metal-organic compounds
cis-(Acetato-κ2O,O′)(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)nickel(II) perchlorate monohydrate
aDepartment of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com
The complete cation in the title hydrated molecular salt, [Ni(CH3CO2)(C16H36N4)]ClO4·H2O, is generated by the application of crystallographic twofold symmetry; the perchlorate anion and water molecule are each disordered around a twofold axis. The NiII atom exists within a cis-N4O2 donor set based on a strongly distorted octahedron and defined by the four N atoms of the macrocyclic ligand and two O atoms of a symmetrically coordinating acetate ligand. In the crystal, hydrogen bonding (water–acetate/perchlorate O—H⋯O and amine–perchlorate N—H⋯O) leads to layers in the ab plane. The layers stack along the c axis, being connected by C—H⋯O(water) interactions. The crystal studied was found to be a non-merohedral twin; the minor component refined to 15.9 (6)%.
Related literature
For background to macrocyclic complexes, see: Hazari et al. (2010). For a related structure, see: Roy et al. (2012). For the treatment of data from twinned crystals, see: Spek (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812013232/hb6703sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812013232/hb6703Isup2.hkl
The title complex, (I), was prepared by the ν(O2C), 3202 ν(N—H), 2981 ν(C—H), 1369 ν(CH3), 1177 ν(C—C), 520 (Ni—N), 1126, 623 ν(ClO4).
reaction of [NiL(O2CMe)][O2CMe] with perchlorate, where L is 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. Thus, [NiL(O2CMe)][O2CMe] (0.495 g, 1.0 mmol) was dissolved in hot methanol (40 ml) and sodium perchlorate hexahydrate (0.460 g, 2.0 mmol) added. The reaction mixture was heated for 15 min. During heating a blue product separated out. After cooling at room temperature for 30 min, the product, (I), was filtered off, washed with methanol followed by diethyl ether and dried in a desiccator over silica-gel. Light-purple prisms of (I) were obtained from slow evaporation of its methanol solution. Yield 65%. M.pt: 512–513 K. Anal. Calc for C18H41ClN4NiO7: C, 41.68; H, 7.97; N, 10.81; Ni, 11.18%. Found: C, 44.53; H, 7.72; N, 10.78; Ni, 11.01%. FT—IR (KBr, cm-1): 1598The H-atoms were placed in calculated positions (O—H = 0.84, N—H = 0.88 and C—H = 0.98–1.00 Å) and were included in the
in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(carrier atom). The perchlorate and water molecules are disordered across a twofold axis. The Cl—O bonds lengths were restrained to 0.01 Å of each other, as were the O···O contact distances. The anisotropic displacement parameters were restrained to be nearly isotropic. Finally, the methyl-H atoms of the acetate group are disordered over two positions of equal weight. The crystal studied is a non-merohedral twin. The twin domains were separated by the TwinRotMat routine in PLATON (Spek, 2009). The minor component refined to 15.9 (6)%.As a continuation of systematic studies into the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2010; Roy et al., 2012), crystals of the title hydrated salt, (I), were isolated and characterized crystallographically.
The
of (I) comprises half a NiL(O2CMe) cation, Fig. 1, as this is has crystallographic twofold symmetry, half a perchlorate anion (this is disordered about a twofold axis) and half a water molecule of solvation (this is also disordered about a twofold axis); where L is 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. The NiII atom exists within a cis-N4O2 donor set defined by the four N atoms of the macrocyclic ligand and two acetate-O atoms, Table 1. The coordination geometry is based on an octahedron. There are significant distortions from the ideal geometry owing in part to the restricted bite angle of the acetate ligand as manifested in the O1—Ni—O1i angle of 62.28 (13)°; i: 1 - x, y, 3/2 - z. In particular, this bite angle restricts the putative trans O1—Ni—O1 angle to 158.84 (12)°; the N2—Ni—N2i angle = 175.92 (17)°.In the crystal packing, the water molecule forms O—H···O hydrogen bonds to the acetate-O1 and perchlorate-O2 atoms, while the amine-H atoms form hydrogen bonds to perchlorate-O atoms; the N1—H atom is bifurcated, Table 2. The hydrogen bonding leads to layers in the ab plane, Fig. 2. Layers are connected along the c axis by C—H···O(water) interactions, Fig. 3 and Table 2.
For background to macrocyclic complexes, see: Hazari et al. (2010). For a related structure, see: Roy et al. (2012). For the treatment of twinned data, see: Spek (2009).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(C2H3O2)(C16H36N4]ClO4·H2O | F(000) = 1112 |
Mr = 519.71 | Dx = 1.440 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -C 2yc | Cell parameters from 3218 reflections |
a = 9.4041 (2) Å | θ = 5.5–76.4° |
b = 15.9593 (4) Å | µ = 2.58 mm−1 |
c = 16.0721 (6) Å | T = 100 K |
β = 96.534 (3)° | Prism, light-purple |
V = 2396.48 (12) Å3 | 0.25 × 0.20 × 0.15 mm |
Z = 4 |
Agilent SuperNova Dual diffractometer with an Atlas detector | 2480 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 2286 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.024 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 76.6°, θmin = 5.5° |
ω scan | h = −11→11 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −18→19 |
Tmin = 0.850, Tmax = 1.000 | l = −3→20 |
5502 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.162 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0529P)2 + 9.9029P] where P = (Fo2 + 2Fc2)/3 |
2480 reflections | (Δ/σ)max < 0.001 |
171 parameters | Δρmax = 0.60 e Å−3 |
45 restraints | Δρmin = −0.62 e Å−3 |
[Ni(C2H3O2)(C16H36N4]ClO4·H2O | V = 2396.48 (12) Å3 |
Mr = 519.71 | Z = 4 |
Monoclinic, C2/c | Cu Kα radiation |
a = 9.4041 (2) Å | µ = 2.58 mm−1 |
b = 15.9593 (4) Å | T = 100 K |
c = 16.0721 (6) Å | 0.25 × 0.20 × 0.15 mm |
β = 96.534 (3)° |
Agilent SuperNova Dual diffractometer with an Atlas detector | 2480 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 2286 reflections with I > 2σ(I) |
Tmin = 0.850, Tmax = 1.000 | Rint = 0.024 |
5502 measured reflections |
R[F2 > 2σ(F2)] = 0.067 | 45 restraints |
wR(F2) = 0.162 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.60 e Å−3 |
2480 reflections | Δρmin = −0.62 e Å−3 |
171 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni | 0.5000 | 0.56446 (4) | 0.7500 | 0.0300 (3) | |
Cl1 | 0.4637 (3) | 0.86782 (11) | 0.71627 (15) | 0.0559 (6) | 0.50 |
O2 | 0.6083 (10) | 0.8409 (9) | 0.7174 (9) | 0.197 (12) | 0.50 |
O3 | 0.4105 (13) | 0.8372 (5) | 0.7910 (6) | 0.111 (5) | 0.50 |
O4 | 0.4585 (9) | 0.9554 (3) | 0.7181 (5) | 0.085 (3) | 0.50 |
O5 | 0.3800 (9) | 0.8336 (6) | 0.6466 (5) | 0.111 (3) | 0.50 |
O1W | 0.7196 (13) | 0.8995 (10) | 0.8864 (7) | 0.147 (6) | 0.50 |
H1W1 | 0.7967 | 0.9187 | 0.8726 | 0.220* | 0.50 |
H1W2 | 0.6729 | 0.8794 | 0.8433 | 0.220* | 0.50 |
O1 | 0.4508 (2) | 0.45087 (14) | 0.80858 (16) | 0.0318 (5) | |
N1 | 0.5584 (4) | 0.64503 (18) | 0.6573 (2) | 0.0459 (9) | |
H1 | 0.5406 | 0.6967 | 0.6721 | 0.069* | |
N2 | 0.2798 (3) | 0.5692 (2) | 0.6999 (2) | 0.0412 (8) | |
H2 | 0.2413 | 0.5227 | 0.7164 | 0.062* | |
C1 | 0.5402 (7) | 0.6902 (4) | 0.5067 (4) | 0.085 (2) | |
H1A | 0.6439 | 0.6833 | 0.5075 | 0.128* | |
H1B | 0.5188 | 0.7483 | 0.5206 | 0.128* | |
H1C | 0.4930 | 0.6766 | 0.4508 | 0.128* | |
C2 | 0.4854 (5) | 0.6312 (3) | 0.5713 (3) | 0.0546 (12) | |
H2A | 0.5042 | 0.5722 | 0.5546 | 0.066* | |
C3 | 0.3231 (5) | 0.6426 (3) | 0.5688 (4) | 0.0681 (16) | |
H3A | 0.2832 | 0.6489 | 0.5095 | 0.082* | |
H3B | 0.3059 | 0.6961 | 0.5973 | 0.082* | |
C4 | 0.2374 (5) | 0.5741 (3) | 0.6076 (3) | 0.0535 (12) | |
C5 | 0.2620 (5) | 0.4882 (3) | 0.5708 (3) | 0.0554 (11) | |
H5A | 0.3634 | 0.4733 | 0.5823 | 0.083* | |
H5B | 0.2345 | 0.4895 | 0.5102 | 0.083* | |
H5C | 0.2039 | 0.4465 | 0.5963 | 0.083* | |
C6 | 0.0754 (5) | 0.5945 (4) | 0.5877 (4) | 0.0749 (17) | |
H6A | 0.0558 | 0.6499 | 0.6102 | 0.112* | |
H6B | 0.0190 | 0.5521 | 0.6134 | 0.112* | |
H6C | 0.0493 | 0.5944 | 0.5269 | 0.112* | |
C7 | 0.2205 (4) | 0.6372 (3) | 0.7477 (3) | 0.0534 (12) | |
H7A | 0.1153 | 0.6310 | 0.7446 | 0.064* | |
H7B | 0.2415 | 0.6920 | 0.7229 | 0.064* | |
C8 | 0.2843 (4) | 0.6345 (3) | 0.8372 (3) | 0.0514 (11) | |
H8A | 0.2428 | 0.6799 | 0.8689 | 0.062* | |
H8B | 0.2614 | 0.5803 | 0.8624 | 0.062* | |
C9 | 0.5000 | 0.4119 (3) | 0.7500 | 0.0312 (10) | |
C10 | 0.5000 | 0.3177 (3) | 0.7500 | 0.0555 (16) | |
H10A | 0.4629 | 0.2973 | 0.8008 | 0.083* | 0.50 |
H10B | 0.5979 | 0.2973 | 0.7486 | 0.083* | 0.50 |
H10C | 0.4392 | 0.2973 | 0.7006 | 0.083* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.0253 (4) | 0.0131 (4) | 0.0551 (6) | 0.000 | 0.0195 (4) | 0.000 |
Cl1 | 0.0651 (14) | 0.0221 (8) | 0.0840 (16) | 0.0086 (8) | 0.0232 (11) | −0.0024 (8) |
O2 | 0.201 (15) | 0.173 (14) | 0.218 (15) | 0.025 (9) | 0.034 (10) | −0.029 (9) |
O3 | 0.150 (9) | 0.049 (5) | 0.131 (8) | −0.031 (5) | 0.013 (6) | 0.048 (5) |
O4 | 0.104 (7) | 0.022 (3) | 0.141 (8) | 0.003 (3) | 0.063 (5) | −0.004 (3) |
O5 | 0.117 (7) | 0.117 (7) | 0.093 (6) | 0.022 (6) | −0.005 (5) | −0.035 (5) |
O1W | 0.122 (9) | 0.232 (15) | 0.087 (7) | −0.090 (10) | 0.017 (6) | −0.022 (8) |
O1 | 0.0294 (12) | 0.0186 (11) | 0.0479 (14) | −0.0039 (9) | 0.0068 (10) | 0.0020 (9) |
N1 | 0.0461 (19) | 0.0204 (14) | 0.079 (2) | 0.0067 (13) | 0.0404 (18) | 0.0113 (14) |
N2 | 0.0320 (15) | 0.0318 (16) | 0.063 (2) | 0.0107 (13) | 0.0194 (14) | 0.0140 (14) |
C1 | 0.090 (4) | 0.070 (4) | 0.106 (5) | 0.023 (3) | 0.058 (4) | 0.052 (3) |
C2 | 0.059 (3) | 0.044 (2) | 0.067 (3) | 0.018 (2) | 0.034 (2) | 0.026 (2) |
C3 | 0.061 (3) | 0.065 (3) | 0.083 (3) | 0.034 (2) | 0.029 (3) | 0.044 (3) |
C4 | 0.038 (2) | 0.058 (3) | 0.066 (3) | 0.0198 (19) | 0.0136 (19) | 0.024 (2) |
C5 | 0.041 (2) | 0.070 (3) | 0.054 (2) | 0.014 (2) | 0.0018 (19) | 0.010 (2) |
C6 | 0.044 (3) | 0.094 (4) | 0.087 (4) | 0.032 (3) | 0.010 (3) | 0.031 (3) |
C7 | 0.038 (2) | 0.038 (2) | 0.090 (3) | 0.0211 (17) | 0.033 (2) | 0.014 (2) |
C8 | 0.042 (2) | 0.034 (2) | 0.086 (3) | 0.0081 (17) | 0.042 (2) | 0.002 (2) |
C9 | 0.024 (2) | 0.019 (2) | 0.050 (3) | 0.000 | −0.001 (2) | 0.000 |
C10 | 0.074 (4) | 0.017 (2) | 0.076 (4) | 0.000 | 0.010 (3) | 0.000 |
Ni—O1 | 2.118 (2) | C2—H2A | 1.0000 |
Ni—N1i | 2.089 (3) | C3—C4 | 1.532 (7) |
Ni—N1 | 2.089 (3) | C3—H3A | 0.9900 |
Ni—O1i | 2.118 (2) | C3—H3B | 0.9900 |
Ni—N2 | 2.136 (3) | C4—C5 | 1.521 (7) |
Ni—N2i | 2.136 (3) | C4—C6 | 1.556 (6) |
Cl1—O4 | 1.400 (5) | C5—H5A | 0.9800 |
Cl1—O5 | 1.404 (6) | C5—H5B | 0.9800 |
Cl1—O2 | 1.424 (8) | C5—H5C | 0.9800 |
Cl1—O3 | 1.439 (7) | C6—H6A | 0.9800 |
O1W—H1W1 | 0.8400 | C6—H6B | 0.9800 |
O1W—H1W2 | 0.8399 | C6—H6C | 0.9800 |
O1—C9 | 1.259 (3) | C7—C8 | 1.495 (7) |
N1—C8i | 1.481 (5) | C7—H7A | 0.9900 |
N1—C2 | 1.488 (6) | C7—H7B | 0.9900 |
N1—H1 | 0.8800 | C8—N1i | 1.481 (5) |
N2—C7 | 1.475 (5) | C8—H8A | 0.9900 |
N2—C4 | 1.493 (6) | C8—H8B | 0.9900 |
N2—H2 | 0.8800 | C9—O1i | 1.259 (3) |
C1—C2 | 1.534 (6) | C9—C10 | 1.503 (7) |
C1—H1A | 0.9800 | C10—H10A | 0.9800 |
C1—H1B | 0.9800 | C10—H10B | 0.9800 |
C1—H1C | 0.9800 | C10—H10C | 0.9800 |
C2—C3 | 1.532 (6) | ||
N1i—Ni—N1 | 104.01 (18) | C3—C2—H2A | 108.2 |
N1i—Ni—O1i | 158.84 (12) | C1—C2—H2A | 108.2 |
N1—Ni—O1i | 96.96 (11) | C2—C3—C4 | 118.2 (3) |
N1i—Ni—O1 | 96.96 (11) | C2—C3—H3A | 107.8 |
N1—Ni—O1 | 158.84 (12) | C4—C3—H3A | 107.8 |
O1i—Ni—O1 | 62.28 (13) | C2—C3—H3B | 107.8 |
N1i—Ni—N2 | 85.68 (14) | C4—C3—H3B | 107.8 |
N1—Ni—N2 | 91.80 (13) | H3A—C3—H3B | 107.1 |
O1i—Ni—N2 | 96.56 (11) | N2—C4—C5 | 107.7 (3) |
O1—Ni—N2 | 86.94 (11) | N2—C4—C3 | 110.4 (4) |
N1i—Ni—N2i | 91.80 (13) | C5—C4—C3 | 112.0 (4) |
N1—Ni—N2i | 85.68 (14) | N2—C4—C6 | 111.1 (4) |
O1i—Ni—N2i | 86.94 (11) | C5—C4—C6 | 107.3 (5) |
O1—Ni—N2i | 96.56 (11) | C3—C4—C6 | 108.4 (4) |
N2—Ni—N2i | 175.92 (17) | C4—C5—H5A | 109.5 |
O4—Cl1—O5 | 112.8 (5) | C4—C5—H5B | 109.5 |
O4—Cl1—O2 | 109.7 (5) | H5A—C5—H5B | 109.5 |
O5—Cl1—O2 | 109.9 (5) | C4—C5—H5C | 109.5 |
O4—Cl1—O3 | 107.8 (4) | H5A—C5—H5C | 109.5 |
O5—Cl1—O3 | 108.5 (5) | H5B—C5—H5C | 109.5 |
O2—Cl1—O3 | 108.0 (5) | C4—C6—H6A | 109.5 |
H1W1—O1W—H1W2 | 107.9 | C4—C6—H6B | 109.5 |
C9—O1—Ni | 88.4 (2) | H6A—C6—H6B | 109.5 |
C8i—N1—C2 | 113.0 (3) | C4—C6—H6C | 109.5 |
C8i—N1—Ni | 103.3 (3) | H6A—C6—H6C | 109.5 |
C2—N1—Ni | 116.1 (2) | H6B—C6—H6C | 109.5 |
C8i—N1—H1 | 108.0 | N2—C7—C8 | 110.3 (3) |
C2—N1—H1 | 108.0 | N2—C7—H7A | 109.6 |
Ni—N1—H1 | 108.0 | C8—C7—H7A | 109.6 |
C7—N2—C4 | 113.9 (3) | N2—C7—H7B | 109.6 |
C7—N2—Ni | 103.7 (3) | C8—C7—H7B | 109.6 |
C4—N2—Ni | 120.9 (2) | H7A—C7—H7B | 108.1 |
C7—N2—H2 | 105.7 | N1i—C8—C7 | 110.0 (3) |
C4—N2—H2 | 105.7 | N1i—C8—H8A | 109.7 |
Ni—N2—H2 | 105.7 | C7—C8—H8A | 109.7 |
C2—C1—H1A | 109.5 | N1i—C8—H8B | 109.7 |
C2—C1—H1B | 109.5 | C7—C8—H8B | 109.7 |
H1A—C1—H1B | 109.5 | H8A—C8—H8B | 108.2 |
C2—C1—H1C | 109.5 | O1i—C9—O1 | 120.9 (4) |
H1A—C1—H1C | 109.5 | O1i—C9—C10 | 119.6 (2) |
H1B—C1—H1C | 109.5 | O1—C9—C10 | 119.6 (2) |
N1—C2—C3 | 111.1 (4) | C9—C10—H10A | 109.5 |
N1—C2—C1 | 112.4 (5) | C9—C10—H10B | 109.5 |
C3—C2—C1 | 108.6 (4) | C9—C10—H10C | 109.5 |
N1—C2—H2A | 108.2 | ||
N1i—Ni—O1—C9 | −175.68 (14) | O1—Ni—N2—C4 | −123.0 (3) |
N1—Ni—O1—C9 | 11.9 (4) | C8i—N1—C2—C3 | 180.0 (3) |
O1i—Ni—O1—C9 | 0.0 | Ni—N1—C2—C3 | 60.9 (4) |
N2—Ni—O1—C9 | 99.05 (14) | C8i—N1—C2—C1 | −58.0 (4) |
N2i—Ni—O1—C9 | −83.05 (14) | Ni—N1—C2—C1 | −177.1 (3) |
N1i—Ni—N1—C8i | 109.4 (3) | N1—C2—C3—C4 | −73.5 (6) |
O1i—Ni—N1—C8i | −67.8 (3) | C1—C2—C3—C4 | 162.3 (5) |
O1—Ni—N1—C8i | −78.4 (5) | C7—N2—C4—C5 | −161.4 (3) |
N2—Ni—N1—C8i | −164.6 (3) | Ni—N2—C4—C5 | 74.0 (4) |
N2i—Ni—N1—C8i | 18.6 (3) | C7—N2—C4—C3 | 76.1 (4) |
N1i—Ni—N1—C2 | −126.3 (3) | Ni—N2—C4—C3 | −48.5 (4) |
O1i—Ni—N1—C2 | 56.5 (3) | C7—N2—C4—C6 | −44.2 (5) |
O1—Ni—N1—C2 | 45.9 (5) | Ni—N2—C4—C6 | −168.8 (3) |
N2—Ni—N1—C2 | −40.3 (3) | C2—C3—C4—N2 | 65.0 (6) |
N2i—Ni—N1—C2 | 142.9 (3) | C2—C3—C4—C5 | −55.0 (7) |
N1i—Ni—N2—C7 | 10.5 (2) | C2—C3—C4—C6 | −173.1 (5) |
N1—Ni—N2—C7 | −93.4 (2) | C4—N2—C7—C8 | −172.0 (3) |
O1i—Ni—N2—C7 | 169.4 (2) | Ni—N2—C7—C8 | −38.6 (4) |
O1—Ni—N2—C7 | 107.7 (2) | N2—C7—C8—N1i | 60.1 (4) |
N1i—Ni—N2—C4 | 139.7 (3) | Ni—O1—C9—O1i | 0.0 |
N1—Ni—N2—C4 | 35.8 (3) | Ni—O1—C9—C10 | 180.000 (1) |
O1i—Ni—N2—C4 | −61.4 (3) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.88 | 2.47 | 3.289 (14) | 154 |
N1—H1···O3i | 0.88 | 2.35 | 3.181 (9) | 158 |
N2—H2···O4ii | 0.88 | 2.50 | 3.276 (8) | 148 |
O1w—H1w1···O1iii | 0.84 | 1.94 | 2.754 (11) | 163 |
O1w—H1w2···O2 | 0.84 | 2.14 | 2.950 (18) | 163 |
C3—H3A···O1Wiv | 0.99 | 2.14 | 3.057 (13) | 153 |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1/2, y−1/2, −z+3/2; (iii) x+1/2, y+1/2, z; (iv) x−1/2, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C2H3O2)(C16H36N4]ClO4·H2O |
Mr | 519.71 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 9.4041 (2), 15.9593 (4), 16.0721 (6) |
β (°) | 96.534 (3) |
V (Å3) | 2396.48 (12) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.58 |
Crystal size (mm) | 0.25 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.850, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5502, 2480, 2286 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.631 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.162, 1.09 |
No. of reflections | 2480 |
No. of parameters | 171 |
No. of restraints | 45 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.60, −0.62 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Ni—O1 | 2.118 (2) | Ni—N2 | 2.136 (3) |
Ni—N1 | 2.089 (3) | ||
O1i—Ni—O1 | 62.28 (13) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.88 | 2.47 | 3.289 (14) | 154 |
N1—H1···O3i | 0.88 | 2.35 | 3.181 (9) | 158 |
N2—H2···O4ii | 0.88 | 2.50 | 3.276 (8) | 148 |
O1w—H1w1···O1iii | 0.84 | 1.94 | 2.754 (11) | 163 |
O1w—H1w2···O2 | 0.84 | 2.14 | 2.950 (18) | 163 |
C3—H3A···O1Wiv | 0.99 | 2.14 | 3.057 (13) | 153 |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1/2, y−1/2, −z+3/2; (iii) x+1/2, y+1/2, z; (iv) x−1/2, −y+3/2, z−1/2. |
Footnotes
‡Additional correspondence author, e-mail: tapashir@yahoo.com.
Acknowledgements
The authors are grateful to the University Grand Commission (UGC), Bangladesh, for a research fellowship to BCN, and to the Research Support and Publication Division, University of Chittagong, for a research grant (5320/res/pub-CU/2012) to TGR. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hazari, S. K. S., Roy, T. G., Barua, K. K., Anwar, N., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Appl. Organomet. Chem. 24, 878–887. Google Scholar
Roy, T. G., Hazari, S. K. S., Nath, B. C., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m494–m495. CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a continuation of systematic studies into the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2010; Roy et al., 2012), crystals of the title hydrated salt, (I), were isolated and characterized crystallographically.
The asymmetric unit of (I) comprises half a NiL(O2CMe) cation, Fig. 1, as this is has crystallographic twofold symmetry, half a perchlorate anion (this is disordered about a twofold axis) and half a water molecule of solvation (this is also disordered about a twofold axis); where L is 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. The NiII atom exists within a cis-N4O2 donor set defined by the four N atoms of the macrocyclic ligand and two acetate-O atoms, Table 1. The coordination geometry is based on an octahedron. There are significant distortions from the ideal geometry owing in part to the restricted bite angle of the acetate ligand as manifested in the O1—Ni—O1i angle of 62.28 (13)°; symmetry operation i: 1 - x, y, 3/2 - z. In particular, this bite angle restricts the putative trans O1—Ni—O1 angle to 158.84 (12)°; the N2—Ni—N2i angle = 175.92 (17)°.
In the crystal packing, the water molecule forms O—H···O hydrogen bonds to the acetate-O1 and perchlorate-O2 atoms, while the amine-H atoms form hydrogen bonds to perchlorate-O atoms; the N1—H atom is bifurcated, Table 2. The hydrogen bonding leads to layers in the ab plane, Fig. 2. Layers are connected along the c axis by C—H···O(water) interactions, Fig. 3 and Table 2.