metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m525-m526

cis-(Acetato-κ2O,O′)(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N,N′,N′′,N′′′)nickel(II) perchlorate monohydrate

aDepartment of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 March 2012; accepted 27 March 2012; online 31 March 2012)

The complete cation in the title hydrated mol­ecular salt, [Ni(CH3CO2)(C16H36N4)]ClO4·H2O, is generated by the application of crystallographic twofold symmetry; the perchlorate anion and water mol­ecule are each disordered around a twofold axis. The NiII atom exists within a cis-N4O2 donor set based on a strongly distorted octa­hedron and defined by the four N atoms of the macrocyclic ligand and two O atoms of a symmetrically coordinating acetate ligand. In the crystal, hydrogen bonding (water–acetate/perchlorate O—H⋯O and amine–perchlorate N—H⋯O) leads to layers in the ab plane. The layers stack along the c axis, being connected by C—H⋯O(water) inter­actions. The crystal studied was found to be a non-merohedral twin; the minor component refined to 15.9 (6)%.

Related literature

For background to macrocyclic complexes, see: Hazari et al. (2010[Hazari, S. K. S., Roy, T. G., Barua, K. K., Anwar, N., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Appl. Organomet. Chem. 24, 878-887.]). For a related structure, see: Roy et al. (2012[Roy, T. G., Hazari, S. K. S., Nath, B. C., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m494-m495.]). For the treatment of data from twinned crystals, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H3O2)(C16H36N4)]ClO4·H2O

  • Mr = 519.71

  • Monoclinic, C 2/c

  • a = 9.4041 (2) Å

  • b = 15.9593 (4) Å

  • c = 16.0721 (6) Å

  • β = 96.534 (3)°

  • V = 2396.48 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.58 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.850, Tmax = 1.000

  • 5502 measured reflections

  • 2480 independent reflections

  • 2286 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.162

  • S = 1.09

  • 2480 reflections

  • 171 parameters

  • 45 restraints

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni—O1 2.118 (2)
Ni—N1 2.089 (3)
Ni—N2 2.136 (3)
O1i—Ni—O1 62.28 (13)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.88 2.47 3.289 (14) 154
N1—H1⋯O3i 0.88 2.35 3.181 (9) 158
N2—H2⋯O4ii 0.88 2.50 3.276 (8) 148
O1w—H1w1⋯O1iii 0.84 1.94 2.754 (11) 163
O1w—H1w2⋯O2 0.84 2.14 2.950 (18) 163
C3—H3A⋯O1Wiv 0.99 2.14 3.057 (13) 153
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a continuation of systematic studies into the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2010; Roy et al., 2012), crystals of the title hydrated salt, (I), were isolated and characterized crystallographically.

The asymmetric unit of (I) comprises half a NiL(O2CMe) cation, Fig. 1, as this is has crystallographic twofold symmetry, half a perchlorate anion (this is disordered about a twofold axis) and half a water molecule of solvation (this is also disordered about a twofold axis); where L is 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. The NiII atom exists within a cis-N4O2 donor set defined by the four N atoms of the macrocyclic ligand and two acetate-O atoms, Table 1. The coordination geometry is based on an octahedron. There are significant distortions from the ideal geometry owing in part to the restricted bite angle of the acetate ligand as manifested in the O1—Ni—O1i angle of 62.28 (13)°; symmetry operation i: 1 - x, y, 3/2 - z. In particular, this bite angle restricts the putative trans O1—Ni—O1 angle to 158.84 (12)°; the N2—Ni—N2i angle = 175.92 (17)°.

In the crystal packing, the water molecule forms O—H···O hydrogen bonds to the acetate-O1 and perchlorate-O2 atoms, while the amine-H atoms form hydrogen bonds to perchlorate-O atoms; the N1—H atom is bifurcated, Table 2. The hydrogen bonding leads to layers in the ab plane, Fig. 2. Layers are connected along the c axis by C—H···O(water) interactions, Fig. 3 and Table 2.

Related literature top

For background to macrocyclic complexes, see: Hazari et al. (2010). For a related structure, see: Roy et al. (2012). For the treatment of twinned data, see: Spek (2009).

Experimental top

The title complex, (I), was prepared by the anion exchange reaction of [NiL(O2CMe)][O2CMe] with perchlorate, where L is 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. Thus, [NiL(O2CMe)][O2CMe] (0.495 g, 1.0 mmol) was dissolved in hot methanol (40 ml) and sodium perchlorate hexahydrate (0.460 g, 2.0 mmol) added. The reaction mixture was heated for 15 min. During heating a blue product separated out. After cooling at room temperature for 30 min, the product, (I), was filtered off, washed with methanol followed by diethyl ether and dried in a desiccator over silica-gel. Light-purple prisms of (I) were obtained from slow evaporation of its methanol solution. Yield 65%. M.pt: 512–513 K. Anal. Calc for C18H41ClN4NiO7: C, 41.68; H, 7.97; N, 10.81; Ni, 11.18%. Found: C, 44.53; H, 7.72; N, 10.78; Ni, 11.01%. FT—IR (KBr, cm-1): 1598 ν(O2C), 3202 ν(N—H), 2981 ν(C—H), 1369 ν(CH3), 1177 ν(C—C), 520 (Ni—N), 1126, 623 ν(ClO4).

Refinement top

The H-atoms were placed in calculated positions (O—H = 0.84, N—H = 0.88 and C—H = 0.98–1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(carrier atom). The perchlorate and water molecules are disordered across a twofold axis. The Cl—O bonds lengths were restrained to 0.01 Å of each other, as were the O···O contact distances. The anisotropic displacement parameters were restrained to be nearly isotropic. Finally, the methyl-H atoms of the acetate group are disordered over two positions of equal weight. The crystal studied is a non-merohedral twin. The twin domains were separated by the TwinRotMat routine in PLATON (Spek, 2009). The minor component refined to 15.9 (6)%.

Structure description top

As a continuation of systematic studies into the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2010; Roy et al., 2012), crystals of the title hydrated salt, (I), were isolated and characterized crystallographically.

The asymmetric unit of (I) comprises half a NiL(O2CMe) cation, Fig. 1, as this is has crystallographic twofold symmetry, half a perchlorate anion (this is disordered about a twofold axis) and half a water molecule of solvation (this is also disordered about a twofold axis); where L is 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. The NiII atom exists within a cis-N4O2 donor set defined by the four N atoms of the macrocyclic ligand and two acetate-O atoms, Table 1. The coordination geometry is based on an octahedron. There are significant distortions from the ideal geometry owing in part to the restricted bite angle of the acetate ligand as manifested in the O1—Ni—O1i angle of 62.28 (13)°; symmetry operation i: 1 - x, y, 3/2 - z. In particular, this bite angle restricts the putative trans O1—Ni—O1 angle to 158.84 (12)°; the N2—Ni—N2i angle = 175.92 (17)°.

In the crystal packing, the water molecule forms O—H···O hydrogen bonds to the acetate-O1 and perchlorate-O2 atoms, while the amine-H atoms form hydrogen bonds to perchlorate-O atoms; the N1—H atom is bifurcated, Table 2. The hydrogen bonding leads to layers in the ab plane, Fig. 2. Layers are connected along the c axis by C—H···O(water) interactions, Fig. 3 and Table 2.

For background to macrocyclic complexes, see: Hazari et al. (2010). For a related structure, see: Roy et al. (2012). For the treatment of twinned data, see: Spek (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation in (I) showing displacement ellipsoids at the 50% probability level. The cation has crystallographic twofold symmetry and unlabelled atoms are generated by the symmetry operation 1 - x, y, 3/2 - z.
[Figure 2] Fig. 2. A view of the supramolecular layer in the ab plane in (I). The O—H···O and N—H···O hydrogen bonds are shown as orange and blue dashed lines, respectively. The illustrated perchlorate and water molecules are disordered about a twofold axis and each is present 50% of the time.
[Figure 3] Fig. 3. A view of the unit-cell contents in projection down the a axis in (I). The O—H···O, N—H···O and C—H···O interactions are shown as orange, blue and brown dashed lines, respectively. The illustrated perchlorate and water molecules are disordered about a twofold axis and each is present 50% of the time.
cis-(Acetato-κ2O,O')(5,5,7,12,12,14-hexamethyl- 1,4,8,11-tetraazacyclotetradecane- κ4N,N',N'',N''')nickel(II) perchlorate monohydrate top
Crystal data top
[Ni(C2H3O2)(C16H36N4]ClO4·H2OF(000) = 1112
Mr = 519.71Dx = 1.440 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 3218 reflections
a = 9.4041 (2) Åθ = 5.5–76.4°
b = 15.9593 (4) ŵ = 2.58 mm1
c = 16.0721 (6) ÅT = 100 K
β = 96.534 (3)°Prism, light-purple
V = 2396.48 (12) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2480 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2286 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 5.5°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1819
Tmin = 0.850, Tmax = 1.000l = 320
5502 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0529P)2 + 9.9029P]
where P = (Fo2 + 2Fc2)/3
2480 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.60 e Å3
45 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Ni(C2H3O2)(C16H36N4]ClO4·H2OV = 2396.48 (12) Å3
Mr = 519.71Z = 4
Monoclinic, C2/cCu Kα radiation
a = 9.4041 (2) ŵ = 2.58 mm1
b = 15.9593 (4) ÅT = 100 K
c = 16.0721 (6) Å0.25 × 0.20 × 0.15 mm
β = 96.534 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2480 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2286 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 1.000Rint = 0.024
5502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06745 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.09Δρmax = 0.60 e Å3
2480 reflectionsΔρmin = 0.62 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.50000.56446 (4)0.75000.0300 (3)
Cl10.4637 (3)0.86782 (11)0.71627 (15)0.0559 (6)0.50
O20.6083 (10)0.8409 (9)0.7174 (9)0.197 (12)0.50
O30.4105 (13)0.8372 (5)0.7910 (6)0.111 (5)0.50
O40.4585 (9)0.9554 (3)0.7181 (5)0.085 (3)0.50
O50.3800 (9)0.8336 (6)0.6466 (5)0.111 (3)0.50
O1W0.7196 (13)0.8995 (10)0.8864 (7)0.147 (6)0.50
H1W10.79670.91870.87260.220*0.50
H1W20.67290.87940.84330.220*0.50
O10.4508 (2)0.45087 (14)0.80858 (16)0.0318 (5)
N10.5584 (4)0.64503 (18)0.6573 (2)0.0459 (9)
H10.54060.69670.67210.069*
N20.2798 (3)0.5692 (2)0.6999 (2)0.0412 (8)
H20.24130.52270.71640.062*
C10.5402 (7)0.6902 (4)0.5067 (4)0.085 (2)
H1A0.64390.68330.50750.128*
H1B0.51880.74830.52060.128*
H1C0.49300.67660.45080.128*
C20.4854 (5)0.6312 (3)0.5713 (3)0.0546 (12)
H2A0.50420.57220.55460.066*
C30.3231 (5)0.6426 (3)0.5688 (4)0.0681 (16)
H3A0.28320.64890.50950.082*
H3B0.30590.69610.59730.082*
C40.2374 (5)0.5741 (3)0.6076 (3)0.0535 (12)
C50.2620 (5)0.4882 (3)0.5708 (3)0.0554 (11)
H5A0.36340.47330.58230.083*
H5B0.23450.48950.51020.083*
H5C0.20390.44650.59630.083*
C60.0754 (5)0.5945 (4)0.5877 (4)0.0749 (17)
H6A0.05580.64990.61020.112*
H6B0.01900.55210.61340.112*
H6C0.04930.59440.52690.112*
C70.2205 (4)0.6372 (3)0.7477 (3)0.0534 (12)
H7A0.11530.63100.74460.064*
H7B0.24150.69200.72290.064*
C80.2843 (4)0.6345 (3)0.8372 (3)0.0514 (11)
H8A0.24280.67990.86890.062*
H8B0.26140.58030.86240.062*
C90.50000.4119 (3)0.75000.0312 (10)
C100.50000.3177 (3)0.75000.0555 (16)
H10A0.46290.29730.80080.083*0.50
H10B0.59790.29730.74860.083*0.50
H10C0.43920.29730.70060.083*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0253 (4)0.0131 (4)0.0551 (6)0.0000.0195 (4)0.000
Cl10.0651 (14)0.0221 (8)0.0840 (16)0.0086 (8)0.0232 (11)0.0024 (8)
O20.201 (15)0.173 (14)0.218 (15)0.025 (9)0.034 (10)0.029 (9)
O30.150 (9)0.049 (5)0.131 (8)0.031 (5)0.013 (6)0.048 (5)
O40.104 (7)0.022 (3)0.141 (8)0.003 (3)0.063 (5)0.004 (3)
O50.117 (7)0.117 (7)0.093 (6)0.022 (6)0.005 (5)0.035 (5)
O1W0.122 (9)0.232 (15)0.087 (7)0.090 (10)0.017 (6)0.022 (8)
O10.0294 (12)0.0186 (11)0.0479 (14)0.0039 (9)0.0068 (10)0.0020 (9)
N10.0461 (19)0.0204 (14)0.079 (2)0.0067 (13)0.0404 (18)0.0113 (14)
N20.0320 (15)0.0318 (16)0.063 (2)0.0107 (13)0.0194 (14)0.0140 (14)
C10.090 (4)0.070 (4)0.106 (5)0.023 (3)0.058 (4)0.052 (3)
C20.059 (3)0.044 (2)0.067 (3)0.018 (2)0.034 (2)0.026 (2)
C30.061 (3)0.065 (3)0.083 (3)0.034 (2)0.029 (3)0.044 (3)
C40.038 (2)0.058 (3)0.066 (3)0.0198 (19)0.0136 (19)0.024 (2)
C50.041 (2)0.070 (3)0.054 (2)0.014 (2)0.0018 (19)0.010 (2)
C60.044 (3)0.094 (4)0.087 (4)0.032 (3)0.010 (3)0.031 (3)
C70.038 (2)0.038 (2)0.090 (3)0.0211 (17)0.033 (2)0.014 (2)
C80.042 (2)0.034 (2)0.086 (3)0.0081 (17)0.042 (2)0.002 (2)
C90.024 (2)0.019 (2)0.050 (3)0.0000.001 (2)0.000
C100.074 (4)0.017 (2)0.076 (4)0.0000.010 (3)0.000
Geometric parameters (Å, º) top
Ni—O12.118 (2)C2—H2A1.0000
Ni—N1i2.089 (3)C3—C41.532 (7)
Ni—N12.089 (3)C3—H3A0.9900
Ni—O1i2.118 (2)C3—H3B0.9900
Ni—N22.136 (3)C4—C51.521 (7)
Ni—N2i2.136 (3)C4—C61.556 (6)
Cl1—O41.400 (5)C5—H5A0.9800
Cl1—O51.404 (6)C5—H5B0.9800
Cl1—O21.424 (8)C5—H5C0.9800
Cl1—O31.439 (7)C6—H6A0.9800
O1W—H1W10.8400C6—H6B0.9800
O1W—H1W20.8399C6—H6C0.9800
O1—C91.259 (3)C7—C81.495 (7)
N1—C8i1.481 (5)C7—H7A0.9900
N1—C21.488 (6)C7—H7B0.9900
N1—H10.8800C8—N1i1.481 (5)
N2—C71.475 (5)C8—H8A0.9900
N2—C41.493 (6)C8—H8B0.9900
N2—H20.8800C9—O1i1.259 (3)
C1—C21.534 (6)C9—C101.503 (7)
C1—H1A0.9800C10—H10A0.9800
C1—H1B0.9800C10—H10B0.9800
C1—H1C0.9800C10—H10C0.9800
C2—C31.532 (6)
N1i—Ni—N1104.01 (18)C3—C2—H2A108.2
N1i—Ni—O1i158.84 (12)C1—C2—H2A108.2
N1—Ni—O1i96.96 (11)C2—C3—C4118.2 (3)
N1i—Ni—O196.96 (11)C2—C3—H3A107.8
N1—Ni—O1158.84 (12)C4—C3—H3A107.8
O1i—Ni—O162.28 (13)C2—C3—H3B107.8
N1i—Ni—N285.68 (14)C4—C3—H3B107.8
N1—Ni—N291.80 (13)H3A—C3—H3B107.1
O1i—Ni—N296.56 (11)N2—C4—C5107.7 (3)
O1—Ni—N286.94 (11)N2—C4—C3110.4 (4)
N1i—Ni—N2i91.80 (13)C5—C4—C3112.0 (4)
N1—Ni—N2i85.68 (14)N2—C4—C6111.1 (4)
O1i—Ni—N2i86.94 (11)C5—C4—C6107.3 (5)
O1—Ni—N2i96.56 (11)C3—C4—C6108.4 (4)
N2—Ni—N2i175.92 (17)C4—C5—H5A109.5
O4—Cl1—O5112.8 (5)C4—C5—H5B109.5
O4—Cl1—O2109.7 (5)H5A—C5—H5B109.5
O5—Cl1—O2109.9 (5)C4—C5—H5C109.5
O4—Cl1—O3107.8 (4)H5A—C5—H5C109.5
O5—Cl1—O3108.5 (5)H5B—C5—H5C109.5
O2—Cl1—O3108.0 (5)C4—C6—H6A109.5
H1W1—O1W—H1W2107.9C4—C6—H6B109.5
C9—O1—Ni88.4 (2)H6A—C6—H6B109.5
C8i—N1—C2113.0 (3)C4—C6—H6C109.5
C8i—N1—Ni103.3 (3)H6A—C6—H6C109.5
C2—N1—Ni116.1 (2)H6B—C6—H6C109.5
C8i—N1—H1108.0N2—C7—C8110.3 (3)
C2—N1—H1108.0N2—C7—H7A109.6
Ni—N1—H1108.0C8—C7—H7A109.6
C7—N2—C4113.9 (3)N2—C7—H7B109.6
C7—N2—Ni103.7 (3)C8—C7—H7B109.6
C4—N2—Ni120.9 (2)H7A—C7—H7B108.1
C7—N2—H2105.7N1i—C8—C7110.0 (3)
C4—N2—H2105.7N1i—C8—H8A109.7
Ni—N2—H2105.7C7—C8—H8A109.7
C2—C1—H1A109.5N1i—C8—H8B109.7
C2—C1—H1B109.5C7—C8—H8B109.7
H1A—C1—H1B109.5H8A—C8—H8B108.2
C2—C1—H1C109.5O1i—C9—O1120.9 (4)
H1A—C1—H1C109.5O1i—C9—C10119.6 (2)
H1B—C1—H1C109.5O1—C9—C10119.6 (2)
N1—C2—C3111.1 (4)C9—C10—H10A109.5
N1—C2—C1112.4 (5)C9—C10—H10B109.5
C3—C2—C1108.6 (4)C9—C10—H10C109.5
N1—C2—H2A108.2
N1i—Ni—O1—C9175.68 (14)O1—Ni—N2—C4123.0 (3)
N1—Ni—O1—C911.9 (4)C8i—N1—C2—C3180.0 (3)
O1i—Ni—O1—C90.0Ni—N1—C2—C360.9 (4)
N2—Ni—O1—C999.05 (14)C8i—N1—C2—C158.0 (4)
N2i—Ni—O1—C983.05 (14)Ni—N1—C2—C1177.1 (3)
N1i—Ni—N1—C8i109.4 (3)N1—C2—C3—C473.5 (6)
O1i—Ni—N1—C8i67.8 (3)C1—C2—C3—C4162.3 (5)
O1—Ni—N1—C8i78.4 (5)C7—N2—C4—C5161.4 (3)
N2—Ni—N1—C8i164.6 (3)Ni—N2—C4—C574.0 (4)
N2i—Ni—N1—C8i18.6 (3)C7—N2—C4—C376.1 (4)
N1i—Ni—N1—C2126.3 (3)Ni—N2—C4—C348.5 (4)
O1i—Ni—N1—C256.5 (3)C7—N2—C4—C644.2 (5)
O1—Ni—N1—C245.9 (5)Ni—N2—C4—C6168.8 (3)
N2—Ni—N1—C240.3 (3)C2—C3—C4—N265.0 (6)
N2i—Ni—N1—C2142.9 (3)C2—C3—C4—C555.0 (7)
N1i—Ni—N2—C710.5 (2)C2—C3—C4—C6173.1 (5)
N1—Ni—N2—C793.4 (2)C4—N2—C7—C8172.0 (3)
O1i—Ni—N2—C7169.4 (2)Ni—N2—C7—C838.6 (4)
O1—Ni—N2—C7107.7 (2)N2—C7—C8—N1i60.1 (4)
N1i—Ni—N2—C4139.7 (3)Ni—O1—C9—O1i0.0
N1—Ni—N2—C435.8 (3)Ni—O1—C9—C10180.000 (1)
O1i—Ni—N2—C461.4 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.882.473.289 (14)154
N1—H1···O3i0.882.353.181 (9)158
N2—H2···O4ii0.882.503.276 (8)148
O1w—H1w1···O1iii0.841.942.754 (11)163
O1w—H1w2···O20.842.142.950 (18)163
C3—H3A···O1Wiv0.992.143.057 (13)153
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2H3O2)(C16H36N4]ClO4·H2O
Mr519.71
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)9.4041 (2), 15.9593 (4), 16.0721 (6)
β (°) 96.534 (3)
V3)2396.48 (12)
Z4
Radiation typeCu Kα
µ (mm1)2.58
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.850, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5502, 2480, 2286
Rint0.024
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.162, 1.09
No. of reflections2480
No. of parameters171
No. of restraints45
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.62

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Ni—O12.118 (2)Ni—N22.136 (3)
Ni—N12.089 (3)
O1i—Ni—O162.28 (13)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.882.473.289 (14)154
N1—H1···O3i0.882.353.181 (9)158
N2—H2···O4ii0.882.503.276 (8)148
O1w—H1w1···O1iii0.841.942.754 (11)163
O1w—H1w2···O20.842.142.950 (18)163
C3—H3A···O1Wiv0.992.143.057 (13)153
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: tapashir@yahoo.com.

Acknowledgements

The authors are grateful to the University Grand Commission (UGC), Bangladesh, for a research fellowship to BCN, and to the Research Support and Publication Division, University of Chittagong, for a research grant (5320/res/pub-CU/2012) to TGR. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHazari, S. K. S., Roy, T. G., Barua, K. K., Anwar, N., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Appl. Organomet. Chem. 24, 878–887.  Google Scholar
First citationRoy, T. G., Hazari, S. K. S., Nath, B. C., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m494–m495.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m525-m526
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds