 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.30 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.972

  • 39597 measured reflections

  • 10047 independent reflections

  • 7694 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.124

  • S = 1.03

  • 10047 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C6/C11 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1i 0.95 2.58 3.2598 (14) 129
C23—H23A⋯O1ii 1.00 2.46 3.4180 (14) 160
C31—H31A⋯O1ii 0.95 2.56 3.4434 (14) 155
C7—H7A⋯O2iii 0.95 2.54 3.4111 (14) 152
C18—H18ACg1iv 0.95 2.91 3.5502 (14) 126
C25—H25ACg2v 0.99 2.68 3.5182 (13) 142
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z; (iv) x-1, y, z; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing search to prepare heterocyclic compounds with potential antitubercular activity (Wei et al., 2011a,b), we have synthesized the title compound as described below.

In the molecular structure (Fig 1), the pyrrolidine ring (N1/C12/C13/C22/C23) is in envelope conformation (Cremer & Pople, 1975) [puckering parameters, Q= 0.4480 (11) Å and φ= 68.75 (14)° with atom C13 at the flap]. Meanwhile, the thiazolidine ring and the two cyclopentane rings (S1/N1/C23–C25, C1/C2/C10–C12 & C13–C15/C20/C21) are twisted about C25–S1 bond [puckering parameters, Q= 0.3450 (11) Å and φ= 339.37 (19)°], C12–C1 bond [puckering parameters, Q= 0.1209 (11) Å and φ= 167.0 (5)°] and C13–S14 bond [puckering parameters, Q= 0.2875 (11) Å and φ= 190.5 (2)°], respectively, adopting half-chair conformation. In addition, the dihedral angles between the mean plane through the hexahydropyrrolo [1,2-c]thiazole ring (S1/N1/C12/C13/C22–C25) [r.m.s deviation of 0.400 (1) Å] with the benzene ring (C26–C31) and the mean planes of the dihydroacenaphthylene and the dihydro-indene rings (C1–C10/C12 & C13–C21) are 76.83 (4), 80.70 (5) and 79.00 (4)°, respectively. The bond lengths and angles are within normal ranges and comparable to the related structure (Wei, et al., 2011b; Wei, et al., 2012).

The crystal packing is shown in Fig. 2. The molecules are linked into sheets lying parallel to bc-plane via C7—H7A···O2, C4—H4A···O1, C23—H23A···O1 and C31—H31A···O1 (Table 1) hydrogen bonds. The crystal structure also features C18—H18A···Cg1 and C25—H25A···Cg2 (Table 1) interactions (Cg1 and Cg2 are the centroids of the C2–C6/C11 and C15–C20 rings, respectively).

Related literature top

For related structures, see: Wei et al. (2011a,b, 2012). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of (E)-(2-benzylidene)-2,3-dihydro-1H-indene-1-one (0.001 mol), acenaphthenequinone (0.001 mol) and thiazolidine-4-carboxylic acid (0.002 mol) (1:1:2) were dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction as evident from TLC, the excess solvent was evaporated slowly and the product was separated and recrystallized from methanol to reveal the title compound as yellow crystals.

Refinement top

All H atoms were positioned geometrically (C–H = 0.95 and 1.00 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Structure description top

As part of our ongoing search to prepare heterocyclic compounds with potential antitubercular activity (Wei et al., 2011a,b), we have synthesized the title compound as described below.

In the molecular structure (Fig 1), the pyrrolidine ring (N1/C12/C13/C22/C23) is in envelope conformation (Cremer & Pople, 1975) [puckering parameters, Q= 0.4480 (11) Å and φ= 68.75 (14)° with atom C13 at the flap]. Meanwhile, the thiazolidine ring and the two cyclopentane rings (S1/N1/C23–C25, C1/C2/C10–C12 & C13–C15/C20/C21) are twisted about C25–S1 bond [puckering parameters, Q= 0.3450 (11) Å and φ= 339.37 (19)°], C12–C1 bond [puckering parameters, Q= 0.1209 (11) Å and φ= 167.0 (5)°] and C13–S14 bond [puckering parameters, Q= 0.2875 (11) Å and φ= 190.5 (2)°], respectively, adopting half-chair conformation. In addition, the dihedral angles between the mean plane through the hexahydropyrrolo [1,2-c]thiazole ring (S1/N1/C12/C13/C22–C25) [r.m.s deviation of 0.400 (1) Å] with the benzene ring (C26–C31) and the mean planes of the dihydroacenaphthylene and the dihydro-indene rings (C1–C10/C12 & C13–C21) are 76.83 (4), 80.70 (5) and 79.00 (4)°, respectively. The bond lengths and angles are within normal ranges and comparable to the related structure (Wei, et al., 2011b; Wei, et al., 2012).

The crystal packing is shown in Fig. 2. The molecules are linked into sheets lying parallel to bc-plane via C7—H7A···O2, C4—H4A···O1, C23—H23A···O1 and C31—H31A···O1 (Table 1) hydrogen bonds. The crystal structure also features C18—H18A···Cg1 and C25—H25A···Cg2 (Table 1) interactions (Cg1 and Cg2 are the centroids of the C2–C6/C11 and C15–C20 rings, respectively).

For related structures, see: Wei et al. (2011a,b, 2012). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
7'-Phenyl-1',3',5',6',7',7a'-hexahydrodipiro[acenaphthene-1,5'- pyrrolo[1,2-c]thiazole-6',2''-indane]-2,1''(1H)-dione top
Crystal data top
C31H23NO2SF(000) = 992
Mr = 473.56Dx = 1.400 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9949 reflections
a = 8.4054 (1) Åθ = 2.5–35.2°
b = 11.3716 (1) ŵ = 0.18 mm1
c = 23.5194 (2) ÅT = 100 K
β = 92.259 (1)°Block, yellow
V = 2246.30 (4) Å30.30 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
10047 independent reflections
Radiation source: fine-focus sealed tube7694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 35.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.949, Tmax = 0.972k = 1814
39597 measured reflectionsl = 3828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.9508P]
where P = (Fo2 + 2Fc2)/3
10047 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C31H23NO2SV = 2246.30 (4) Å3
Mr = 473.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4054 (1) ŵ = 0.18 mm1
b = 11.3716 (1) ÅT = 100 K
c = 23.5194 (2) Å0.30 × 0.18 × 0.16 mm
β = 92.259 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
10047 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7694 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.972Rint = 0.039
39597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.58 e Å3
10047 reflectionsΔρmin = 0.29 e Å3
316 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.86000 (4)0.42837 (3)0.121701 (14)0.01913 (7)
O10.48435 (10)0.17004 (8)0.24386 (3)0.01480 (15)
O20.24182 (10)0.24847 (8)0.04159 (3)0.01487 (16)
N10.60468 (11)0.35224 (8)0.17368 (4)0.01107 (16)
C10.49807 (12)0.15401 (9)0.19309 (4)0.01060 (17)
C20.51959 (12)0.04064 (9)0.16415 (4)0.01095 (18)
C30.50561 (13)0.07416 (10)0.18207 (5)0.01361 (19)
H3A0.46680.09230.21840.016*
C40.55106 (14)0.16396 (10)0.14435 (5)0.0159 (2)
H4A0.54010.24370.15560.019*
C50.61100 (14)0.13945 (10)0.09164 (5)0.0153 (2)
H5A0.64230.20220.06790.018*
C60.62624 (13)0.02169 (10)0.07274 (5)0.01244 (18)
C70.68707 (13)0.01653 (10)0.02044 (5)0.0147 (2)
H7A0.72350.03920.00620.018*
C80.69293 (14)0.13492 (10)0.00849 (5)0.0147 (2)
H8A0.73450.15920.02660.018*
C90.63933 (13)0.22232 (10)0.04655 (5)0.01278 (18)
H9A0.64410.30320.03670.015*
C100.58047 (12)0.18838 (9)0.09778 (4)0.01008 (17)
C110.57568 (12)0.06664 (9)0.10990 (4)0.01046 (17)
C120.51304 (12)0.25553 (9)0.14809 (4)0.00966 (17)
C130.34938 (12)0.32033 (9)0.13396 (4)0.00936 (17)
C140.25058 (12)0.32869 (10)0.18797 (4)0.01128 (18)
H14A0.32050.33090.22280.014*
H14B0.18180.39940.18690.014*
C150.15252 (12)0.21773 (10)0.18530 (5)0.01242 (18)
C160.07876 (14)0.15873 (11)0.22895 (5)0.0173 (2)
H16A0.08940.18590.26710.021*
C170.01086 (15)0.05901 (12)0.21539 (6)0.0217 (2)
H17A0.06080.01740.24480.026*
C180.02897 (15)0.01885 (12)0.15930 (6)0.0221 (2)
H18A0.09300.04830.15100.027*
C190.04614 (14)0.07663 (11)0.11552 (6)0.0176 (2)
H19A0.03460.05010.07730.021*
C200.13885 (13)0.17474 (10)0.12972 (5)0.01284 (18)
C210.24112 (12)0.24687 (9)0.09327 (4)0.01074 (17)
C220.40993 (12)0.43806 (9)0.10995 (4)0.01032 (17)
H22A0.45280.42100.07170.012*
C230.55326 (12)0.46704 (10)0.15034 (5)0.01232 (18)
H23A0.51570.51700.18210.015*
C240.69479 (14)0.52975 (11)0.12283 (6)0.0225 (3)
H24A0.72560.60060.14510.027*
H24B0.66380.55450.08360.027*
C250.77507 (13)0.34147 (11)0.17878 (5)0.0159 (2)
H25A0.80660.25800.17530.019*
H25B0.81460.37100.21630.019*
C260.28586 (12)0.53385 (9)0.10170 (4)0.01095 (17)
C270.20247 (13)0.54334 (10)0.04912 (5)0.01402 (19)
H27A0.22680.49090.01920.017*
C280.08491 (14)0.62787 (11)0.03980 (5)0.0170 (2)
H28A0.02870.63190.00400.020*
C290.04933 (14)0.70648 (11)0.08275 (5)0.0176 (2)
H29A0.03110.76430.07650.021*
C300.13264 (14)0.69968 (10)0.13495 (5)0.0163 (2)
H30A0.11020.75400.16420.020*
C310.24880 (13)0.61373 (10)0.14462 (5)0.01328 (19)
H31A0.30350.60920.18070.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01378 (12)0.01626 (14)0.02775 (15)0.00203 (10)0.00564 (10)0.00049 (11)
O10.0201 (4)0.0142 (4)0.0101 (3)0.0016 (3)0.0005 (3)0.0002 (3)
O20.0185 (4)0.0146 (4)0.0114 (3)0.0002 (3)0.0016 (3)0.0021 (3)
N10.0106 (4)0.0089 (4)0.0135 (4)0.0008 (3)0.0017 (3)0.0008 (3)
C10.0104 (4)0.0104 (4)0.0110 (4)0.0011 (3)0.0002 (3)0.0010 (3)
C20.0123 (4)0.0094 (4)0.0111 (4)0.0004 (3)0.0002 (3)0.0004 (3)
C30.0159 (4)0.0113 (5)0.0136 (4)0.0005 (4)0.0000 (3)0.0014 (4)
C40.0202 (5)0.0095 (5)0.0180 (5)0.0007 (4)0.0002 (4)0.0012 (4)
C50.0185 (5)0.0104 (5)0.0169 (5)0.0005 (4)0.0000 (4)0.0019 (4)
C60.0142 (4)0.0098 (4)0.0133 (4)0.0003 (4)0.0004 (3)0.0017 (3)
C70.0168 (5)0.0139 (5)0.0138 (4)0.0009 (4)0.0031 (4)0.0041 (4)
C80.0170 (5)0.0149 (5)0.0123 (4)0.0019 (4)0.0041 (4)0.0016 (4)
C90.0154 (4)0.0109 (4)0.0123 (4)0.0006 (4)0.0031 (3)0.0001 (3)
C100.0106 (4)0.0090 (4)0.0107 (4)0.0006 (3)0.0009 (3)0.0001 (3)
C110.0112 (4)0.0087 (4)0.0114 (4)0.0000 (3)0.0004 (3)0.0001 (3)
C120.0109 (4)0.0084 (4)0.0097 (4)0.0002 (3)0.0004 (3)0.0001 (3)
C130.0098 (4)0.0088 (4)0.0095 (4)0.0005 (3)0.0000 (3)0.0009 (3)
C140.0118 (4)0.0108 (4)0.0113 (4)0.0008 (3)0.0020 (3)0.0005 (3)
C150.0099 (4)0.0128 (5)0.0146 (4)0.0021 (4)0.0015 (3)0.0024 (4)
C160.0146 (5)0.0194 (6)0.0183 (5)0.0016 (4)0.0043 (4)0.0062 (4)
C170.0147 (5)0.0195 (6)0.0310 (6)0.0005 (4)0.0044 (4)0.0122 (5)
C180.0149 (5)0.0151 (5)0.0362 (7)0.0035 (4)0.0012 (5)0.0064 (5)
C190.0148 (5)0.0127 (5)0.0251 (6)0.0027 (4)0.0031 (4)0.0012 (4)
C200.0116 (4)0.0112 (5)0.0156 (5)0.0006 (4)0.0007 (3)0.0012 (4)
C210.0109 (4)0.0083 (4)0.0128 (4)0.0013 (3)0.0014 (3)0.0006 (3)
C220.0116 (4)0.0086 (4)0.0108 (4)0.0000 (3)0.0004 (3)0.0005 (3)
C230.0116 (4)0.0083 (4)0.0169 (5)0.0001 (3)0.0016 (3)0.0017 (4)
C240.0140 (5)0.0142 (5)0.0390 (7)0.0026 (4)0.0021 (5)0.0093 (5)
C250.0122 (4)0.0133 (5)0.0219 (5)0.0007 (4)0.0038 (4)0.0025 (4)
C260.0111 (4)0.0092 (4)0.0125 (4)0.0005 (3)0.0003 (3)0.0011 (3)
C270.0156 (4)0.0132 (5)0.0132 (4)0.0006 (4)0.0007 (3)0.0019 (4)
C280.0153 (5)0.0166 (5)0.0188 (5)0.0007 (4)0.0029 (4)0.0065 (4)
C290.0139 (5)0.0131 (5)0.0260 (6)0.0023 (4)0.0018 (4)0.0068 (4)
C300.0164 (5)0.0114 (5)0.0215 (5)0.0024 (4)0.0042 (4)0.0004 (4)
C310.0147 (4)0.0105 (5)0.0146 (4)0.0013 (4)0.0007 (3)0.0005 (4)
Geometric parameters (Å, º) top
S1—C241.8058 (13)C14—H14B0.9900
S1—C251.8340 (12)C15—C161.3923 (15)
O1—C11.2178 (12)C15—C201.3961 (16)
O2—C211.2159 (13)C16—C171.3914 (19)
N1—C251.4377 (14)C16—H16A0.9500
N1—C121.4589 (14)C17—C181.398 (2)
N1—C231.4743 (14)C17—H17A0.9500
C1—C21.4724 (15)C18—C191.3936 (18)
C1—C121.5745 (15)C18—H18A0.9500
C2—C31.3782 (15)C19—C201.3939 (16)
C2—C111.4090 (14)C19—H19A0.9500
C3—C41.4151 (16)C20—C211.4849 (15)
C3—H3A0.9500C22—C261.5152 (15)
C4—C51.3849 (16)C22—C231.5403 (15)
C4—H4A0.9500C22—H22A1.0000
C5—C61.4184 (16)C23—C241.5502 (16)
C5—H5A0.9500C23—H23A1.0000
C6—C111.4080 (15)C24—H24A0.9900
C6—C71.4187 (15)C24—H24B0.9900
C7—C81.3766 (17)C25—H25A0.9900
C7—H7A0.9500C25—H25B0.9900
C8—C91.4227 (15)C26—C271.4014 (15)
C8—H8A0.9500C26—C311.4021 (15)
C9—C101.3757 (14)C27—C281.3898 (16)
C9—H9A0.9500C27—H27A0.9500
C10—C111.4142 (15)C28—C291.3903 (18)
C10—C121.5355 (14)C28—H28A0.9500
C12—C131.5842 (14)C29—C301.3914 (18)
C13—C211.5405 (15)C29—H29A0.9500
C13—C221.5469 (15)C30—C311.3938 (16)
C13—C141.5477 (14)C30—H30A0.9500
C14—C151.5071 (16)C31—H31A0.9500
C14—H14A0.9900
C24—S1—C2590.66 (6)C17—C16—H16A120.8
C25—N1—C12118.57 (9)C15—C16—H16A120.8
C25—N1—C23112.52 (9)C16—C17—C18121.35 (11)
C12—N1—C23111.82 (8)C16—C17—H17A119.3
O1—C1—C2127.04 (10)C18—C17—H17A119.3
O1—C1—C12124.22 (10)C19—C18—C17120.49 (12)
C2—C1—C12108.47 (8)C19—C18—H18A119.8
C3—C2—C11120.75 (10)C17—C18—H18A119.8
C3—C2—C1132.42 (10)C18—C19—C20117.75 (12)
C11—C2—C1106.65 (9)C18—C19—H19A121.1
C2—C3—C4117.61 (10)C20—C19—H19A121.1
C2—C3—H3A121.2C19—C20—C15121.95 (10)
C4—C3—H3A121.2C19—C20—C21129.39 (11)
C5—C4—C3122.18 (11)C15—C20—C21108.61 (9)
C5—C4—H4A118.9O2—C21—C20127.67 (10)
C3—C4—H4A118.9O2—C21—C13125.94 (10)
C4—C5—C6120.74 (10)C20—C21—C13106.38 (9)
C4—C5—H5A119.6C26—C22—C23116.28 (9)
C6—C5—H5A119.6C26—C22—C13115.74 (8)
C11—C6—C5116.48 (10)C23—C22—C13102.74 (8)
C11—C6—C7116.58 (10)C26—C22—H22A107.2
C5—C6—C7126.94 (10)C23—C22—H22A107.2
C8—C7—C6119.58 (10)C13—C22—H22A107.2
C8—C7—H7A120.2N1—C23—C22104.53 (8)
C6—C7—H7A120.2N1—C23—C24110.13 (9)
C7—C8—C9122.68 (10)C22—C23—C24115.81 (10)
C7—C8—H8A118.7N1—C23—H23A108.7
C9—C8—H8A118.7C22—C23—H23A108.7
C10—C9—C8119.27 (10)C24—C23—H23A108.7
C10—C9—H9A120.4C23—C24—S1108.40 (8)
C8—C9—H9A120.4C23—C24—H24A110.0
C9—C10—C11117.72 (9)S1—C24—H24A110.0
C9—C10—C12133.78 (10)C23—C24—H24B110.0
C11—C10—C12108.49 (8)S1—C24—H24B110.0
C6—C11—C2122.16 (10)H24A—C24—H24B108.4
C6—C11—C10124.16 (9)N1—C25—S1107.95 (8)
C2—C11—C10113.65 (9)N1—C25—H25A110.1
N1—C12—C10119.20 (8)S1—C25—H25A110.1
N1—C12—C1109.29 (8)N1—C25—H25B110.1
C10—C12—C1101.25 (8)S1—C25—H25B110.1
N1—C12—C13100.13 (8)H25A—C25—H25B108.4
C10—C12—C13114.42 (8)C27—C26—C31117.89 (10)
C1—C12—C13112.98 (8)C27—C26—C22119.08 (9)
C21—C13—C22115.93 (8)C31—C26—C22123.02 (10)
C21—C13—C14102.72 (8)C28—C27—C26121.35 (11)
C22—C13—C14116.20 (8)C28—C27—H27A119.3
C21—C13—C12111.40 (8)C26—C27—H27A119.3
C22—C13—C12100.58 (8)C27—C28—C29120.14 (11)
C14—C13—C12110.24 (8)C27—C28—H28A119.9
C15—C14—C13102.98 (8)C29—C28—H28A119.9
C15—C14—H14A111.2C28—C29—C30119.35 (11)
C13—C14—H14A111.2C28—C29—H29A120.3
C15—C14—H14B111.2C30—C29—H29A120.3
C13—C14—H14B111.2C29—C30—C31120.52 (11)
H14A—C14—H14B109.1C29—C30—H30A119.7
C16—C15—C20119.94 (11)C31—C30—H30A119.7
C16—C15—C14129.15 (11)C30—C31—C26120.73 (11)
C20—C15—C14110.90 (9)C30—C31—H31A119.6
C17—C16—C15118.45 (12)C26—C31—H31A119.6
O1—C1—C2—C311.8 (2)C12—C13—C14—C1590.66 (10)
C12—C1—C2—C3173.99 (11)C13—C14—C15—C16158.41 (11)
O1—C1—C2—C11163.15 (11)C13—C14—C15—C2022.15 (11)
C12—C1—C2—C1111.09 (11)C20—C15—C16—C171.61 (17)
C11—C2—C3—C40.66 (16)C14—C15—C16—C17177.78 (11)
C1—C2—C3—C4173.68 (11)C15—C16—C17—C180.76 (18)
C2—C3—C4—C51.38 (17)C16—C17—C18—C191.58 (19)
C3—C4—C5—C61.31 (18)C17—C18—C19—C200.02 (18)
C4—C5—C6—C110.79 (16)C18—C19—C20—C152.44 (17)
C4—C5—C6—C7179.17 (11)C18—C19—C20—C21174.76 (11)
C11—C6—C7—C80.39 (16)C16—C15—C20—C193.28 (17)
C5—C6—C7—C8179.66 (12)C14—C15—C20—C19176.22 (10)
C6—C7—C8—C90.32 (18)C16—C15—C20—C21174.43 (10)
C7—C8—C9—C100.68 (17)C14—C15—C20—C216.07 (12)
C8—C9—C10—C110.29 (16)C19—C20—C21—O215.01 (19)
C8—C9—C10—C12179.68 (11)C15—C20—C21—O2167.50 (11)
C5—C6—C11—C22.84 (16)C19—C20—C21—C13164.61 (11)
C7—C6—C11—C2177.12 (10)C15—C20—C21—C1312.88 (12)
C5—C6—C11—C10179.25 (10)C22—C13—C21—O226.92 (15)
C7—C6—C11—C100.79 (16)C14—C13—C21—O2154.73 (11)
C3—C2—C11—C62.84 (16)C12—C13—C21—O287.27 (13)
C1—C2—C11—C6172.80 (10)C22—C13—C21—C20153.45 (9)
C3—C2—C11—C10179.05 (10)C14—C13—C21—C2025.64 (10)
C1—C2—C11—C105.31 (12)C12—C13—C21—C2092.35 (10)
C9—C10—C11—C60.45 (16)C21—C13—C22—C2670.82 (11)
C12—C10—C11—C6179.09 (10)C14—C13—C22—C2649.99 (12)
C9—C10—C11—C2177.62 (10)C12—C13—C22—C26168.95 (8)
C12—C10—C11—C22.84 (12)C21—C13—C22—C23161.38 (8)
C25—N1—C12—C1037.51 (14)C14—C13—C22—C2377.81 (10)
C23—N1—C12—C1095.94 (11)C12—C13—C22—C2341.15 (9)
C25—N1—C12—C178.11 (11)C25—N1—C23—C22140.45 (9)
C23—N1—C12—C1148.44 (8)C12—N1—C23—C224.10 (11)
C25—N1—C12—C13163.03 (9)C25—N1—C23—C2415.42 (13)
C23—N1—C12—C1329.58 (10)C12—N1—C23—C24120.94 (10)
C9—C10—C12—N151.77 (16)C26—C22—C23—N1151.58 (9)
C11—C10—C12—N1128.81 (10)C13—C22—C23—N124.12 (10)
C9—C10—C12—C1171.57 (12)C26—C22—C23—C2487.07 (12)
C11—C10—C12—C19.00 (10)C13—C22—C23—C24145.48 (9)
C9—C10—C12—C1366.60 (15)N1—C23—C24—S17.73 (12)
C11—C10—C12—C13112.83 (10)C22—C23—C24—S1110.57 (10)
O1—C1—C12—N135.65 (13)C25—S1—C24—C2321.26 (10)
C2—C1—C12—N1138.80 (9)C12—N1—C25—S1101.83 (9)
O1—C1—C12—C10162.27 (10)C23—N1—C25—S131.32 (11)
C2—C1—C12—C1012.17 (10)C24—S1—C25—N130.36 (9)
O1—C1—C12—C1374.89 (13)C23—C22—C26—C27147.99 (10)
C2—C1—C12—C13110.66 (9)C13—C22—C26—C2791.27 (12)
N1—C12—C13—C21166.23 (8)C23—C22—C26—C3132.59 (14)
C10—C12—C13—C2137.52 (11)C13—C22—C26—C3188.14 (12)
C1—C12—C13—C2177.65 (10)C31—C26—C27—C280.97 (16)
N1—C12—C13—C2242.79 (9)C22—C26—C27—C28178.47 (10)
C10—C12—C13—C2285.92 (10)C26—C27—C28—C290.96 (17)
C1—C12—C13—C22158.92 (8)C27—C28—C29—C300.09 (17)
N1—C12—C13—C1480.40 (9)C28—C29—C30—C311.11 (17)
C10—C12—C13—C14150.88 (9)C29—C30—C31—C261.10 (17)
C1—C12—C13—C1435.72 (11)C27—C26—C31—C300.06 (16)
C21—C13—C14—C1528.15 (10)C22—C26—C31—C30179.48 (10)
C22—C13—C14—C15155.79 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C6/C11 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.952.583.2598 (14)129
C23—H23A···O1ii1.002.463.4180 (14)160
C31—H31A···O1ii0.952.563.4434 (14)155
C7—H7A···O2iii0.952.543.4111 (14)152
C18—H18A···Cg1iv0.952.913.5502 (14)126
C25—H25A···Cg2v0.992.683.5182 (13)142
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC31H23NO2S
Mr473.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.4054 (1), 11.3716 (1), 23.5194 (2)
β (°) 92.259 (1)
V3)2246.30 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.30 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.949, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
39597, 10047, 7694
Rint0.039
(sin θ/λ)max1)0.813
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.124, 1.03
No. of reflections10047
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C6/C11 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.952.583.2598 (14)129
C23—H23A···O1ii1.002.463.4180 (14)160
C31—H31A···O1ii0.952.563.4434 (14)155
C7—H7A···O2iii0.952.543.4111 (14)152
C18—H18A···Cg1iv0.952.913.5502 (14)126
C25—H25A···Cg2v0.992.683.5182 (13)142
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors wish to express their thanks to the Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti Sains Malysia, Penang and the Malaysian Goverment for the Research University grant Nos. 1001/PSK/8620012 and 1001/PFIZIK/811151 and also providing research facilities.

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011a). Acta Cryst. E67, o2383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011b). Acta Cryst. E67, o3218–o3219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Razak, I. A. & Arshad, S. (2012). Acta Cryst. E68, o560–o561.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1265-o1266
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds