organic compounds
4-[3,4-Dimethyl-1-(4-methylphenyl)-5-oxo-4,5-dihydro-1H-pyrazol-4-yl]-3,4-dimethyl-1-(4-methylphenyl)-4,5-dihydro-1H-pyrazol-5-one
aCHEMSOL, 1 Harcourt Road, Aberdeen, AB15 5NY, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: Edward.Tiekink@gmail.com
In the title compound, C24H26N4O2, the complete molecule is generated by the application of twofold symmetry. The pyrazole ring is approximately planar [r.m.s. deviation = 0.026 Å] and the benzene ring is twisted out of this plane [dihedral angle = 21.94 (7)°]. A twist in the molecule about the central C—C bond [1.566 (3) Å] is also evident [C—C—C—C torsion angle = 44.30 (14)°]. Supramolecular layers in the bc plane are formed in the crystal packing via C—H⋯O and C—H⋯π interactions.
Related literature
For the therapeutic importance of pyrazole compounds, see: Sil et al. (2005); Haddad et al. (2004). For the diverse pharmacological activities of pyrazole compounds, see: Bekhit et al. (2010, 2012); Higashi et al. (2006). For synthetic background, see: Nef (1891): Veibel & Westöö (1953); Katritzky et al. (1997); Wardell et al. (2007); de Lima et al. (2010). For the synthesis of the title compound, see: Bernstein et al. (1947); Gryazeva & Golomolzin (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812009208/hg5185sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812009208/hg5185Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812009208/hg5185Isup3.cml
A solution of 4-MeC6H4NHNH2.HCl (2 mmol) and MeCOCH2CO2Et (2 mmol) in EtOH (2 0 ml) was refluxed for 2 h. The reaction was left to slowly evaporate in air. Crystals were collected after a week, M.pt: > 573 K; lit. M.pt: >573 K (Bernstein et al., 1947; Gryazeva & Golomolzin, 2003). IR ν: 3391, 3084, 3041, 3012, 2974, 2920, 2858, 1706, 1663, 1614, 1511, 1441, 1390, 1363, 1288, 1140, 1083, 1004, 912, 816, 776, 654, 590, 507, 485 cm-1.
The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). Owing to poor agreement two reflections, i.e. (5 1 2) and (2 0 2), were omitted from the final cycles of refinement.
Pyrazoles are key structures in numerous compounds of therapeutic importance (Sil et al., 2005, Haddad et al., 2004). Compounds containing this ring system are known to display diverse pharmacological activities, for example as anti-malarial agents (Bekhit et al., 2012), anti-inflammatory agents (Bekhit et al., 2010), and against cardiovascular disease (Higashi et al., 2006). A general route to pyrazole derivatives involves reaction of an arylhydrazine, ArNHNH2, with a β-dicarbonyl compound, R'COCH2COY. This reaction provides initially a hydrazone derivative, RNHN=CR'CH2COY, which can be isolated but which readily undergoes to a pyrazone derivative (Nef, 1891; Katritzky et al., 1997; Wardell et al., 2007; de Lima et al., 2010). However, in some cases (Veibel & Westöö, 1953), a dimeric oxidation product is isolated, as found in the reaction between 4-MeC6H4NHNH2 and MeCOCH2CO2Et. The structure of this product, 4-[3,4-dimethyl-1-(4-methylphenyl)-5-oxopyrazol-4- yl]-4,5-dimethyl-2-(4-methylphenyl)pyrazol-3-one (I), is now reported.
The molecule of (I), Fig. 1, has crystallographically imposed twofold symmetry. The pyrazole ring is planar with a r.m.s. deviation for the fitted atoms of 0.026 Å; the maximum deviations from this plane are 0.019 (1) Å (for the N1 and C2 atoms) and -0.023 (1) Å (C3). The benzene ring is inclined to this plane forming a dihedral angle of 21.94 (7)°. There is a twist in the molecule about the central C—C bond [1.566 (3) Å] with the C1—C2—C2i—C1i torsion angle being 44.30 (14)°;
i: -x, y, 3/2 - z. The dihedral angle between the pyrazole rings is 61.78 (4)°.In the crystal packing, supramolecular layers in the bc plane are formed by C—H···O and C—H···π interactions, Fig. 2 and Table 1. These stack along the a axis with no specific intermolecular interactions between them, Fig. 3.
For the therapeutic importance of pyrazole compounds, see: Sil et al. (2005); Haddad et al. (2004). For the diverse pharmacological activities of pyrazole compounds, see: Bekhit et al. (2010, 2012); Higashi et al. (2006). For synthetic background, see: Nef (1891): Veibel & Westöö (1953); Katritzky et al. (1997); Wardell et al. (2007); de Lima et al. (2010). For the synthesis of the title compound, see: Bernstein et al. (1947); Gryazeva & Golomolzin (2003).
Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell
CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C24H26N4O2 | F(000) = 856 |
Mr = 402.50 | Dx = 1.283 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6506 reflections |
a = 23.0007 (8) Å | θ = 2.9–27.5° |
b = 6.6712 (2) Å | µ = 0.08 mm−1 |
c = 13.5967 (5) Å | T = 120 K |
β = 92.566 (2)° | Block, light-yellow |
V = 2084.22 (12) Å3 | 0.48 × 0.36 × 0.18 mm |
Z = 4 |
Rigaku Saturn724+ diffractometer | 2384 independent reflections |
Radiation source: Rotating Anode | 1856 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.042 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
profile data from ω–scans | h = −29→29 |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011) | k = −8→8 |
Tmin = 0.668, Tmax = 0.746 | l = −17→17 |
11383 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 0.83 | w = 1/[σ2(Fo2) + (0.104P)2 + 1.4411P] where P = (Fo2 + 2Fc2)/3 |
2384 reflections | (Δ/σ)max < 0.001 |
139 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C24H26N4O2 | V = 2084.22 (12) Å3 |
Mr = 402.50 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 23.0007 (8) Å | µ = 0.08 mm−1 |
b = 6.6712 (2) Å | T = 120 K |
c = 13.5967 (5) Å | 0.48 × 0.36 × 0.18 mm |
β = 92.566 (2)° |
Rigaku Saturn724+ diffractometer | 2384 independent reflections |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011) | 1856 reflections with I > 2σ(I) |
Tmin = 0.668, Tmax = 0.746 | Rint = 0.042 |
11383 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 0.83 | Δρmax = 0.26 e Å−3 |
2384 reflections | Δρmin = −0.18 e Å−3 |
139 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.06343 (4) | 0.52970 (14) | 0.91141 (7) | 0.0292 (3) | |
N1 | 0.10162 (5) | 0.23866 (16) | 0.84739 (8) | 0.0202 (3) | |
N2 | 0.09381 (5) | 0.12079 (17) | 0.76120 (8) | 0.0217 (3) | |
C1 | 0.05610 (5) | 0.2093 (2) | 0.70361 (9) | 0.0194 (3) | |
C2 | 0.03383 (5) | 0.40353 (18) | 0.74559 (9) | 0.0197 (3) | |
C3 | 0.06614 (6) | 0.40447 (19) | 0.84662 (9) | 0.0205 (3) | |
C4 | 0.03921 (6) | 0.1236 (2) | 0.60511 (9) | 0.0253 (3) | |
H4A | 0.0658 | 0.0144 | 0.5900 | 0.038* | |
H4B | 0.0413 | 0.2284 | 0.5549 | 0.038* | |
H4C | −0.0006 | 0.0718 | 0.6057 | 0.038* | |
C5 | 0.05690 (7) | 0.5851 (2) | 0.68862 (11) | 0.0310 (3) | |
H5A | 0.0993 | 0.5753 | 0.6856 | 0.046* | |
H5B | 0.0468 | 0.7092 | 0.7224 | 0.046* | |
H5C | 0.0392 | 0.5861 | 0.6217 | 0.046* | |
C6 | 0.13732 (5) | 0.1626 (2) | 0.92676 (9) | 0.0198 (3) | |
C7 | 0.15049 (6) | −0.0403 (2) | 0.93131 (10) | 0.0245 (3) | |
H7 | 0.1366 | −0.1285 | 0.8807 | 0.029* | |
C8 | 0.18434 (6) | −0.1132 (2) | 1.01097 (10) | 0.0271 (3) | |
H8 | 0.1931 | −0.2523 | 1.0140 | 0.033* | |
C9 | 0.20565 (6) | 0.0114 (2) | 1.08617 (9) | 0.0258 (3) | |
C10 | 0.19226 (6) | 0.2144 (2) | 1.07910 (10) | 0.0282 (3) | |
H10 | 0.2065 | 0.3028 | 1.1294 | 0.034* | |
C11 | 0.15862 (6) | 0.2913 (2) | 1.00071 (10) | 0.0253 (3) | |
H11 | 0.1502 | 0.4306 | 0.9974 | 0.030* | |
C12 | 0.24118 (7) | −0.0698 (3) | 1.17294 (10) | 0.0350 (4) | |
H12A | 0.2499 | −0.2116 | 1.1618 | 0.052* | |
H12B | 0.2191 | −0.0564 | 1.2326 | 0.052* | |
H12C | 0.2776 | 0.0057 | 1.1809 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0374 (6) | 0.0238 (5) | 0.0256 (5) | 0.0034 (4) | −0.0081 (4) | −0.0085 (4) |
N1 | 0.0224 (6) | 0.0217 (5) | 0.0161 (5) | 0.0010 (4) | −0.0031 (4) | −0.0038 (4) |
N2 | 0.0221 (6) | 0.0267 (6) | 0.0163 (5) | 0.0006 (4) | −0.0001 (4) | −0.0047 (4) |
C1 | 0.0198 (6) | 0.0233 (6) | 0.0153 (6) | −0.0011 (5) | 0.0025 (5) | −0.0007 (5) |
C2 | 0.0227 (7) | 0.0197 (6) | 0.0163 (6) | −0.0015 (5) | −0.0021 (5) | 0.0008 (5) |
C3 | 0.0217 (6) | 0.0210 (6) | 0.0184 (6) | −0.0028 (5) | −0.0010 (5) | −0.0002 (5) |
C4 | 0.0276 (7) | 0.0312 (7) | 0.0170 (6) | 0.0030 (6) | 0.0002 (5) | −0.0037 (5) |
C5 | 0.0361 (8) | 0.0295 (8) | 0.0269 (7) | −0.0107 (6) | −0.0036 (6) | 0.0081 (6) |
C6 | 0.0166 (6) | 0.0260 (7) | 0.0167 (6) | −0.0003 (5) | 0.0004 (5) | 0.0003 (5) |
C7 | 0.0237 (7) | 0.0250 (7) | 0.0242 (7) | −0.0012 (5) | −0.0036 (5) | −0.0025 (5) |
C8 | 0.0257 (7) | 0.0262 (7) | 0.0290 (7) | 0.0027 (6) | −0.0025 (6) | 0.0026 (5) |
C9 | 0.0220 (7) | 0.0363 (8) | 0.0191 (6) | 0.0025 (6) | 0.0005 (5) | 0.0023 (5) |
C10 | 0.0266 (7) | 0.0350 (8) | 0.0224 (7) | 0.0018 (6) | −0.0051 (6) | −0.0068 (6) |
C11 | 0.0270 (7) | 0.0254 (7) | 0.0232 (7) | 0.0002 (6) | −0.0037 (5) | −0.0033 (5) |
C12 | 0.0338 (8) | 0.0464 (9) | 0.0242 (7) | 0.0091 (7) | −0.0054 (6) | 0.0028 (6) |
O1—C3 | 1.2177 (15) | C5—H5C | 0.9800 |
N1—C3 | 1.3743 (17) | C6—C7 | 1.3882 (19) |
N1—N2 | 1.4160 (14) | C6—C11 | 1.3943 (18) |
N1—C6 | 1.4202 (16) | C7—C8 | 1.3928 (18) |
N2—C1 | 1.2859 (17) | C7—H7 | 0.9500 |
C1—C4 | 1.4917 (17) | C8—C9 | 1.390 (2) |
C1—C2 | 1.5142 (17) | C8—H8 | 0.9500 |
C2—C3 | 1.5323 (17) | C9—C10 | 1.391 (2) |
C2—C5 | 1.5446 (18) | C9—C12 | 1.5057 (19) |
C2—C2i | 1.566 (3) | C10—C11 | 1.3873 (19) |
C4—H4A | 0.9800 | C10—H10 | 0.9500 |
C4—H4B | 0.9800 | C11—H11 | 0.9500 |
C4—H4C | 0.9800 | C12—H12A | 0.9800 |
C5—H5A | 0.9800 | C12—H12B | 0.9800 |
C5—H5B | 0.9800 | C12—H12C | 0.9800 |
C3—N1—N2 | 112.79 (10) | H5A—C5—H5C | 109.5 |
C3—N1—C6 | 128.04 (11) | H5B—C5—H5C | 109.5 |
N2—N1—C6 | 118.56 (10) | C7—C6—C11 | 119.98 (12) |
C1—N2—N1 | 107.82 (10) | C7—C6—N1 | 119.99 (12) |
N2—C1—C4 | 120.81 (12) | C11—C6—N1 | 120.03 (12) |
N2—C1—C2 | 113.19 (11) | C6—C7—C8 | 119.23 (13) |
C4—C1—C2 | 125.98 (11) | C6—C7—H7 | 120.4 |
C1—C2—C3 | 100.53 (10) | C8—C7—H7 | 120.4 |
C1—C2—C5 | 110.64 (10) | C9—C8—C7 | 121.98 (13) |
C3—C2—C5 | 106.41 (10) | C9—C8—H8 | 119.0 |
C1—C2—C2i | 112.51 (8) | C7—C8—H8 | 119.0 |
C3—C2—C2i | 112.02 (12) | C8—C9—C10 | 117.50 (13) |
C5—C2—C2i | 113.78 (9) | C8—C9—C12 | 121.48 (14) |
O1—C3—N1 | 126.61 (12) | C10—C9—C12 | 121.02 (13) |
O1—C3—C2 | 127.80 (12) | C11—C10—C9 | 121.84 (13) |
N1—C3—C2 | 105.52 (10) | C11—C10—H10 | 119.1 |
C1—C4—H4A | 109.5 | C9—C10—H10 | 119.1 |
C1—C4—H4B | 109.5 | C10—C11—C6 | 119.47 (13) |
H4A—C4—H4B | 109.5 | C10—C11—H11 | 120.3 |
C1—C4—H4C | 109.5 | C6—C11—H11 | 120.3 |
H4A—C4—H4C | 109.5 | C9—C12—H12A | 109.5 |
H4B—C4—H4C | 109.5 | C9—C12—H12B | 109.5 |
C2—C5—H5A | 109.5 | H12A—C12—H12B | 109.5 |
C2—C5—H5B | 109.5 | C9—C12—H12C | 109.5 |
H5A—C5—H5B | 109.5 | H12A—C12—H12C | 109.5 |
C2—C5—H5C | 109.5 | H12B—C12—H12C | 109.5 |
C3—N1—N2—C1 | 2.35 (15) | C1—C2—C3—N1 | 3.64 (12) |
C6—N1—N2—C1 | 174.14 (10) | C5—C2—C3—N1 | −111.74 (12) |
N1—N2—C1—C4 | 178.79 (11) | C2i—C2—C3—N1 | 123.33 (8) |
N1—N2—C1—C2 | 0.36 (14) | C3—N1—C6—C7 | 152.61 (13) |
N2—C1—C2—C3 | −2.51 (13) | N2—N1—C6—C7 | −17.78 (17) |
C4—C1—C2—C3 | 179.15 (12) | C3—N1—C6—C11 | −26.66 (19) |
N2—C1—C2—C5 | 109.65 (13) | N2—N1—C6—C11 | 162.95 (11) |
C4—C1—C2—C5 | −68.69 (16) | C11—C6—C7—C8 | 0.90 (19) |
N2—C1—C2—C2i | −121.85 (13) | N1—C6—C7—C8 | −178.37 (11) |
C4—C1—C2—C2i | 59.82 (17) | C6—C7—C8—C9 | −0.3 (2) |
N2—N1—C3—O1 | 179.21 (12) | C7—C8—C9—C10 | −0.4 (2) |
C6—N1—C3—O1 | 8.4 (2) | C7—C8—C9—C12 | 178.74 (12) |
N2—N1—C3—C2 | −3.87 (13) | C8—C9—C10—C11 | 0.4 (2) |
C6—N1—C3—C2 | −174.71 (11) | C12—C9—C10—C11 | −178.70 (13) |
C1—C2—C3—O1 | −179.48 (13) | C9—C10—C11—C6 | 0.2 (2) |
C5—C2—C3—O1 | 65.14 (17) | C7—C6—C11—C10 | −0.9 (2) |
C2i—C2—C3—O1 | −59.80 (14) | N1—C6—C11—C10 | 178.41 (11) |
Symmetry code: (i) −x, y, −z+3/2. |
Cg1 is the centroid of the C6–C11 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4B···O1ii | 0.98 | 2.60 | 3.5676 (16) | 169 |
C4—H4A···Cg1iii | 0.98 | 2.82 | 3.6644 (15) | 145 |
Symmetry codes: (ii) x, −y+1, z−1/2; (iii) −x+1/2, y+1/2, −z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C24H26N4O2 |
Mr | 402.50 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 120 |
a, b, c (Å) | 23.0007 (8), 6.6712 (2), 13.5967 (5) |
β (°) | 92.566 (2) |
V (Å3) | 2084.22 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.48 × 0.36 × 0.18 |
Data collection | |
Diffractometer | Rigaku Saturn724+ |
Absorption correction | Multi-scan (CrystalClear-SM Expert; Rigaku, 2011) |
Tmin, Tmax | 0.668, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11383, 2384, 1856 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.136, 0.83 |
No. of reflections | 2384 |
No. of parameters | 139 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.18 |
Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Cg1 is the centroid of the C6–C11 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4B···O1i | 0.98 | 2.60 | 3.5676 (16) | 169 |
C4—H4A···Cg1ii | 0.98 | 2.82 | 3.6644 (15) | 145 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1/2, y+1/2, −z−1/2. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.
References
Bekhit, A. A., Hymete, A., Asfaw, H., Bekhit, A. & El-D, A. (2012). Arch. Pharm. 345, 147–154. Web of Science CrossRef CAS Google Scholar
Bekhit, A. A., Hymete, A., Bekhit, A., El-D, A., Damtew, A. & Aboul-Enein, H. Y. (2010). Mini Rev. Med. Chem. 10, 1014–1033. Web of Science CAS PubMed Google Scholar
Bernstein, J., Stearns, B., Dexter, M. & Lott, W. A. (1947). J. Am. Chem. Soc. 69, 1147–1150. CrossRef CAS PubMed Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gryazeva, O. V. & Golomolzin, B. V. (2003). Chem. Heterocycl. Compd, 39, 1478–1486. Google Scholar
Haddad, N., Salvango, A. & Busacca, C. (2004). Tetrahedron Lett. 45, 5935–5937. Web of Science CrossRef CAS Google Scholar
Higashi, Y., Jitsuili, D., Chayama, K. & Yoshizumi, M. (2006). Rec. Pat. Cardiovasc. Drug Dis., 1, 85–93. CrossRef CAS Google Scholar
Katritzky, A. R., Barczynski, P. & Ostercamp, D. L. (1997). J. Chem. Soc. Perkin Trans II. pp. 969–975. Google Scholar
Lima, G. M. de, Wardell, J. L. & Wardell, S. M. S. V. (2010). J. Chem. Crystallogr. 40, 213–221. Web of Science CSD CrossRef CAS Google Scholar
Nef, J. U. (1891). Justus Liebigs Ann. Chem. 266, 62. CrossRef Google Scholar
Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sil, D., Kumar, R., Sharon, A., Maulik, P. R. & Rama, V. J. (2005). Tetrahedron Lett. 46, 3807–3809. Web of Science CSD CrossRef CAS Google Scholar
Veibel, S. & Westöö, G. (1953). Acta Chem. Scand. 7, 119–127. CrossRef CAS Web of Science Google Scholar
Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o462–o467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazoles are key structures in numerous compounds of therapeutic importance (Sil et al., 2005, Haddad et al., 2004). Compounds containing this ring system are known to display diverse pharmacological activities, for example as anti-malarial agents (Bekhit et al., 2012), anti-inflammatory agents (Bekhit et al., 2010), and against cardiovascular disease (Higashi et al., 2006). A general route to pyrazole derivatives involves reaction of an arylhydrazine, ArNHNH2, with a β-dicarbonyl compound, R'COCH2COY. This reaction provides initially a hydrazone derivative, RNHN=CR'CH2COY, which can be isolated but which readily undergoes cyclization to a pyrazone derivative (Nef, 1891; Katritzky et al., 1997; Wardell et al., 2007; de Lima et al., 2010). However, in some cases (Veibel & Westöö, 1953), a dimeric oxidation product is isolated, as found in the reaction between 4-MeC6H4NHNH2 and MeCOCH2CO2Et. The structure of this product, 4-[3,4-dimethyl-1-(4-methylphenyl)-5-oxopyrazol-4- yl]-4,5-dimethyl-2-(4-methylphenyl)pyrazol-3-one (I), is now reported.
The molecule of (I), Fig. 1, has crystallographically imposed twofold symmetry. The pyrazole ring is planar with a r.m.s. deviation for the fitted atoms of 0.026 Å; the maximum deviations from this plane are 0.019 (1) Å (for the N1 and C2 atoms) and -0.023 (1) Å (C3). The benzene ring is inclined to this plane forming a dihedral angle of 21.94 (7)°. There is a twist in the molecule about the central C—C bond [1.566 (3) Å] with the C1—C2—C2i—C1i torsion angle being 44.30 (14)°; symmetry operation i: -x, y, 3/2 - z. The dihedral angle between the pyrazole rings is 61.78 (4)°.
In the crystal packing, supramolecular layers in the bc plane are formed by C—H···O and C—H···π interactions, Fig. 2 and Table 1. These stack along the a axis with no specific intermolecular interactions between them, Fig. 3.