organic compounds
3,5-Dimethyl-1-(4-nitrophenyl)-1H-pyrazole
aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com
In the title pyrazole derivative, C11H11N3O2, the benzene ring is twisted [dihedral angle = 31.38 (12)°] with respect to the pyrazole ring (r.m.s. deviation = 0.009 Å). The nitro group is effectively coplanar with the benzene ring to which it is attached [O—N—C—C torsion angle = −6.5 (3)°]. Supramolecular chains along the b axis are formed owing to π–π interactions [3.8653 (2) Å] between translationally related molecules involving both the five- and six-membered rings.
Related literature
For the therapeutic importance of pyrazole compounds, see: Sil et al. (2005); Haddad et al. (2004). For the diverse pharmacological activities of pyrazole compounds, see: Bekhit et al. (2010, 2012); Higashi et al. (2006). For the synthesis, see: Butler & James (1982); Claramunt et al. (2006). For recently reported structures, see: Wardell et al. (2012); Baddeley et al. (2012).
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812009579/hg5187sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812009579/hg5187Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812009579/hg5187Isup3.cml
A solution of 4-O2NC6H4NHNH2 (2 mmol) and MeCOCH2COMe (2 mmol) in EtOH (20 ml) was refluxed for 1 h. The solution was maintained at room temperature and crystals were collected after a few days, M.pt: 373–375 K; lit. M.pt: 373–375 K (Butler & James, 1982). NMR spectra were identical with those reported (Claramunt et al., 2006). IR ν: 3300, 1608, 1597, 1570, 1518, 1504, 1414, 1334, 1301, 1273, 1176, 1110, 1934, 982, 854, 825, 801, 749, 689, 640, 502 cm-1.
The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). In the absence of significant
effects, 515 Friedel pairs were averaged in the final refinement.Pyrazoles are key structures in numerous compounds of therapeutic importance (Sil et al., 2005, Haddad et al., 2004). Compounds containing this ring system are known to display diverse pharmacological activities, for example as anti-malarial agents (Bekhit et al., 2012), anti-inflammatory agents (Bekhit et al., 2010), and against cardiovascular disease (Higashi et al., 2006). A general route to pyrazole derivatives involves reaction of an arylhydrazine, ArNHNH2, with a β-dicarbonyl compound, R'COCH2COY. In connection with recent structural studies (Wardell et al., 2012; Baddeley et al., 2012), we now wish to report the structure of the title compound, (I), prepared from 4-O2NC6H4NHNH2 and MeCOCH2COMe.
In (I), Fig. 1, the pyrazole ring is planar with a r.m.s. deviation for the fitted atoms of 0.009 Å. The benzene ring is twisted out of this plane forming a dihedral angle of 31.38 (12)°. The nitro group is effectively co-planar with the benzene ring to which it is connected as seen in the value of the O1—N3—C9—C8 torsion angle of -6.5 (3)°.
The most prominent intermolecular interactions in the π–π. These form between translationally related molecules along the b axis, involving both the five- and six-membered rings, and therefore, the ring centroid separations are 3.8653 (2) Å, Fig. 2. Columns pack with no specific intermolecular interactions between them, Fig. 3.
of (I) are of the typeFor the therapeutic importance of pyrazole compounds, see: Sil et al. (2005); Haddad et al. (2004). For the diverse pharmacological activities of pyrazole compounds, see: Bekhit et al. (2010, 2012); Higashi et al. (2006). For the synthesis, see: Butler & James (1982); Claramunt et al. (2006). For recently reported structures, see: Wardell et al. (2012); Baddeley et al. (2012).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C11H11N3O2 | F(000) = 456 |
Mr = 217.23 | Dx = 1.402 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 6528 reflections |
a = 21.3909 (13) Å | θ = 2.9–27.5° |
b = 3.8653 (2) Å | µ = 0.10 mm−1 |
c = 12.4514 (8) Å | T = 120 K |
V = 1029.51 (11) Å3 | Plate, light-yellow |
Z = 4 | 0.26 × 0.19 × 0.04 mm |
Rigaku Saturn724+ diffractometer | 1202 independent reflections |
Radiation source: Rotating Anode | 1148 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.046 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.5°, θmin = 3.3° |
profile data from ω–scans | h = −27→25 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −4→5 |
Tmin = 0.598, Tmax = 1.000 | l = −16→10 |
6055 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2711P] where P = (Fo2 + 2Fc2)/3 |
1202 reflections | (Δ/σ)max < 0.001 |
147 parameters | Δρmax = 0.16 e Å−3 |
1 restraint | Δρmin = −0.20 e Å−3 |
C11H11N3O2 | V = 1029.51 (11) Å3 |
Mr = 217.23 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 21.3909 (13) Å | µ = 0.10 mm−1 |
b = 3.8653 (2) Å | T = 120 K |
c = 12.4514 (8) Å | 0.26 × 0.19 × 0.04 mm |
Rigaku Saturn724+ diffractometer | 1202 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 1148 reflections with I > 2σ(I) |
Tmin = 0.598, Tmax = 1.000 | Rint = 0.046 |
6055 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 1 restraint |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.16 e Å−3 |
1202 reflections | Δρmin = −0.20 e Å−3 |
147 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.25661 (11) | 0.8154 (7) | 0.1996 (2) | 0.0529 (6) | |
O2 | 0.19518 (9) | 0.7062 (6) | 0.0666 (2) | 0.0479 (6) | |
N1 | 0.44986 (9) | 0.1859 (5) | −0.12778 (15) | 0.0229 (4) | |
N2 | 0.50113 (9) | 0.0689 (5) | −0.07183 (17) | 0.0246 (4) | |
N3 | 0.24680 (11) | 0.7002 (5) | 0.1097 (2) | 0.0348 (5) | |
C1 | 0.45879 (11) | 0.1711 (6) | −0.23678 (19) | 0.0246 (5) | |
C2 | 0.54135 (11) | −0.0271 (6) | −0.14708 (19) | 0.0260 (5) | |
C3 | 0.51697 (11) | 0.0328 (6) | −0.2510 (2) | 0.0274 (5) | |
H3 | 0.5371 | −0.0138 | −0.3175 | 0.033* | |
C4 | 0.60413 (11) | −0.1723 (7) | −0.1187 (2) | 0.0308 (5) | |
H4A | 0.6188 | −0.0674 | −0.0517 | 0.046* | |
H4B | 0.6339 | −0.1211 | −0.1765 | 0.046* | |
H4C | 0.6008 | −0.4234 | −0.1095 | 0.046* | |
C5 | 0.41435 (12) | 0.3090 (7) | −0.3190 (2) | 0.0313 (5) | |
H5A | 0.3823 | 0.1346 | −0.3344 | 0.047* | |
H5B | 0.4372 | 0.3637 | −0.3850 | 0.047* | |
H5C | 0.3943 | 0.5191 | −0.2914 | 0.047* | |
C6 | 0.39825 (10) | 0.3116 (6) | −0.06913 (18) | 0.0225 (5) | |
C7 | 0.40877 (11) | 0.4650 (6) | 0.03071 (18) | 0.0251 (5) | |
H7 | 0.4502 | 0.4872 | 0.0574 | 0.030* | |
C8 | 0.35886 (11) | 0.5849 (6) | 0.0909 (2) | 0.0267 (5) | |
H8 | 0.3654 | 0.6858 | 0.1595 | 0.032* | |
C9 | 0.29891 (11) | 0.5547 (6) | 0.0488 (2) | 0.0274 (5) | |
C10 | 0.28776 (11) | 0.4044 (6) | −0.0498 (2) | 0.0282 (5) | |
H10 | 0.2463 | 0.3888 | −0.0769 | 0.034* | |
C11 | 0.33738 (11) | 0.2765 (6) | −0.1088 (2) | 0.0259 (5) | |
H11 | 0.3302 | 0.1657 | −0.1758 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0478 (12) | 0.0660 (13) | 0.0448 (13) | 0.0087 (12) | 0.0146 (10) | −0.0132 (11) |
O2 | 0.0249 (9) | 0.0550 (13) | 0.0640 (14) | 0.0063 (9) | 0.0092 (9) | 0.0016 (11) |
N1 | 0.0223 (9) | 0.0249 (9) | 0.0216 (9) | −0.0003 (7) | −0.0012 (7) | 0.0011 (7) |
N2 | 0.0227 (8) | 0.0262 (10) | 0.0249 (9) | 0.0020 (7) | −0.0012 (7) | 0.0005 (9) |
N3 | 0.0300 (11) | 0.0318 (11) | 0.0427 (13) | 0.0032 (9) | 0.0117 (10) | 0.0062 (10) |
C1 | 0.0273 (11) | 0.0239 (10) | 0.0225 (10) | −0.0041 (9) | −0.0019 (9) | −0.0004 (9) |
C2 | 0.0279 (11) | 0.0224 (10) | 0.0275 (11) | −0.0021 (9) | −0.0009 (9) | −0.0003 (9) |
C3 | 0.0330 (12) | 0.0252 (11) | 0.0241 (11) | −0.0025 (9) | 0.0028 (9) | −0.0035 (9) |
C4 | 0.0271 (11) | 0.0329 (13) | 0.0324 (13) | 0.0019 (9) | 0.0016 (9) | −0.0002 (11) |
C5 | 0.0337 (12) | 0.0368 (14) | 0.0233 (10) | −0.0035 (11) | −0.0046 (9) | 0.0038 (10) |
C6 | 0.0236 (10) | 0.0202 (10) | 0.0238 (11) | 0.0000 (7) | 0.0009 (8) | 0.0023 (9) |
C7 | 0.0245 (10) | 0.0252 (11) | 0.0254 (10) | 0.0001 (8) | −0.0016 (9) | 0.0033 (10) |
C8 | 0.0296 (11) | 0.0260 (11) | 0.0246 (11) | −0.0015 (9) | 0.0037 (9) | 0.0019 (9) |
C9 | 0.0250 (11) | 0.0260 (11) | 0.0312 (12) | 0.0019 (9) | 0.0073 (9) | 0.0059 (10) |
C10 | 0.0206 (10) | 0.0297 (11) | 0.0345 (13) | −0.0020 (9) | −0.0014 (9) | 0.0060 (10) |
C11 | 0.0270 (10) | 0.0240 (11) | 0.0268 (11) | −0.0025 (9) | −0.0042 (9) | 0.0012 (9) |
O1—N3 | 1.222 (3) | C4—H4C | 0.9800 |
O2—N3 | 1.228 (3) | C5—H5A | 0.9800 |
N1—C1 | 1.372 (3) | C5—H5B | 0.9800 |
N1—N2 | 1.376 (3) | C5—H5C | 0.9800 |
N1—C6 | 1.410 (3) | C6—C7 | 1.396 (3) |
N2—C2 | 1.325 (3) | C6—C11 | 1.399 (3) |
N3—C9 | 1.461 (3) | C7—C8 | 1.384 (3) |
C1—C3 | 1.366 (3) | C7—H7 | 0.9500 |
C1—C5 | 1.495 (3) | C8—C9 | 1.390 (3) |
C2—C3 | 1.414 (3) | C8—H8 | 0.9500 |
C2—C4 | 1.498 (3) | C9—C10 | 1.379 (4) |
C3—H3 | 0.9500 | C10—C11 | 1.382 (3) |
C4—H4A | 0.9800 | C10—H10 | 0.9500 |
C4—H4B | 0.9800 | C11—H11 | 0.9500 |
C1—N1—N2 | 112.11 (19) | C1—C5—H5B | 109.5 |
C1—N1—C6 | 129.48 (19) | H5A—C5—H5B | 109.5 |
N2—N1—C6 | 118.37 (19) | C1—C5—H5C | 109.5 |
C2—N2—N1 | 104.56 (19) | H5A—C5—H5C | 109.5 |
O1—N3—O2 | 123.2 (2) | H5B—C5—H5C | 109.5 |
O1—N3—C9 | 119.0 (2) | C7—C6—C11 | 120.4 (2) |
O2—N3—C9 | 117.8 (2) | C7—C6—N1 | 118.8 (2) |
C3—C1—N1 | 105.7 (2) | C11—C6—N1 | 120.8 (2) |
C3—C1—C5 | 129.1 (2) | C8—C7—C6 | 120.0 (2) |
N1—C1—C5 | 125.0 (2) | C8—C7—H7 | 120.0 |
N2—C2—C3 | 111.2 (2) | C6—C7—H7 | 120.0 |
N2—C2—C4 | 121.4 (2) | C7—C8—C9 | 118.6 (2) |
C3—C2—C4 | 127.4 (2) | C7—C8—H8 | 120.7 |
C1—C3—C2 | 106.4 (2) | C9—C8—H8 | 120.7 |
C1—C3—H3 | 126.8 | C10—C9—C8 | 122.1 (2) |
C2—C3—H3 | 126.8 | C10—C9—N3 | 119.5 (2) |
C2—C4—H4A | 109.5 | C8—C9—N3 | 118.4 (2) |
C2—C4—H4B | 109.5 | C9—C10—C11 | 119.4 (2) |
H4A—C4—H4B | 109.5 | C9—C10—H10 | 120.3 |
C2—C4—H4C | 109.5 | C11—C10—H10 | 120.3 |
H4A—C4—H4C | 109.5 | C10—C11—C6 | 119.5 (2) |
H4B—C4—H4C | 109.5 | C10—C11—H11 | 120.3 |
C1—C5—H5A | 109.5 | C6—C11—H11 | 120.3 |
C1—N1—N2—C2 | −1.6 (2) | N2—N1—C6—C11 | −148.7 (2) |
C6—N1—N2—C2 | −179.38 (19) | C11—C6—C7—C8 | −0.3 (3) |
N2—N1—C1—C3 | 1.4 (3) | N1—C6—C7—C8 | −178.8 (2) |
C6—N1—C1—C3 | 178.9 (2) | C6—C7—C8—C9 | −1.2 (3) |
N2—N1—C1—C5 | −174.1 (2) | C7—C8—C9—C10 | 1.1 (4) |
C6—N1—C1—C5 | 3.4 (4) | C7—C8—C9—N3 | −176.4 (2) |
N1—N2—C2—C3 | 1.1 (2) | O1—N3—C9—C10 | 176.0 (2) |
N1—N2—C2—C4 | −179.9 (2) | O2—N3—C9—C10 | −5.4 (3) |
N1—C1—C3—C2 | −0.7 (3) | O1—N3—C9—C8 | −6.5 (3) |
C5—C1—C3—C2 | 174.6 (2) | O2—N3—C9—C8 | 172.1 (2) |
N2—C2—C3—C1 | −0.3 (3) | C8—C9—C10—C11 | 0.5 (4) |
C4—C2—C3—C1 | −179.2 (2) | N3—C9—C10—C11 | 178.0 (2) |
C1—N1—C6—C7 | −147.5 (2) | C9—C10—C11—C6 | −2.0 (3) |
N2—N1—C6—C7 | 29.9 (3) | C7—C6—C11—C10 | 1.9 (3) |
C1—N1—C6—C11 | 34.0 (3) | N1—C6—C11—C10 | −179.6 (2) |
Experimental details
Crystal data | |
Chemical formula | C11H11N3O2 |
Mr | 217.23 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 120 |
a, b, c (Å) | 21.3909 (13), 3.8653 (2), 12.4514 (8) |
V (Å3) | 1029.51 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.26 × 0.19 × 0.04 |
Data collection | |
Diffractometer | Rigaku Saturn724+ |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.598, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6055, 1202, 1148 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.101, 1.09 |
No. of reflections | 1202 |
No. of parameters | 147 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.20 |
Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.
References
Baddeley, T. C., Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1016–o1017. CSD CrossRef IUCr Journals Google Scholar
Bekhit, A. A., Hymete, A., Asfaw, H., Bekhit, A. & El-D, A. (2012). Arch. Pharm. 345, 147–154. Web of Science CrossRef CAS Google Scholar
Bekhit, A. A., Hymete, A., Bekhit, A., El-D, A., Damtew, A. & Aboul-Enein, H. Y. (2010). Mini Rev. Med. Chem. 10, 1014–1033. Web of Science CAS PubMed Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Butler, R. N. & James, J. P. (1982). J. Chem. Soc. Perkin Trans I, pp. 553–555. CrossRef Web of Science Google Scholar
Claramunt, R. M., Santa Maria, M. D., Sanz, D., Alkorta, I. & Elguero, J. (2006). Magn. Res. Chem. 44, 566–570. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Haddad, N., Salvango, A. & Busacca, C. (2004). Tetrahedron Lett. 45, 5935–5937. Web of Science CrossRef CAS Google Scholar
Higashi, Y., Jitsuili, D., Chayama, K. & Yoshizumi, M. (2006). Rec. Pat. Cardiovasc. Drug Dis, 1, 85–93. CrossRef CAS Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sil, D., Kumar, R., Sharon, A., Maulik, P. R. & Rama, V. J. (2005). Tetrahedron Lett. 46, 3807–3809. Web of Science CSD CrossRef CAS Google Scholar
Wardell, S. M. S. V., Howie, A. H., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o992–o993. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazoles are key structures in numerous compounds of therapeutic importance (Sil et al., 2005, Haddad et al., 2004). Compounds containing this ring system are known to display diverse pharmacological activities, for example as anti-malarial agents (Bekhit et al., 2012), anti-inflammatory agents (Bekhit et al., 2010), and against cardiovascular disease (Higashi et al., 2006). A general route to pyrazole derivatives involves reaction of an arylhydrazine, ArNHNH2, with a β-dicarbonyl compound, R'COCH2COY. In connection with recent structural studies (Wardell et al., 2012; Baddeley et al., 2012), we now wish to report the structure of the title compound, (I), prepared from 4-O2NC6H4NHNH2 and MeCOCH2COMe.
In (I), Fig. 1, the pyrazole ring is planar with a r.m.s. deviation for the fitted atoms of 0.009 Å. The benzene ring is twisted out of this plane forming a dihedral angle of 31.38 (12)°. The nitro group is effectively co-planar with the benzene ring to which it is connected as seen in the value of the O1—N3—C9—C8 torsion angle of -6.5 (3)°.
The most prominent intermolecular interactions in the crystal structure of (I) are of the type π–π. These form between translationally related molecules along the b axis, involving both the five- and six-membered rings, and therefore, the ring centroid separations are 3.8653 (2) Å, Fig. 2. Columns pack with no specific intermolecular interactions between them, Fig. 3.