organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o992-o993

4-[3,4-Di­methyl-1-(4-methyl­phen­yl)-5-oxo-4,5-di­hydro-1H-pyrazol-4-yl]-3,4-di­methyl-1-(4-methyl­phen­yl)-4,5-di­hydro-1H-pyrazol-5-one

aCHEMSOL, 1 Harcourt Road, Aberdeen, AB15 5NY, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 1 March 2012; accepted 1 March 2012; online 10 March 2012)

In the title compound, C24H26N4O2, the complete mol­ecule is generated by the application of twofold symmetry. The pyrazole ring is approximately planar [r.m.s. deviation = 0.026 Å] and the benzene ring is twisted out of this plane [dihedral angle = 21.94 (7)°]. A twist in the mol­ecule about the central C—C bond [1.566 (3) Å] is also evident [C—C—C—C torsion angle = 44.30 (14)°]. Supra­molecular layers in the bc plane are formed in the crystal packing via C—H⋯O and C—H⋯π inter­actions.

Related literature

For the therapeutic importance of pyrazole compounds, see: Sil et al. (2005[Sil, D., Kumar, R., Sharon, A., Maulik, P. R. & Rama, V. J. (2005). Tetrahedron Lett. 46, 3807-3809.]); Haddad et al. (2004[Haddad, N., Salvango, A. & Busacca, C. (2004). Tetrahedron Lett. 45, 5935-5937.]). For the diverse pharmacological activities of pyrazole compounds, see: Bekhit et al. (2010[Bekhit, A. A., Hymete, A., Bekhit, A., El-D, A., Damtew, A. & Aboul-Enein, H. Y. (2010). Mini Rev. Med. Chem. 10, 1014-1033.], 2012[Bekhit, A. A., Hymete, A., Asfaw, H., Bekhit, A. & El-D, A. (2012). Arch. Pharm. 345, 147-154.]); Higashi et al. (2006[Higashi, Y., Jitsuili, D., Chayama, K. & Yoshizumi, M. (2006). Rec. Pat. Cardiovasc. Drug Dis., 1, 85-93.]). For synthetic background, see: Nef (1891[Nef, J. U. (1891). Justus Liebigs Ann. Chem. 266, 62.]): Veibel & Westöö (1953[Veibel, S. & Westöö, G. (1953). Acta Chem. Scand. 7, 119-127.]); Katritzky et al. (1997[Katritzky, A. R., Barczynski, P. & Ostercamp, D. L. (1997). J. Chem. Soc. Perkin Trans II. pp. 969-975.]); Wardell et al. (2007[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o462-o467.]); de Lima et al. (2010[Lima, G. M. de, Wardell, J. L. & Wardell, S. M. S. V. (2010). J. Chem. Crystallogr. 40, 213-221.]). For the synthesis of the title compound, see: Bernstein et al. (1947[Bernstein, J., Stearns, B., Dexter, M. & Lott, W. A. (1947). J. Am. Chem. Soc. 69, 1147-1150.]); Gryazeva & Golomolzin (2003[Gryazeva, O. V. & Golomolzin, B. V. (2003). Chem. Heterocycl. Compd, 39, 1478-1486.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26N4O2

  • Mr = 402.50

  • Monoclinic, C 2/c

  • a = 23.0007 (8) Å

  • b = 6.6712 (2) Å

  • c = 13.5967 (5) Å

  • β = 92.566 (2)°

  • V = 2084.22 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.48 × 0.36 × 0.18 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.668, Tmax = 0.746

  • 11383 measured reflections

  • 2384 independent reflections

  • 1856 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.136

  • S = 0.83

  • 2384 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O1i 0.98 2.60 3.5676 (16) 169
C4—H4ACg1ii 0.98 2.82 3.6644 (15) 145
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrazoles are key structures in numerous compounds of therapeutic importance (Sil et al., 2005, Haddad et al., 2004). Compounds containing this ring system are known to display diverse pharmacological activities, for example as anti-malarial agents (Bekhit et al., 2012), anti-inflammatory agents (Bekhit et al., 2010), and against cardiovascular disease (Higashi et al., 2006). A general route to pyrazole derivatives involves reaction of an arylhydrazine, ArNHNH2, with a β-dicarbonyl compound, R'COCH2COY. This reaction provides initially a hydrazone derivative, RNHN=CR'CH2COY, which can be isolated but which readily undergoes cyclization to a pyrazone derivative (Nef, 1891; Katritzky et al., 1997; Wardell et al., 2007; de Lima et al., 2010). However, in some cases (Veibel & Westöö, 1953), a dimeric oxidation product is isolated, as found in the reaction between 4-MeC6H4NHNH2 and MeCOCH2CO2Et. The structure of this product, 4-[3,4-dimethyl-1-(4-methylphenyl)-5-oxopyrazol-4- yl]-4,5-dimethyl-2-(4-methylphenyl)pyrazol-3-one (I), is now reported.

The molecule of (I), Fig. 1, has crystallographically imposed twofold symmetry. The pyrazole ring is planar with a r.m.s. deviation for the fitted atoms of 0.026 Å; the maximum deviations from this plane are 0.019 (1) Å (for the N1 and C2 atoms) and -0.023 (1) Å (C3). The benzene ring is inclined to this plane forming a dihedral angle of 21.94 (7)°. There is a twist in the molecule about the central C—C bond [1.566 (3) Å] with the C1—C2—C2i—C1i torsion angle being 44.30 (14)°; symmetry operation i: -x, y, 3/2 - z. The dihedral angle between the pyrazole rings is 61.78 (4)°.

In the crystal packing, supramolecular layers in the bc plane are formed by C—H···O and C—H···π interactions, Fig. 2 and Table 1. These stack along the a axis with no specific intermolecular interactions between them, Fig. 3.

Related literature top

For the therapeutic importance of pyrazole compounds, see: Sil et al. (2005); Haddad et al. (2004). For the diverse pharmacological activities of pyrazole compounds, see: Bekhit et al. (2010, 2012); Higashi et al. (2006). For synthetic background, see: Nef (1891): Veibel & Westöö (1953); Katritzky et al. (1997); Wardell et al. (2007); de Lima et al. (2010). For the synthesis of the title compound, see: Bernstein et al. (1947); Gryazeva & Golomolzin (2003).

Experimental top

A solution of 4-MeC6H4NHNH2.HCl (2 mmol) and MeCOCH2CO2Et (2 mmol) in EtOH (2 0 ml) was refluxed for 2 h. The reaction was left to slowly evaporate in air. Crystals were collected after a week, M.pt: > 573 K; lit. M.pt: >573 K (Bernstein et al., 1947; Gryazeva & Golomolzin, 2003). IR ν: 3391, 3084, 3041, 3012, 2974, 2920, 2858, 1706, 1663, 1614, 1511, 1441, 1390, 1363, 1288, 1140, 1083, 1004, 912, 816, 776, 654, 590, 507, 485 cm-1.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). Owing to poor agreement two reflections, i.e. (5 1 2) and (2 0 2), were omitted from the final cycles of refinement.

Structure description top

Pyrazoles are key structures in numerous compounds of therapeutic importance (Sil et al., 2005, Haddad et al., 2004). Compounds containing this ring system are known to display diverse pharmacological activities, for example as anti-malarial agents (Bekhit et al., 2012), anti-inflammatory agents (Bekhit et al., 2010), and against cardiovascular disease (Higashi et al., 2006). A general route to pyrazole derivatives involves reaction of an arylhydrazine, ArNHNH2, with a β-dicarbonyl compound, R'COCH2COY. This reaction provides initially a hydrazone derivative, RNHN=CR'CH2COY, which can be isolated but which readily undergoes cyclization to a pyrazone derivative (Nef, 1891; Katritzky et al., 1997; Wardell et al., 2007; de Lima et al., 2010). However, in some cases (Veibel & Westöö, 1953), a dimeric oxidation product is isolated, as found in the reaction between 4-MeC6H4NHNH2 and MeCOCH2CO2Et. The structure of this product, 4-[3,4-dimethyl-1-(4-methylphenyl)-5-oxopyrazol-4- yl]-4,5-dimethyl-2-(4-methylphenyl)pyrazol-3-one (I), is now reported.

The molecule of (I), Fig. 1, has crystallographically imposed twofold symmetry. The pyrazole ring is planar with a r.m.s. deviation for the fitted atoms of 0.026 Å; the maximum deviations from this plane are 0.019 (1) Å (for the N1 and C2 atoms) and -0.023 (1) Å (C3). The benzene ring is inclined to this plane forming a dihedral angle of 21.94 (7)°. There is a twist in the molecule about the central C—C bond [1.566 (3) Å] with the C1—C2—C2i—C1i torsion angle being 44.30 (14)°; symmetry operation i: -x, y, 3/2 - z. The dihedral angle between the pyrazole rings is 61.78 (4)°.

In the crystal packing, supramolecular layers in the bc plane are formed by C—H···O and C—H···π interactions, Fig. 2 and Table 1. These stack along the a axis with no specific intermolecular interactions between them, Fig. 3.

For the therapeutic importance of pyrazole compounds, see: Sil et al. (2005); Haddad et al. (2004). For the diverse pharmacological activities of pyrazole compounds, see: Bekhit et al. (2010, 2012); Higashi et al. (2006). For synthetic background, see: Nef (1891): Veibel & Westöö (1953); Katritzky et al. (1997); Wardell et al. (2007); de Lima et al. (2010). For the synthesis of the title compound, see: Bernstein et al. (1947); Gryazeva & Golomolzin (2003).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Unlabelled atoms are related by the symmetry operation -x, y, 3/2 - z.
[Figure 2] Fig. 2. A view of the supramolecular layer in the bc plane of (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively. Hydrogen atoms not involved in intermolecular interactions have been omitted for reasons of clarity.
[Figure 3] Fig. 3. A view in projection down the b axis of the stacking of supramolecular layers along the a direction in (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
4-[3,4-Dimethyl-1-(4-methylphenyl)-5-oxo-4,5-dihydro-1H-pyrazol-4-yl]- 3,4-dimethyl-1-(4-methylphenyl)-4,5-dihydro-1H-pyrazol-5-one top
Crystal data top
C24H26N4O2F(000) = 856
Mr = 402.50Dx = 1.283 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6506 reflections
a = 23.0007 (8) Åθ = 2.9–27.5°
b = 6.6712 (2) ŵ = 0.08 mm1
c = 13.5967 (5) ÅT = 120 K
β = 92.566 (2)°Block, light-yellow
V = 2084.22 (12) Å30.48 × 0.36 × 0.18 mm
Z = 4
Data collection top
Rigaku Saturn724+
diffractometer
2384 independent reflections
Radiation source: Rotating Anode1856 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.042
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.0°
profile data from ω–scansh = 2929
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 88
Tmin = 0.668, Tmax = 0.746l = 1717
11383 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.104P)2 + 1.4411P]
where P = (Fo2 + 2Fc2)/3
2384 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C24H26N4O2V = 2084.22 (12) Å3
Mr = 402.50Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.0007 (8) ŵ = 0.08 mm1
b = 6.6712 (2) ÅT = 120 K
c = 13.5967 (5) Å0.48 × 0.36 × 0.18 mm
β = 92.566 (2)°
Data collection top
Rigaku Saturn724+
diffractometer
2384 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
1856 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.746Rint = 0.042
11383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.83Δρmax = 0.26 e Å3
2384 reflectionsΔρmin = 0.18 e Å3
139 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06343 (4)0.52970 (14)0.91141 (7)0.0292 (3)
N10.10162 (5)0.23866 (16)0.84739 (8)0.0202 (3)
N20.09381 (5)0.12079 (17)0.76120 (8)0.0217 (3)
C10.05610 (5)0.2093 (2)0.70361 (9)0.0194 (3)
C20.03383 (5)0.40353 (18)0.74559 (9)0.0197 (3)
C30.06614 (6)0.40447 (19)0.84662 (9)0.0205 (3)
C40.03921 (6)0.1236 (2)0.60511 (9)0.0253 (3)
H4A0.06580.01440.59000.038*
H4B0.04130.22840.55490.038*
H4C0.00060.07180.60570.038*
C50.05690 (7)0.5851 (2)0.68862 (11)0.0310 (3)
H5A0.09930.57530.68560.046*
H5B0.04680.70920.72240.046*
H5C0.03920.58610.62170.046*
C60.13732 (5)0.1626 (2)0.92676 (9)0.0198 (3)
C70.15049 (6)0.0403 (2)0.93131 (10)0.0245 (3)
H70.13660.12850.88070.029*
C80.18434 (6)0.1132 (2)1.01097 (10)0.0271 (3)
H80.19310.25231.01400.033*
C90.20565 (6)0.0114 (2)1.08617 (9)0.0258 (3)
C100.19226 (6)0.2144 (2)1.07910 (10)0.0282 (3)
H100.20650.30281.12940.034*
C110.15862 (6)0.2913 (2)1.00071 (10)0.0253 (3)
H110.15020.43060.99740.030*
C120.24118 (7)0.0698 (3)1.17294 (10)0.0350 (4)
H12A0.24990.21161.16180.052*
H12B0.21910.05641.23260.052*
H12C0.27760.00571.18090.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0374 (6)0.0238 (5)0.0256 (5)0.0034 (4)0.0081 (4)0.0085 (4)
N10.0224 (6)0.0217 (5)0.0161 (5)0.0010 (4)0.0031 (4)0.0038 (4)
N20.0221 (6)0.0267 (6)0.0163 (5)0.0006 (4)0.0001 (4)0.0047 (4)
C10.0198 (6)0.0233 (6)0.0153 (6)0.0011 (5)0.0025 (5)0.0007 (5)
C20.0227 (7)0.0197 (6)0.0163 (6)0.0015 (5)0.0021 (5)0.0008 (5)
C30.0217 (6)0.0210 (6)0.0184 (6)0.0028 (5)0.0010 (5)0.0002 (5)
C40.0276 (7)0.0312 (7)0.0170 (6)0.0030 (6)0.0002 (5)0.0037 (5)
C50.0361 (8)0.0295 (8)0.0269 (7)0.0107 (6)0.0036 (6)0.0081 (6)
C60.0166 (6)0.0260 (7)0.0167 (6)0.0003 (5)0.0004 (5)0.0003 (5)
C70.0237 (7)0.0250 (7)0.0242 (7)0.0012 (5)0.0036 (5)0.0025 (5)
C80.0257 (7)0.0262 (7)0.0290 (7)0.0027 (6)0.0025 (6)0.0026 (5)
C90.0220 (7)0.0363 (8)0.0191 (6)0.0025 (6)0.0005 (5)0.0023 (5)
C100.0266 (7)0.0350 (8)0.0224 (7)0.0018 (6)0.0051 (6)0.0068 (6)
C110.0270 (7)0.0254 (7)0.0232 (7)0.0002 (6)0.0037 (5)0.0033 (5)
C120.0338 (8)0.0464 (9)0.0242 (7)0.0091 (7)0.0054 (6)0.0028 (6)
Geometric parameters (Å, º) top
O1—C31.2177 (15)C5—H5C0.9800
N1—C31.3743 (17)C6—C71.3882 (19)
N1—N21.4160 (14)C6—C111.3943 (18)
N1—C61.4202 (16)C7—C81.3928 (18)
N2—C11.2859 (17)C7—H70.9500
C1—C41.4917 (17)C8—C91.390 (2)
C1—C21.5142 (17)C8—H80.9500
C2—C31.5323 (17)C9—C101.391 (2)
C2—C51.5446 (18)C9—C121.5057 (19)
C2—C2i1.566 (3)C10—C111.3873 (19)
C4—H4A0.9800C10—H100.9500
C4—H4B0.9800C11—H110.9500
C4—H4C0.9800C12—H12A0.9800
C5—H5A0.9800C12—H12B0.9800
C5—H5B0.9800C12—H12C0.9800
C3—N1—N2112.79 (10)H5A—C5—H5C109.5
C3—N1—C6128.04 (11)H5B—C5—H5C109.5
N2—N1—C6118.56 (10)C7—C6—C11119.98 (12)
C1—N2—N1107.82 (10)C7—C6—N1119.99 (12)
N2—C1—C4120.81 (12)C11—C6—N1120.03 (12)
N2—C1—C2113.19 (11)C6—C7—C8119.23 (13)
C4—C1—C2125.98 (11)C6—C7—H7120.4
C1—C2—C3100.53 (10)C8—C7—H7120.4
C1—C2—C5110.64 (10)C9—C8—C7121.98 (13)
C3—C2—C5106.41 (10)C9—C8—H8119.0
C1—C2—C2i112.51 (8)C7—C8—H8119.0
C3—C2—C2i112.02 (12)C8—C9—C10117.50 (13)
C5—C2—C2i113.78 (9)C8—C9—C12121.48 (14)
O1—C3—N1126.61 (12)C10—C9—C12121.02 (13)
O1—C3—C2127.80 (12)C11—C10—C9121.84 (13)
N1—C3—C2105.52 (10)C11—C10—H10119.1
C1—C4—H4A109.5C9—C10—H10119.1
C1—C4—H4B109.5C10—C11—C6119.47 (13)
H4A—C4—H4B109.5C10—C11—H11120.3
C1—C4—H4C109.5C6—C11—H11120.3
H4A—C4—H4C109.5C9—C12—H12A109.5
H4B—C4—H4C109.5C9—C12—H12B109.5
C2—C5—H5A109.5H12A—C12—H12B109.5
C2—C5—H5B109.5C9—C12—H12C109.5
H5A—C5—H5B109.5H12A—C12—H12C109.5
C2—C5—H5C109.5H12B—C12—H12C109.5
C3—N1—N2—C12.35 (15)C1—C2—C3—N13.64 (12)
C6—N1—N2—C1174.14 (10)C5—C2—C3—N1111.74 (12)
N1—N2—C1—C4178.79 (11)C2i—C2—C3—N1123.33 (8)
N1—N2—C1—C20.36 (14)C3—N1—C6—C7152.61 (13)
N2—C1—C2—C32.51 (13)N2—N1—C6—C717.78 (17)
C4—C1—C2—C3179.15 (12)C3—N1—C6—C1126.66 (19)
N2—C1—C2—C5109.65 (13)N2—N1—C6—C11162.95 (11)
C4—C1—C2—C568.69 (16)C11—C6—C7—C80.90 (19)
N2—C1—C2—C2i121.85 (13)N1—C6—C7—C8178.37 (11)
C4—C1—C2—C2i59.82 (17)C6—C7—C8—C90.3 (2)
N2—N1—C3—O1179.21 (12)C7—C8—C9—C100.4 (2)
C6—N1—C3—O18.4 (2)C7—C8—C9—C12178.74 (12)
N2—N1—C3—C23.87 (13)C8—C9—C10—C110.4 (2)
C6—N1—C3—C2174.71 (11)C12—C9—C10—C11178.70 (13)
C1—C2—C3—O1179.48 (13)C9—C10—C11—C60.2 (2)
C5—C2—C3—O165.14 (17)C7—C6—C11—C100.9 (2)
C2i—C2—C3—O159.80 (14)N1—C6—C11—C10178.41 (11)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4B···O1ii0.982.603.5676 (16)169
C4—H4A···Cg1iii0.982.823.6644 (15)145
Symmetry codes: (ii) x, y+1, z1/2; (iii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC24H26N4O2
Mr402.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)23.0007 (8), 6.6712 (2), 13.5967 (5)
β (°) 92.566 (2)
V3)2084.22 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.36 × 0.18
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Tmin, Tmax0.668, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
11383, 2384, 1856
Rint0.042
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.136, 0.83
No. of reflections2384
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.18

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4B···O1i0.982.603.5676 (16)169
C4—H4A···Cg1ii0.982.823.6644 (15)145
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.

References

First citationBekhit, A. A., Hymete, A., Asfaw, H., Bekhit, A. & El-D, A. (2012). Arch. Pharm. 345, 147–154.  Web of Science CrossRef CAS Google Scholar
First citationBekhit, A. A., Hymete, A., Bekhit, A., El-D, A., Damtew, A. & Aboul-Enein, H. Y. (2010). Mini Rev. Med. Chem. 10, 1014–1033.  Web of Science CAS PubMed Google Scholar
First citationBernstein, J., Stearns, B., Dexter, M. & Lott, W. A. (1947). J. Am. Chem. Soc. 69, 1147–1150.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGryazeva, O. V. & Golomolzin, B. V. (2003). Chem. Heterocycl. Compd, 39, 1478–1486.  Google Scholar
First citationHaddad, N., Salvango, A. & Busacca, C. (2004). Tetrahedron Lett. 45, 5935–5937.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, Y., Jitsuili, D., Chayama, K. & Yoshizumi, M. (2006). Rec. Pat. Cardiovasc. Drug Dis., 1, 85–93.  CrossRef CAS Google Scholar
First citationKatritzky, A. R., Barczynski, P. & Ostercamp, D. L. (1997). J. Chem. Soc. Perkin Trans II. pp. 969–975.  Google Scholar
First citationLima, G. M. de, Wardell, J. L. & Wardell, S. M. S. V. (2010). J. Chem. Crystallogr. 40, 213–221.  Web of Science CSD CrossRef CAS Google Scholar
First citationNef, J. U. (1891). Justus Liebigs Ann. Chem. 266, 62.  CrossRef Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSil, D., Kumar, R., Sharon, A., Maulik, P. R. & Rama, V. J. (2005). Tetrahedron Lett. 46, 3807–3809.  Web of Science CSD CrossRef CAS Google Scholar
First citationVeibel, S. & Westöö, G. (1953). Acta Chem. Scand. 7, 119–127.  CrossRef CAS Web of Science Google Scholar
First citationWardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o462–o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o992-o993
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds