organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1016-o1017

1,3-Di­phenyl-4,5-di­hydro-1H-pyrazol-5-one

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bCHEMSOL, 1 Harcourt Road, Aberdeen, AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 March 2012; accepted 5 March 2012; online 10 March 2012)

In the title pyrazolone derivative, C15H12N2O, the five-membered ring is approximately planar (r.m.s. deviation = 0.018 Å), and the N- and C-bound benzene rings are inclined to this plane [dihedral angles = 21.45 (10) and 6.96 (10)°, respectively] and form a dihedral angle of 20.42 (10)° with each other. Supra­molecular layers are formed in the crystal structure via C—H⋯O and C—H⋯N inter­actions, and these are assembled into double layers by C—H⋯π and ππ inter­actions between the pyrazole and C-bound benzene rings [ring centroid–centroid distance = 3.6476 (12) Å]. The double layers stack along the a axis being connected by ππ inter­actions between the N- and C-bound benzene rings [ring centroid–centroid distance = 3.7718 (12) Å].

Related literature

For the therapeutic importance of pyrazoles, see: Sil et al. (2005[Sil, D., Kumar, R., Sharon, A., Maulik, P. R. & Rama, V. J. (2005). Tetrahedron Lett. 46, 3807-3809.]); Haddad et al. (2004[Haddad, N., Salvango, A. & Busacca, C. (2004). Tetrahedron Lett. 45, 5935-5937.]). For their diverse pharmacological activities, see: Bekhit et al. (2012[Bekhit, A. A., Hymete, A., Asfaw, H., Bekhit, A. & El-D, A. (2012). Arch. Pharm. 345, 147-154.]); Castagnolo et al. (2008[Castagnolo, D., de Logu, A., Radi, M., Bechi, B., Manetti, F., Magnani, M., Supino, S., Mleddu, R., Chisu, L. & Botta, M. (2008). Bioorg. Med. Chem. 16, 8587-8591.]); Ramajayam et al. (2010[Ramajayam, R., Tan, K.-P., Liu, H.-G. & Liang, P.-H. (2010). Bioorg. Med. Chem. 18, 7849-7854.]). For background to the synthesis, see: Nef (1891[Nef, J. U. (1891). Justus Liebigs Ann. Chem. 266, 52-138.]); Katritzky et al. (1997[Katritzky, A. R., Barczynski, P. & Ostercamp, D. L. (1997). J. Chem. Soc. Perkin Trans II, pp. 969-975.]); Wardell et al. (2007[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o462-o467.]); de Lima et al. (2010[Lima, G. M. de, Wardell, J. L. & Wardell, S. M. S. V. (2010). J. Chem. Crystallogr. 40, 213-221.]). For evaluation of tautomeric forms using NMR MO calculations and crystallography, see: Feeney et al. (1970[Feeney, J., Newman, G. A. & Pauweis, P. J. S. (1970). J. Chem. Soc. C, pp. 1842-1844.]); Hawkes et al. (1977[Hawkes, G. E., Randall, E. W., Elguero, J. & Marzin, C. J. (1977). J. Chem. Soc. Perkin Trans. II, pp. 1024-1027.]); Freyer et al. (1983[Freyer, W., Koeppel, H., Radeglia, R. & Malewski, G. (1983). J. Prakt. Chem. 325, 328-350.]); Dardonville et al. (1998[Dardonville, C., Elguero, J., Fernadez-Castano, C., Foces-Foces, C. & Sobrados, I. (1998). New J. Chem. pp. 1421-1430.]); Kleinpeter & Koch (2001[Kleinpeter, E. & Koch, A. (2001). J. Phys. Org. Chem. 14, 566-576.]); Bechtel et al. (1973a[Bechtel, F., Gaultier, J. & Hauw, C. (1973a). Cryst. Struct. Commun. 3, 469-472.],b[Bechtel, F., Gaultier, J. & Hauw, C. (1973b). Cryst. Struct. Commun. 3, 473-476.]); Chmutova et al. (2001[Chmutova, G. A., Kataeva, O. N., Ahlbrecht, H., Kurbangslieva, A. R., Movchan, A. I., Lenstra, A. T. H., Geose, H. J. & Litvinov, I. A. (2001). J. Mol. Struct. 570, 215-223.]); Wardell et al. (2007[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o462-o467.]); Gallardo et al. (2009[Gallardo, H., Girotto, E., Bortoluzzi, A. J. & Terra, G. G. (2009). Acta Cryst. E65, o2040-o2041.]); Ding & Zhao (2010[Ding, Y.-J. & Zhao, C.-X. (2010). Acta Cryst. E66, o709.]). For a previous synthesis, see: Kimata et al. (2007[Kimata, A., Nakagawa, H., Ohyama, R., Fukuuchi, T., Ohta, S., Suzuki, T. & Miyata, N. (2007). J. Med. Chem. 50, 5053-5058.]). For a recently reported structure, see: Wardell et al. (2012[Wardell, S. M. S. V., Howie, A. H., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o992-o993.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O

  • Mr = 236.27

  • Monoclinic, P 21 /c

  • a = 11.1823 (3) Å

  • b = 11.7503 (4) Å

  • c = 9.6443 (2) Å

  • β = 113.998 (2)°

  • V = 1157.68 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.34 × 0.10 × 0.08 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.790, Tmax = 1.000

  • 12058 measured reflections

  • 2024 independent reflections

  • 1829 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.127

  • S = 1.07

  • 2024 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.99 2.36 3.279 (2) 154
C12—H12⋯N2ii 0.95 2.61 3.527 (2) 163
C8—H8BCg1iii 0.99 2.69 3.437 (2) 132
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+2.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrazoles are key structures in numerous compounds of therapeutic importance (Sil et al., 2005, Haddad et al., 2004). Compounds containing this ring system are known to display diverse pharmacological activities, for example as anti-malarial agents (Bekhit et al., 2012), anti-tuberculosis agents (Castagnolo et al., 2008), and as SARS-coronavirus protease inhibitors (Ramajayam et al., 2010).

A general route to pyrazole derivatives involves reaction of an arylhydrazine, ArNHNH2, with a β-dicarbonyl compound, R/COCH2COX.. This reaction provides initially a hydrazone derivative, RNHN=CR/CH2COX, I (Fig. 1), which can be isolated but which readily undergoes cyclization to a pyrazone derivative, II (Fig.1), (Nef, 1891; Katritzky et al., 1997; Wardell et al., 2007; de Lima et al., 2010). Equilibrium involving tautomers of II in solution have been variously studied using NMR and IR spectroscopy and ab initio calculations. (Feeney et al., 1970; Hawkes et al., 1977; Freyer et al., 1983; Dardonville et al., 1998; Kleinpeter & Koch, 2001). Crystal structures of various pyrazone compounds of forms IIa, IIb and IIc have been reported (see for example, Bechtel et al., 1973a; Bechtel et al., 1973b; Chmutova et al., 2001; Wardell et al., 2007; Gallardo et al., 2009; Ding & Zhao, 2010). In continuation of recent studies (Wardell et al., 2012), herein, the isolation the title compound [i.e. form IIc (Fig. 1)] from the reaction between PhNHNH2 and PhCOCH2CO2Et in EtOH is described as is its crystal structure. The same tautomer was also isolated in the reaction between PhNHNH2 and PhCOCH2CONHPh in EtOH.

In the title compound, Fig. 2, crystallography proves the IIc tautomer in the solid-state. The pyrazole ring is planar with a r.m.s. deviation for the fitted atoms of 0.018 Å; the maximum deviations from this plane are 0.015 (1) Å (for the N1 atom) and -0.015 (1) Å (C8). The N– and C-bound benzene rings are inclined to this plane forming dihedral angles of 21.45 (10) and 6.96 (10)°, respectively; the dihedral angle between the benzene rings is 20.42 (10)° consistent with a non-planar molecule.

In the crystal structure, supramolecular layers are formed in the bc plane through C—H···O and C—H···N interactions, Fig. 3 and Table 1. Large 21-membered {···NC4H···N2CO···HC2O···HC5H} synthons are formed through these interactions. Layers are connected into double layers by C—H···π, Table 1, and ππ interactions formed between the pyrazole and C-bound benzene rings [ring centroid···centroid distance = 3.6476 (12) Å, angle of inclination of 6.96 (10)° for symmetry operation 1 - x, 1 - y, 2 - z]. The double layers stack along the a axis being connected by ππ interactions between the N– and C-bound benzene rings [ring centroid···centroid distance = 3.7718 (12) Å, angle of inclination of 21.45 (10)° for symmetry operation -x, 1 - y, 1 - z].

Related literature top

For the therapeutic importance of pyrazoles, see: Sil et al. (2005); Haddad et al. (2004). For their diverse pharmacological activities, see: Bekhit et al. (2012); Castagnolo et al. (2008); Ramajayam et al. (2010). For background to the synthesis, see: Nef (1891); Katritzky et al. (1997); Wardell et al. (2007); de Lima et al. (2010). For evaluation of tautomeric forms using NMR MO calculations and crystallography, see: Feeney et al. (1970); Hawkes et al. (1977); Freyer et al. (1983); Dardonville et al. (1998); Kleinpeter & Koch (2001); Bechtel et al. (1973a,b); Chmutova et al. (2001); Wardell et al. (2007); Gallardo et al. (2009); Ding & Zhao (2010). For a previous synthesis, see: Kimata et al. (2007). For a recently reported structure, see: Wardell et al. (2012).

Experimental top

A solution of PhNHNH2 (1 mmol) and PhCOCH2CO2Et (1 mmol) in EtOH (15 ml) was refluxed for 1 h. The reaction mixture was maintained at room temperature and crystals of the titled compound were collected after 2 days, M.pt: 408–410 K: lit. value 409–411 K (Kimata et al., 2007). IR and NMR spectra are in agreement with published data (Castagnolo et al., 2008). MS—MS (M+H = 237): 209, 195, 106, 91.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). Owing to poor agreement one reflection, i.e. (3 1 1), was removed from the final cycles of refinement. The maximum and minimum residual electron density peaks of 0.74 and 0.20 e Å-3, respectively, were located 1.02 Å and 0.58 Å from the H8a and O1 atoms, respectively.

Structure description top

Pyrazoles are key structures in numerous compounds of therapeutic importance (Sil et al., 2005, Haddad et al., 2004). Compounds containing this ring system are known to display diverse pharmacological activities, for example as anti-malarial agents (Bekhit et al., 2012), anti-tuberculosis agents (Castagnolo et al., 2008), and as SARS-coronavirus protease inhibitors (Ramajayam et al., 2010).

A general route to pyrazole derivatives involves reaction of an arylhydrazine, ArNHNH2, with a β-dicarbonyl compound, R/COCH2COX.. This reaction provides initially a hydrazone derivative, RNHN=CR/CH2COX, I (Fig. 1), which can be isolated but which readily undergoes cyclization to a pyrazone derivative, II (Fig.1), (Nef, 1891; Katritzky et al., 1997; Wardell et al., 2007; de Lima et al., 2010). Equilibrium involving tautomers of II in solution have been variously studied using NMR and IR spectroscopy and ab initio calculations. (Feeney et al., 1970; Hawkes et al., 1977; Freyer et al., 1983; Dardonville et al., 1998; Kleinpeter & Koch, 2001). Crystal structures of various pyrazone compounds of forms IIa, IIb and IIc have been reported (see for example, Bechtel et al., 1973a; Bechtel et al., 1973b; Chmutova et al., 2001; Wardell et al., 2007; Gallardo et al., 2009; Ding & Zhao, 2010). In continuation of recent studies (Wardell et al., 2012), herein, the isolation the title compound [i.e. form IIc (Fig. 1)] from the reaction between PhNHNH2 and PhCOCH2CO2Et in EtOH is described as is its crystal structure. The same tautomer was also isolated in the reaction between PhNHNH2 and PhCOCH2CONHPh in EtOH.

In the title compound, Fig. 2, crystallography proves the IIc tautomer in the solid-state. The pyrazole ring is planar with a r.m.s. deviation for the fitted atoms of 0.018 Å; the maximum deviations from this plane are 0.015 (1) Å (for the N1 atom) and -0.015 (1) Å (C8). The N– and C-bound benzene rings are inclined to this plane forming dihedral angles of 21.45 (10) and 6.96 (10)°, respectively; the dihedral angle between the benzene rings is 20.42 (10)° consistent with a non-planar molecule.

In the crystal structure, supramolecular layers are formed in the bc plane through C—H···O and C—H···N interactions, Fig. 3 and Table 1. Large 21-membered {···NC4H···N2CO···HC2O···HC5H} synthons are formed through these interactions. Layers are connected into double layers by C—H···π, Table 1, and ππ interactions formed between the pyrazole and C-bound benzene rings [ring centroid···centroid distance = 3.6476 (12) Å, angle of inclination of 6.96 (10)° for symmetry operation 1 - x, 1 - y, 2 - z]. The double layers stack along the a axis being connected by ππ interactions between the N– and C-bound benzene rings [ring centroid···centroid distance = 3.7718 (12) Å, angle of inclination of 21.45 (10)° for symmetry operation -x, 1 - y, 1 - z].

For the therapeutic importance of pyrazoles, see: Sil et al. (2005); Haddad et al. (2004). For their diverse pharmacological activities, see: Bekhit et al. (2012); Castagnolo et al. (2008); Ramajayam et al. (2010). For background to the synthesis, see: Nef (1891); Katritzky et al. (1997); Wardell et al. (2007); de Lima et al. (2010). For evaluation of tautomeric forms using NMR MO calculations and crystallography, see: Feeney et al. (1970); Hawkes et al. (1977); Freyer et al. (1983); Dardonville et al. (1998); Kleinpeter & Koch (2001); Bechtel et al. (1973a,b); Chmutova et al. (2001); Wardell et al. (2007); Gallardo et al. (2009); Ding & Zhao (2010). For a previous synthesis, see: Kimata et al. (2007). For a recently reported structure, see: Wardell et al. (2012).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Reaction scheme.
[Figure 2] Fig. 2. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Supramolecular layer in (I) sustained by C—H···O and C—H···N interactions shown as orange and blue dashed lines, respectively.
[Figure 4] Fig. 4. A view in projection down the c axis of the crystal packing in (I). The C—H···O, C—H···N, C—H···π and ππ interactions shown as orange, blue, brown and purple dashed lines, respectively.
1,3-Diphenyl-4,5-dihydro-1H-pyrazol-5-one top
Crystal data top
C15H12N2OF(000) = 496
Mr = 236.27Dx = 1.356 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9201 reflections
a = 11.1823 (3) Åθ = 2.9–27.5°
b = 11.7503 (4) ŵ = 0.09 mm1
c = 9.6443 (2) ÅT = 120 K
β = 113.998 (2)°Rod, light-yellow
V = 1157.68 (6) Å30.34 × 0.10 × 0.08 mm
Z = 4
Data collection top
Rigaku Saturn724+
diffractometer
2024 independent reflections
Radiation source: Rotating Anode1829 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.042
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.9°
profile data from ω–scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1312
Tmin = 0.790, Tmax = 1.000l = 1111
12058 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.8279P]
where P = (Fo2 + 2Fc2)/3
2024 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H12N2OV = 1157.68 (6) Å3
Mr = 236.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1823 (3) ŵ = 0.09 mm1
b = 11.7503 (4) ÅT = 120 K
c = 9.6443 (2) Å0.34 × 0.10 × 0.08 mm
β = 113.998 (2)°
Data collection top
Rigaku Saturn724+
diffractometer
2024 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1829 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 1.000Rint = 0.042
12058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.07Δρmax = 0.74 e Å3
2024 reflectionsΔρmin = 0.20 e Å3
163 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22694 (13)0.27778 (11)0.57957 (14)0.0312 (4)
N10.21383 (13)0.47099 (12)0.62331 (15)0.0198 (4)
N20.24220 (13)0.54258 (12)0.74837 (15)0.0196 (3)
C10.15405 (16)0.51898 (14)0.47568 (18)0.0195 (4)
C20.16304 (18)0.46485 (15)0.35195 (19)0.0247 (4)
H20.20840.39460.36500.030*
C30.1051 (2)0.51443 (17)0.2092 (2)0.0302 (5)
H30.11010.47710.12430.036*
C40.03995 (18)0.61747 (16)0.1888 (2)0.0292 (5)
H40.00020.65070.09070.035*
C50.03356 (17)0.67148 (16)0.3133 (2)0.0272 (4)
H50.00940.74290.30040.033*
C60.08893 (17)0.62284 (15)0.4563 (2)0.0232 (4)
H60.08260.66000.54050.028*
C70.24708 (16)0.35860 (14)0.66481 (19)0.0200 (4)
C80.30948 (17)0.35961 (14)0.83575 (18)0.0202 (4)
H8A0.26180.30960.87870.024*
H8B0.40230.33570.87520.024*
C90.29726 (16)0.48130 (14)0.86983 (18)0.0187 (4)
C100.34323 (16)0.53258 (14)1.02117 (18)0.0204 (4)
C110.31799 (17)0.64722 (15)1.0390 (2)0.0231 (4)
H110.26930.69210.95230.028*
C120.36371 (18)0.69541 (16)1.1822 (2)0.0259 (4)
H120.34520.77291.19370.031*
C130.43659 (18)0.63072 (16)1.3092 (2)0.0271 (4)
H130.46880.66421.40730.033*
C140.46240 (18)0.51717 (16)1.2925 (2)0.0260 (4)
H140.51270.47311.37940.031*
C150.41501 (17)0.46785 (15)1.14959 (19)0.0225 (4)
H150.43150.38971.13900.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0396 (8)0.0244 (7)0.0291 (7)0.0014 (6)0.0134 (6)0.0030 (6)
N10.0215 (7)0.0188 (8)0.0177 (7)0.0005 (6)0.0064 (6)0.0021 (5)
N20.0202 (7)0.0191 (8)0.0195 (7)0.0009 (6)0.0079 (6)0.0019 (5)
C10.0169 (8)0.0201 (9)0.0201 (9)0.0037 (6)0.0061 (7)0.0006 (7)
C20.0271 (9)0.0236 (9)0.0244 (9)0.0011 (7)0.0113 (7)0.0003 (7)
C30.0357 (11)0.0335 (11)0.0214 (9)0.0065 (8)0.0117 (8)0.0026 (8)
C40.0280 (10)0.0302 (10)0.0225 (9)0.0072 (8)0.0031 (8)0.0067 (7)
C50.0235 (9)0.0233 (9)0.0294 (10)0.0014 (7)0.0053 (7)0.0042 (7)
C60.0216 (9)0.0230 (9)0.0243 (9)0.0013 (7)0.0086 (7)0.0014 (7)
C70.0217 (9)0.0170 (8)0.0221 (9)0.0005 (7)0.0099 (7)0.0007 (7)
C80.0231 (9)0.0174 (9)0.0207 (8)0.0006 (7)0.0094 (7)0.0010 (7)
C90.0170 (8)0.0201 (9)0.0195 (8)0.0000 (6)0.0079 (7)0.0015 (7)
C100.0191 (8)0.0230 (9)0.0214 (9)0.0013 (7)0.0106 (7)0.0000 (7)
C110.0214 (9)0.0241 (9)0.0233 (9)0.0026 (7)0.0086 (7)0.0018 (7)
C120.0272 (9)0.0235 (9)0.0294 (10)0.0012 (7)0.0140 (8)0.0040 (7)
C130.0286 (10)0.0316 (11)0.0217 (9)0.0024 (8)0.0108 (8)0.0062 (7)
C140.0273 (10)0.0305 (10)0.0199 (9)0.0018 (8)0.0093 (7)0.0035 (7)
C150.0257 (9)0.0205 (9)0.0232 (9)0.0012 (7)0.0120 (7)0.0016 (7)
Geometric parameters (Å, º) top
O1—C71.216 (2)C7—C81.506 (2)
N1—C71.386 (2)C8—C91.486 (2)
N1—N21.3970 (19)C8—H8A0.9900
N1—C11.421 (2)C8—H8B0.9900
N2—C91.297 (2)C9—C101.465 (2)
C1—C21.391 (2)C10—C151.396 (2)
C1—C61.394 (2)C10—C111.401 (2)
C2—C31.389 (3)C11—C121.384 (2)
C2—H20.9500C11—H110.9500
C3—C41.385 (3)C12—C131.389 (3)
C3—H30.9500C12—H120.9500
C4—C51.386 (3)C13—C141.388 (3)
C4—H40.9500C13—H130.9500
C5—C61.384 (2)C14—C151.387 (2)
C5—H50.9500C14—H140.9500
C6—H60.9500C15—H150.9500
C7—N1—N2112.61 (13)C9—C8—H8A111.4
C7—N1—C1128.99 (14)C7—C8—H8A111.4
N2—N1—C1118.38 (14)C9—C8—H8B111.4
C9—N2—N1107.64 (14)C7—C8—H8B111.4
C2—C1—C6120.06 (16)H8A—C8—H8B109.3
C2—C1—N1120.63 (15)N2—C9—C10121.10 (15)
C6—C1—N1119.29 (15)N2—C9—C8112.77 (14)
C3—C2—C1119.40 (17)C10—C9—C8126.12 (15)
C3—C2—H2120.3C15—C10—C11119.15 (15)
C1—C2—H2120.3C15—C10—C9120.12 (16)
C4—C3—C2120.92 (17)C11—C10—C9120.72 (15)
C4—C3—H3119.5C12—C11—C10120.30 (16)
C2—C3—H3119.5C12—C11—H11119.8
C3—C4—C5119.12 (16)C10—C11—H11119.8
C3—C4—H4120.4C11—C12—C13120.13 (17)
C5—C4—H4120.4C11—C12—H12119.9
C6—C5—C4120.94 (17)C13—C12—H12119.9
C6—C5—H5119.5C14—C13—C12119.95 (16)
C4—C5—H5119.5C14—C13—H13120.0
C5—C6—C1119.52 (17)C12—C13—H13120.0
C5—C6—H6120.2C13—C14—C15120.21 (16)
C1—C6—H6120.2C13—C14—H14119.9
O1—C7—N1126.50 (15)C15—C14—H14119.9
O1—C7—C8128.48 (15)C14—C15—C10120.24 (17)
N1—C7—C8105.00 (13)C14—C15—H15119.9
C9—C8—C7101.91 (13)C10—C15—H15119.9
C7—N1—N2—C92.34 (18)O1—C7—C8—C9176.47 (18)
C1—N1—N2—C9179.20 (14)N1—C7—C8—C92.23 (16)
C7—N1—C1—C223.6 (3)N1—N2—C9—C10177.90 (14)
N2—N1—C1—C2158.25 (15)N1—N2—C9—C80.70 (18)
C7—N1—C1—C6158.12 (17)C7—C8—C9—N20.98 (18)
N2—N1—C1—C620.0 (2)C7—C8—C9—C10179.50 (15)
C6—C1—C2—C30.9 (3)N2—C9—C10—C15172.87 (15)
N1—C1—C2—C3179.19 (15)C8—C9—C10—C155.5 (3)
C1—C2—C3—C40.8 (3)N2—C9—C10—C116.0 (2)
C2—C3—C4—C50.3 (3)C8—C9—C10—C11175.62 (16)
C3—C4—C5—C61.3 (3)C15—C10—C11—C120.0 (3)
C4—C5—C6—C11.1 (3)C9—C10—C11—C12178.90 (16)
C2—C1—C6—C50.0 (3)C10—C11—C12—C130.9 (3)
N1—C1—C6—C5178.26 (15)C11—C12—C13—C140.7 (3)
N2—N1—C7—O1175.85 (16)C12—C13—C14—C150.4 (3)
C1—N1—C7—O12.4 (3)C13—C14—C15—C101.2 (3)
N2—N1—C7—C82.88 (18)C11—C10—C15—C141.0 (3)
C1—N1—C7—C8178.87 (15)C9—C10—C15—C14177.83 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.992.363.279 (2)154
C12—H12···N2ii0.952.613.527 (2)163
C8—H8B···Cg1iii0.992.693.437 (2)132
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H12N2O
Mr236.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.1823 (3), 11.7503 (4), 9.6443 (2)
β (°) 113.998 (2)
V3)1157.68 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.10 × 0.08
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.790, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12058, 2024, 1829
Rint0.042
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.07
No. of reflections2024
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.20

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.992.363.279 (2)154
C12—H12···N2ii0.952.613.527 (2)163
C8—H8B···Cg1iii0.992.693.437 (2)132
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.

References

First citationBechtel, F., Gaultier, J. & Hauw, C. (1973a). Cryst. Struct. Commun. 3, 469–472.  Google Scholar
First citationBechtel, F., Gaultier, J. & Hauw, C. (1973b). Cryst. Struct. Commun. 3, 473–476.  Google Scholar
First citationBekhit, A. A., Hymete, A., Asfaw, H., Bekhit, A. & El-D, A. (2012). Arch. Pharm. 345, 147–154.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCastagnolo, D., de Logu, A., Radi, M., Bechi, B., Manetti, F., Magnani, M., Supino, S., Mleddu, R., Chisu, L. & Botta, M. (2008). Bioorg. Med. Chem. 16, 8587–8591.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChmutova, G. A., Kataeva, O. N., Ahlbrecht, H., Kurbangslieva, A. R., Movchan, A. I., Lenstra, A. T. H., Geose, H. J. & Litvinov, I. A. (2001). J. Mol. Struct. 570, 215–223.  Web of Science CSD CrossRef CAS Google Scholar
First citationDardonville, C., Elguero, J., Fernadez-Castano, C., Foces-Foces, C. & Sobrados, I. (1998). New J. Chem. pp. 1421–1430.  Web of Science CSD CrossRef Google Scholar
First citationDing, Y.-J. & Zhao, C.-X. (2010). Acta Cryst. E66, o709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeeney, J., Newman, G. A. & Pauweis, P. J. S. (1970). J. Chem. Soc. C, pp. 1842–1844.  Google Scholar
First citationFreyer, W., Koeppel, H., Radeglia, R. & Malewski, G. (1983). J. Prakt. Chem. 325, 328–350.  CrossRef Web of Science Google Scholar
First citationGallardo, H., Girotto, E., Bortoluzzi, A. J. & Terra, G. G. (2009). Acta Cryst. E65, o2040–o2041.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHaddad, N., Salvango, A. & Busacca, C. (2004). Tetrahedron Lett. 45, 5935–5937.  Web of Science CrossRef CAS Google Scholar
First citationHawkes, G. E., Randall, E. W., Elguero, J. & Marzin, C. J. (1977). J. Chem. Soc. Perkin Trans. II, pp. 1024–1027.  CrossRef Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKatritzky, A. R., Barczynski, P. & Ostercamp, D. L. (1997). J. Chem. Soc. Perkin Trans II, pp. 969–975.  Google Scholar
First citationKimata, A., Nakagawa, H., Ohyama, R., Fukuuchi, T., Ohta, S., Suzuki, T. & Miyata, N. (2007). J. Med. Chem. 50, 5053–5058.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKleinpeter, E. & Koch, A. (2001). J. Phys. Org. Chem. 14, 566–576.  Web of Science CrossRef CAS Google Scholar
First citationLima, G. M. de, Wardell, J. L. & Wardell, S. M. S. V. (2010). J. Chem. Crystallogr. 40, 213–221.  Web of Science CSD CrossRef CAS Google Scholar
First citationNef, J. U. (1891). Justus Liebigs Ann. Chem. 266, 52–138.  CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRamajayam, R., Tan, K.-P., Liu, H.-G. & Liang, P.-H. (2010). Bioorg. Med. Chem. 18, 7849–7854.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSil, D., Kumar, R., Sharon, A., Maulik, P. R. & Rama, V. J. (2005). Tetrahedron Lett. 46, 3807–3809.  Web of Science CSD CrossRef CAS Google Scholar
First citationWardell, S. M. S. V., Howie, A. H., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o992–o993.  CSD CrossRef IUCr Journals Google Scholar
First citationWardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o462–o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1016-o1017
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds