organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­pentyl-N-(3-oxo-2,3-di­hydro-1H-inden-1-yl)acetamide

aDrug Discovery Group, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland, bTrino Therapeutics Ltd, Unit 2.5 The Tower, Trinity Technology & Enterprise Campus, Pearse Street, Dublin 2, Ireland, and cSchool of Chemistry, Trinity College Dublin, Dublin 2, Ireland
*Correspondence e-mail: hsheridn@tcd.ie

(Received 26 January 2012; accepted 10 February 2012; online 3 March 2012)

The title mol­ecule, C16H19NO2, consists of an indane moiety, which is connected through an N atom to an acetamide group and a cyclo­pentane ring. The N atom adopts planar triangular geometry. Inter­molecular inter­actions, such as ππ stacking or hydrogen bonding, were not observed.

Related literature

For background information on the indane pharmacophore, see: Vaccva et al. (1994[Vaccva, J., Dorsey, B., Schleif, W., Levin, R., McDaniel, S., Darke, P., Zugay, J., Quinterno, J., Blahy, O. & Roth, E. (1994). Proc. Natl Acad. Sci. USA, 91, 4096-4100.]); Buckle et al. (1973[Buckle, D., Morgan, N., Ross, J., Smith, H. & Spicer, B. (1973). J. Med. Chem. 16, 1334-1339.]); Heinzelmann et al. (1940[Heinzelmann, R., Kolloff, H. & Hunter, J. (1940). J. Org. Chem. 14, 907-910.]). For details of the pharmacological activity of the title compound, see: Sheridan et al. (1990[Sheridan, H., Lemon, S., Frankish, N., McCardle, P., Higgins, T., James, J. & Bhandari, P. (1990). Eur. J. Med. Chem. 25, 603-608.], 1999a[Sheridan, H., Frankish, N. & Farrell, R. (1999a). Eur. J. Med. Chem. 34, 953-966.],b[Sheridan, H., Frankish, N. & Farrell, R. (1999b). Planta Med. 65, 271-272.], 2008[Sheridan, H., Butterly, S., Walsh, J. J., Cogan, C., Jordan, M., Nolan, O. & Frankish, N. (2008). Bioorg. Med. Chem. 16, 248-254.]); Frankish et al. (2004[Frankish, N., Farrell, R. & Sheridan, H. (2004). J. Pharm. Pharmacol. 56, 1423-1427.]). For ionization characteristics, see: Simplício et al. (2004[Simplício, A., Gilmer, J., Frankish, N., Sheridan, H., Walsh, J. & Clancy, J. (2004). J. Chromatogr. A, 1045, 233-238.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19NO2

  • Mr = 257.32

  • Triclinic, [P \overline 1]

  • a = 8.1539 (16) Å

  • b = 8.9944 (18) Å

  • c = 10.084 (2) Å

  • α = 87.97 (3)°

  • β = 81.29 (3)°

  • γ = 63.15 (3)°

  • V = 651.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.60 × 0.50 × 0.30 mm

Data collection
  • Rigaku Saturn 724 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2006[Rigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.726, Tmax = 1.000

  • 7260 measured reflections

  • 2191 independent reflections

  • 2157 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.100

  • S = 1.13

  • 2191 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku, 2006[Rigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The indane pharmacophore occurs in many different bioactive molecules. Indinavir, a HIV-1 inhibitor is a protease inhibitor in clinical use that contains an indane fragment (Vaccva et al., 1994). Nivemedone, a nitro-indanone has anti-allergenic activity (Buckle et al., 1973) while many simple indanols demonstrate bronchodilatory activity (Heinzelmann et al., 1940). We have demonstrated that indanone derivatives possess smooth muscle relaxant activity and inhibit mediator release (Sheridan et al., 1990, 1999a, 1999b; Frankish et al., 2004). In a recent study on bioactivity we evaluated the smooth muscle relaxant activity and mediator release inhibition activities demonstrated by a series of aminoindanones (Simplício et al., 2004; Sheridan et al., 2008).

The asymmetric unit of the compound presented in this paper contains a single molecule of N-cyclopentyl-N-(3-oxo-2,3-dihydro-1H -inden-1-yl)acetamide. The geometry around the nitrogen atom can be best described as trigonal planar. As there are no flexible hydrogen atoms attached to the nitrogen atom N1 or the oxygen atoms (O1 and O2) hydrogen bonding do not prevail in the title compound. The shortest distance between the aromatic rings is 4.150 (9) Å and cannot be considered as the π-π stacking interaction.

The packing diagram of the structure, presented in Fig. 2, shows that the molecules are separated and when viewed along the crystallographic a-axis seem to form a sheet-like structure in the ab-plane. These sheets pack in the direction of the crystallographic c-axis. The shortest separation distance between them is 4.243 (75) Å and a weak Van der Vaals force or an electrostatic interaction may be responsible for holding the sheets together.

Related literature top

For background information on the indane pharmacophore, see: Vaccva et al. (1994); Buckle et al. (1973); Heinzelmann et al. (1940). For details of the pharmacological activity of the title compound, see: Sheridan et al. (1990, 1999a,b, 2008); Frankish et al. (2004). For ionization characteristics, see: Simplício et al. (2004).

Experimental top

The title compound was synthesized as reported (Sheridan et al., 2008). N-Bromosuccinimide (672 mg, 3.78 mmol) and a catalytic amount of dibenzoylperoxide were added to a solution of indan-1-one (500 mg, 3.78 mmol) in CCl4 (15 ml) and the reaction was refluxed for 45 min. After cooling, the reaction was washed with water, dried over Na2SO4, filtered and evaporated in vacuo. The resultant was purified by column chromatography over silica gel (eluant, pet. ether:EtOAc, 4:1) to yield 3-bromoindan-1-one as an oil. To this 3-bromoindan-1-one solution (200 mg, 0.95 mmol) in dry DCM was added cyclopentanamine (80 mg, 0.94 mmol) and triethylamine (200 mg, 1.98 mmol). The reaction was stirred at 0°C for 3 h. The solvent was removed in vacuo and the residue was purified directly by flash column chromatography on silica gel (eluant, pet. ether:EtOAc, 4:1). After evaporation of the eluent the secondary amine was isolated as an oil (175 mg, 86%). To this secondary amine solution (700 mg, 3.25 mmol) in DCM (5 ml) was added triethylamine (657 mg, 0.90 ml, 6.51 mmol), acetic anhydride (664 mg, 0.61 ml, 6.51 mmol) and DMAP (476 mg, 3.90 mmol). The reaction was stirred at room temperature for 2 h. The reaction mixture was then washed with water, dried over Na2SO4, filtered and evaporated in vacuo. The residue was purified by column chromatography over silica gel (pet. ether:EtOAc, 4:1) to yield the title compound as a white solid (450 mg, 54%). Crystals suitable for X-ray diffraction were obtained after 5 days of slow evaporation of an ethanol solution.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å for aromatic H atoms, 0.96 Å for CH3 type H atoms, 0.97 Å for CH2 type H atoms and 0.98 Å for CH type H atoms, respectively. Uiso(H) values were set at 1.5Ueq(C) for methyl H atoms, and 1.2Ueq(C)for the rest of the H atoms.

Structure description top

The indane pharmacophore occurs in many different bioactive molecules. Indinavir, a HIV-1 inhibitor is a protease inhibitor in clinical use that contains an indane fragment (Vaccva et al., 1994). Nivemedone, a nitro-indanone has anti-allergenic activity (Buckle et al., 1973) while many simple indanols demonstrate bronchodilatory activity (Heinzelmann et al., 1940). We have demonstrated that indanone derivatives possess smooth muscle relaxant activity and inhibit mediator release (Sheridan et al., 1990, 1999a, 1999b; Frankish et al., 2004). In a recent study on bioactivity we evaluated the smooth muscle relaxant activity and mediator release inhibition activities demonstrated by a series of aminoindanones (Simplício et al., 2004; Sheridan et al., 2008).

The asymmetric unit of the compound presented in this paper contains a single molecule of N-cyclopentyl-N-(3-oxo-2,3-dihydro-1H -inden-1-yl)acetamide. The geometry around the nitrogen atom can be best described as trigonal planar. As there are no flexible hydrogen atoms attached to the nitrogen atom N1 or the oxygen atoms (O1 and O2) hydrogen bonding do not prevail in the title compound. The shortest distance between the aromatic rings is 4.150 (9) Å and cannot be considered as the π-π stacking interaction.

The packing diagram of the structure, presented in Fig. 2, shows that the molecules are separated and when viewed along the crystallographic a-axis seem to form a sheet-like structure in the ab-plane. These sheets pack in the direction of the crystallographic c-axis. The shortest separation distance between them is 4.243 (75) Å and a weak Van der Vaals force or an electrostatic interaction may be responsible for holding the sheets together.

For background information on the indane pharmacophore, see: Vaccva et al. (1994); Buckle et al. (1973); Heinzelmann et al. (1940). For details of the pharmacological activity of the title compound, see: Sheridan et al. (1990, 1999a,b, 2008); Frankish et al. (2004). For ionization characteristics, see: Simplício et al. (2004).

Computing details top

Data collection: CrystalClear (Rigaku, 2006); cell refinement: CrystalClear (Rigaku, 2006); data reduction: CrystalClear (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the crystallographic a-axis.
N-Cyclopentyl-N-(3-oxo-2,3-dihydro-1H-inden-1-yl)acetamide top
Crystal data top
C16H19NO2Z = 2
Mr = 257.32F(000) = 276
Triclinic, P1Dx = 1.311 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1539 (16) ÅCell parameters from 2546 reflections
b = 8.9944 (18) Åθ = 2.0–31.2°
c = 10.084 (2) ŵ = 0.09 mm1
α = 87.97 (3)°T = 150 K
β = 81.29 (3)°Prism, colourless
γ = 63.15 (3)°0.60 × 0.50 × 0.30 mm
V = 651.8 (2) Å3
Data collection top
Rigaku Saturn 724
diffractometer
2191 independent reflections
Radiation source: fine-focus sealed tube2157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.8°
ω and phi scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2006)
k = 108
Tmin = 0.726, Tmax = 1.000l = 1111
7260 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.3106P]
where P = (Fo2 + 2Fc2)/3
2191 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H19NO2γ = 63.15 (3)°
Mr = 257.32V = 651.8 (2) Å3
Triclinic, P1Z = 2
a = 8.1539 (16) ÅMo Kα radiation
b = 8.9944 (18) ŵ = 0.09 mm1
c = 10.084 (2) ÅT = 150 K
α = 87.97 (3)°0.60 × 0.50 × 0.30 mm
β = 81.29 (3)°
Data collection top
Rigaku Saturn 724
diffractometer
2191 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2006)
2157 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 1.000Rint = 0.026
7260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.13Δρmax = 0.21 e Å3
2191 reflectionsΔρmin = 0.23 e Å3
174 parameters
Special details top

Experimental. The su's on the Cell Angles were measured.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.31603 (15)0.52993 (14)0.35282 (11)0.0247 (3)
N10.26193 (16)0.31399 (15)0.30730 (12)0.0180 (3)
C120.3026 (2)0.13741 (18)0.31299 (14)0.0178 (3)
H120.40750.08120.36270.021*
C50.15437 (19)0.51234 (18)0.12014 (14)0.0178 (3)
C90.10493 (19)0.42530 (18)0.24012 (14)0.0182 (3)
H90.05350.35660.20710.022*
C60.0277 (2)0.67950 (19)0.12237 (14)0.0188 (3)
C100.3582 (2)0.38022 (19)0.36131 (14)0.0191 (3)
C40.2976 (2)0.4435 (2)0.01256 (15)0.0221 (3)
H40.38210.33110.00950.027*
C70.1091 (2)0.72363 (19)0.24640 (15)0.0199 (3)
C110.5168 (2)0.2668 (2)0.43334 (16)0.0245 (4)
H11A0.57110.33010.46690.037*
H11B0.60920.17990.37200.037*
H11C0.47090.21820.50690.037*
C10.0406 (2)0.7826 (2)0.01944 (15)0.0226 (3)
H10.04540.89450.02190.027*
C160.1404 (2)0.10622 (19)0.38594 (15)0.0222 (3)
H16A0.15170.08630.48010.027*
H16B0.02180.20160.37930.027*
C130.3576 (2)0.04558 (19)0.17613 (14)0.0205 (3)
H13A0.27630.11180.11320.025*
H13B0.48520.01750.13860.025*
C30.3120 (2)0.5459 (2)0.09033 (15)0.0245 (4)
H30.40790.50140.16240.029*
C140.3337 (2)0.11046 (19)0.21048 (15)0.0227 (3)
H14A0.43970.19270.24820.027*
H14B0.32000.15950.13130.027*
C20.1849 (2)0.7143 (2)0.08713 (15)0.0251 (4)
H20.19690.78110.15660.030*
C80.0572 (2)0.56929 (19)0.32894 (15)0.0223 (3)
H8A0.16240.54510.35170.027*
H8B0.01810.58490.41130.027*
C150.1556 (2)0.04907 (19)0.31440 (16)0.0242 (4)
H15A0.16400.13460.37820.029*
H15B0.04780.02060.27040.029*
O10.24001 (15)0.85977 (14)0.27869 (11)0.0280 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0310 (6)0.0181 (7)0.0266 (6)0.0122 (5)0.0055 (5)0.0010 (4)
N10.0186 (6)0.0145 (7)0.0187 (6)0.0058 (5)0.0023 (5)0.0003 (5)
C120.0196 (7)0.0130 (8)0.0187 (7)0.0058 (6)0.0016 (6)0.0001 (6)
C50.0174 (7)0.0187 (8)0.0181 (7)0.0083 (6)0.0052 (5)0.0009 (6)
C90.0168 (7)0.0159 (8)0.0192 (7)0.0055 (6)0.0011 (5)0.0003 (6)
C60.0187 (7)0.0180 (8)0.0213 (7)0.0083 (6)0.0072 (6)0.0007 (6)
C100.0206 (7)0.0199 (9)0.0154 (7)0.0089 (6)0.0008 (5)0.0016 (6)
C40.0209 (7)0.0201 (9)0.0225 (8)0.0071 (6)0.0021 (6)0.0006 (6)
C70.0164 (7)0.0190 (9)0.0235 (8)0.0063 (6)0.0054 (6)0.0029 (6)
C110.0248 (8)0.0229 (9)0.0271 (8)0.0108 (7)0.0072 (6)0.0002 (6)
C10.0235 (8)0.0192 (8)0.0266 (8)0.0096 (6)0.0092 (6)0.0030 (6)
C160.0236 (8)0.0196 (9)0.0212 (7)0.0092 (7)0.0017 (6)0.0008 (6)
C130.0188 (7)0.0199 (9)0.0192 (7)0.0061 (6)0.0007 (6)0.0021 (6)
C30.0239 (8)0.0313 (10)0.0192 (8)0.0136 (7)0.0019 (6)0.0000 (6)
C140.0220 (8)0.0186 (9)0.0255 (8)0.0071 (7)0.0032 (6)0.0044 (6)
C20.0306 (8)0.0299 (10)0.0211 (8)0.0181 (8)0.0091 (6)0.0079 (6)
C80.0189 (7)0.0206 (9)0.0218 (8)0.0051 (6)0.0008 (6)0.0015 (6)
C150.0235 (8)0.0183 (9)0.0304 (8)0.0098 (7)0.0010 (6)0.0012 (6)
O10.0219 (6)0.0211 (7)0.0327 (6)0.0026 (5)0.0025 (5)0.0031 (5)
Geometric parameters (Å, º) top
O2—C101.2334 (19)C11—H11B0.9600
N1—C101.3571 (19)C11—H11C0.9600
N1—C91.4687 (19)C1—C21.389 (2)
N1—C121.470 (2)C1—H10.9300
C12—C131.532 (2)C16—C151.541 (2)
C12—C161.548 (2)C16—H16A0.9700
C12—H120.9800C16—H16B0.9700
C5—C61.386 (2)C13—C141.523 (2)
C5—C41.391 (2)C13—H13A0.9700
C5—C91.520 (2)C13—H13B0.9700
C9—C81.551 (2)C3—C21.394 (2)
C9—H90.9800C3—H30.9300
C6—C11.391 (2)C14—C151.539 (2)
C6—C71.476 (2)C14—H14A0.9700
C10—C111.511 (2)C14—H14B0.9700
C4—C31.390 (2)C2—H20.9300
C4—H40.9300C8—H8A0.9700
C7—O11.2196 (19)C8—H8B0.9700
C7—C81.514 (2)C15—H15A0.9700
C11—H11A0.9600C15—H15B0.9700
C10—N1—C9118.39 (12)C6—C1—H1120.8
C10—N1—C12124.30 (12)C15—C16—C12105.69 (12)
C9—N1—C12117.30 (12)C15—C16—H16A110.6
N1—C12—C13114.87 (12)C12—C16—H16A110.6
N1—C12—C16114.41 (12)C15—C16—H16B110.6
C13—C12—C16105.21 (12)C12—C16—H16B110.6
N1—C12—H12107.3H16A—C16—H16B108.7
C13—C12—H12107.3C14—C13—C12102.50 (12)
C16—C12—H12107.3C14—C13—H13A111.3
C6—C5—C4120.02 (14)C12—C13—H13A111.3
C6—C5—C9111.41 (13)C14—C13—H13B111.3
C4—C5—C9128.47 (14)C12—C13—H13B111.3
N1—C9—C5115.14 (12)H13A—C13—H13B109.2
N1—C9—C8115.99 (12)C4—C3—C2120.98 (15)
C5—C9—C8103.95 (12)C4—C3—H3119.5
N1—C9—H9107.1C2—C3—H3119.5
C5—C9—H9107.1C13—C14—C15104.59 (12)
C8—C9—H9107.1C13—C14—H14A110.8
C5—C6—C1121.56 (14)C15—C14—H14A110.8
C5—C6—C7110.07 (13)C13—C14—H14B110.8
C1—C6—C7128.36 (14)C15—C14—H14B110.8
O2—C10—N1120.77 (14)H14A—C14—H14B108.9
O2—C10—C11120.75 (13)C1—C2—C3120.27 (15)
N1—C10—C11118.48 (13)C1—C2—H2119.9
C3—C4—C5118.77 (15)C3—C2—H2119.9
C3—C4—H4120.6C7—C8—C9106.08 (12)
C5—C4—H4120.6C7—C8—H8A110.5
O1—C7—C6126.77 (15)C9—C8—H8A110.5
O1—C7—C8125.44 (14)C7—C8—H8B110.5
C6—C7—C8107.79 (13)C9—C8—H8B110.5
C10—C11—H11A109.5H8A—C8—H8B108.7
C10—C11—H11B109.5C14—C15—C16105.85 (12)
H11A—C11—H11B109.5C14—C15—H15A110.6
C10—C11—H11C109.5C16—C15—H15A110.6
H11A—C11—H11C109.5C14—C15—H15B110.6
H11B—C11—H11C109.5C16—C15—H15B110.6
C2—C1—C6118.40 (15)H15A—C15—H15B108.7
C2—C1—H1120.8
C10—N1—C12—C13118.48 (15)C9—C5—C4—C3176.96 (14)
C9—N1—C12—C1362.40 (16)C5—C6—C7—O1179.07 (14)
C10—N1—C12—C16119.67 (15)C1—C6—C7—O12.3 (2)
C9—N1—C12—C1659.45 (16)C5—C6—C7—C81.59 (16)
C10—N1—C9—C560.63 (17)C1—C6—C7—C8177.04 (14)
C12—N1—C9—C5120.20 (14)C5—C6—C1—C20.1 (2)
C10—N1—C9—C861.05 (17)C7—C6—C1—C2178.36 (14)
C12—N1—C9—C8118.12 (14)N1—C12—C16—C15147.25 (12)
C6—C5—C9—N1135.65 (13)C13—C12—C16—C1520.25 (16)
C4—C5—C9—N148.1 (2)N1—C12—C13—C14163.79 (12)
C6—C5—C9—C87.66 (16)C16—C12—C13—C1437.07 (15)
C4—C5—C9—C8176.08 (14)C5—C4—C3—C20.6 (2)
C4—C5—C6—C10.7 (2)C12—C13—C14—C1539.78 (15)
C9—C5—C6—C1177.28 (13)C6—C1—C2—C30.6 (2)
C4—C5—C6—C7179.41 (12)C4—C3—C2—C10.2 (2)
C9—C5—C6—C73.98 (16)O1—C7—C8—C9174.40 (14)
C9—N1—C10—O20.8 (2)C6—C7—C8—C96.25 (16)
C12—N1—C10—O2179.91 (12)N1—C9—C8—C7135.64 (13)
C9—N1—C10—C11178.57 (12)C5—C9—C8—C78.18 (15)
C12—N1—C10—C110.5 (2)C13—C14—C15—C1627.47 (16)
C6—C5—C4—C31.0 (2)C12—C16—C15—C144.32 (16)

Experimental details

Crystal data
Chemical formulaC16H19NO2
Mr257.32
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.1539 (16), 8.9944 (18), 10.084 (2)
α, β, γ (°)87.97 (3), 81.29 (3), 63.15 (3)
V3)651.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.50 × 0.30
Data collection
DiffractometerRigaku Saturn 724
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2006)
Tmin, Tmax0.726, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7260, 2191, 2157
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.100, 1.13
No. of reflections2191
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: CrystalClear (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998).

 

Acknowledgements

We gratefully acknowledge financial support of this study by Enterprise Ireland (grant No. PC/2008/0008) and thank colleagues at the Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, for their input.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuckle, D., Morgan, N., Ross, J., Smith, H. & Spicer, B. (1973). J. Med. Chem. 16, 1334–1339.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFrankish, N., Farrell, R. & Sheridan, H. (2004). J. Pharm. Pharmacol. 56, 1423–1427.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHeinzelmann, R., Kolloff, H. & Hunter, J. (1940). J. Org. Chem. 14, 907–910.  CrossRef Google Scholar
First citationRigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheridan, H., Butterly, S., Walsh, J. J., Cogan, C., Jordan, M., Nolan, O. & Frankish, N. (2008). Bioorg. Med. Chem. 16, 248–254.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheridan, H., Frankish, N. & Farrell, R. (1999a). Eur. J. Med. Chem. 34, 953–966.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheridan, H., Frankish, N. & Farrell, R. (1999b). Planta Med. 65, 271–272.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheridan, H., Lemon, S., Frankish, N., McCardle, P., Higgins, T., James, J. & Bhandari, P. (1990). Eur. J. Med. Chem. 25, 603–608.  CrossRef CAS Web of Science Google Scholar
First citationSimplício, A., Gilmer, J., Frankish, N., Sheridan, H., Walsh, J. & Clancy, J. (2004). J. Chromatogr. A, 1045, 233–238.  Web of Science PubMed Google Scholar
First citationVaccva, J., Dorsey, B., Schleif, W., Levin, R., McDaniel, S., Darke, P., Zugay, J., Quinterno, J., Blahy, O. & Roth, E. (1994). Proc. Natl Acad. Sci. USA, 91, 4096–4100.  PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds