organic compounds
5,7,7,12,14,14-Hexamethyl-4,11-diaza-1,8-diazoniacyclotetradecane bis(perchlorate) monohydrate
aDepartment of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com
In the title hydrated salt, C16H38N42+·2ClO4−·H2O, the dication is protonated at the diagonally opposite N atoms proximate to the –C(CH3)2– groups. Within the cavity, there are two ammonium–amine N—H⋯N hydrogen bonds. Supramolecular layers are formed in the crystal packing whereby the water molecule links two perchlorate anions, and the resultant aggregates are connected to the dications via N—H⋯O hydrogen bonds. Layers, with an undulating topology, stack along the a axis being connected by C—H⋯O interactions.
Related literature
For background to macrocyclic complexes, see: Hazari et al. (2010). For related structures, see: Hazari et al. (2008). For the synthesis of the macrocyclic ligand, see: Busch et al. (1971).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812012135/hg5197sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812012135/hg5197Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812012135/hg5197Isup3.cml
The compound 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetra-1,8-decadiene.2HClO4, prepared by a modified method from the reported method (Busch et al., 1971), on reduction with NaBH4, yields an isomeric mixture of saturated macrocycles, Me6[14]anes, which have been resolved into two distinct isomers namely 'tet a' and 'tet b'. During the synthesis of dihydrotrifluroacetate salt of 'tet b', by the reaction of 'tet b' with trifluoroacetic acid, crystals were formed from the mother liquor by slow evaporation. Yield 55%. M.pt: 523–525 K. Anal. Calc. for C16H40N4Cl2O9, C, 38.17; H, 8.01; N, 11.13%. Found: C, 38.15; H, 8.09; N, 10.98%. FT—IR (KBr, cm-1) 3210 ν(N—H), 2975 ν(C—H), 1372 ν(CH3), 1184 ν(C—C), 1125, 623 ν(ClO4). The same product was isolated during the attempted synthesis of the N-pendent ligand of 'tet b' by the reaction of 'tet b' with allyl chloride. The formation of the unexpected perchlorate salt of the compound may be due to presence HClO4 in trifluoroacetic acid solution as well in the allyl chloride solution, respectively.
The C-bound H-atoms were placed in calculated positions (C—H = 0.98–1.00 Å) and were included in the
in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(N,C). The O—H and N—H atoms were located from a difference map and refined with O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, respectively, and with Uiso(H)= 1.5Uequiv(O) or 1.2Uequiv(N).As a continuation of systematic studies into the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2008; Hazari et al., 2010), crystals of the title hydrated salt, (I), were isolated and characterized crystallographically.
In (I), Fig. 1, the crystallographic
comprises a dipositive cation with the charge balance provided by two ClO4- ions, and is completed by a water molecule of hydration. Crystallography shows that protonation has occurred at diagonally opposite N atoms that are proximate to the C atom carrying two methyl substituents. A similar pattern of protonation was observed in the octa-methyl analogues characterized as the nitrate and acetate salts, the latter as a trihydrate (Hazari et al., 2008). Within the cavity, there are two N—H···N hydrogen bonds where the donor hydrogen is bound to an ammonium centre, Table 1. Three of the remaining N—H atoms form hydrogen bonding interactions to the water molecule or perchlorate-O atoms, Table 1, leaving one N—H hydrogen atom not involved in a significant intermolecular contact. The water molecule forms two donor interactions with perchlorate-O atoms derived from different perchlorate anions. The hydrogen bonding interactions lead to the formation of supramolecular layers in the bc plane, Fig. 2. The layers have a zigzag topology and stack along the a axis with the major interactions between them being of the type C—H···O, Fig. 3 and Table 1.For background to macrocyclic complexes, see:Hazari et al. (2010). For related structures, see: Hazari et al. (2008). For the synthesis of the macrocyclic ligand, see: Busch et al. (1971).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the constituents of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. | |
Fig. 2. A view of the supramolecular layer in the bc plane in (I). The O—H···O and N—H···O hydrogen bonds are shown as orange and blue dashed lines, respectively. | |
Fig. 3. A view of the unit-cell contents in projection down the b axis in (I). The O—H···O and N—H···O hydrogen bonds are shown as orange and blue dashed lines, respectively. |
C16H38N42+·2ClO4−·H2O | F(000) = 1080 |
Mr = 503.42 | Dx = 1.366 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ybc | Cell parameters from 6194 reflections |
a = 11.0930 (1) Å | θ = 3.5–76.3° |
b = 8.7946 (1) Å | µ = 2.84 mm−1 |
c = 25.3692 (3) Å | T = 100 K |
β = 98.435 (1)° | Block, colourless |
V = 2448.21 (5) Å3 | 0.40 × 0.35 × 0.30 mm |
Z = 4 |
Agilent SuperNova Dual diffractometer with an Atlas detector | 5000 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 4665 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.017 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 76.5°, θmin = 3.5° |
ω scan | h = −13→13 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −10→6 |
Tmin = 0.695, Tmax = 1.000 | l = −29→31 |
9569 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0609P)2 + 1.6737P] where P = (Fo2 + 2Fc2)/3 |
5000 reflections | (Δ/σ)max = 0.001 |
312 parameters | Δρmax = 0.61 e Å−3 |
8 restraints | Δρmin = −0.56 e Å−3 |
C16H38N42+·2ClO4−·H2O | V = 2448.21 (5) Å3 |
Mr = 503.42 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 11.0930 (1) Å | µ = 2.84 mm−1 |
b = 8.7946 (1) Å | T = 100 K |
c = 25.3692 (3) Å | 0.40 × 0.35 × 0.30 mm |
β = 98.435 (1)° |
Agilent SuperNova Dual diffractometer with an Atlas detector | 5000 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 4665 reflections with I > 2σ(I) |
Tmin = 0.695, Tmax = 1.000 | Rint = 0.017 |
9569 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 8 restraints |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.61 e Å−3 |
5000 reflections | Δρmin = −0.56 e Å−3 |
312 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.31093 (3) | 0.82773 (4) | 0.546168 (14) | 0.01665 (11) | |
Cl2 | 0.83060 (3) | 0.38578 (4) | 0.287184 (13) | 0.01370 (11) | |
O1 | 0.42268 (11) | 0.75538 (15) | 0.56951 (5) | 0.0268 (3) | |
O2 | 0.32605 (13) | 0.88170 (16) | 0.49335 (5) | 0.0298 (3) | |
O3 | 0.28350 (12) | 0.95396 (15) | 0.57816 (5) | 0.0258 (3) | |
O4 | 0.21214 (11) | 0.72094 (15) | 0.54079 (5) | 0.0261 (3) | |
O5 | 0.90879 (15) | 0.51760 (18) | 0.29309 (6) | 0.0383 (4) | |
O6 | 0.83712 (16) | 0.30970 (16) | 0.33756 (5) | 0.0382 (4) | |
O7 | 0.70924 (13) | 0.4375 (2) | 0.27069 (7) | 0.0451 (4) | |
O8 | 0.86602 (13) | 0.28549 (15) | 0.24776 (5) | 0.0279 (3) | |
O1w | 0.62426 (13) | 0.80297 (17) | 0.50563 (5) | 0.0276 (3) | |
N1 | 0.69983 (11) | 0.81512 (15) | 0.29586 (5) | 0.0124 (3) | |
N2 | 0.63078 (11) | 0.73862 (15) | 0.39559 (5) | 0.0127 (3) | |
N3 | 0.89992 (11) | 0.70336 (15) | 0.39858 (5) | 0.0124 (3) | |
N4 | 0.91280 (11) | 0.98528 (15) | 0.35226 (5) | 0.0125 (3) | |
C1 | 0.54974 (15) | 0.7498 (2) | 0.21479 (6) | 0.0191 (3) | |
H1A | 0.5885 | 0.8231 | 0.1935 | 0.029* | |
H1B | 0.4623 | 0.7448 | 0.2016 | 0.029* | |
H1C | 0.5863 | 0.6492 | 0.2119 | 0.029* | |
C2 | 0.56883 (13) | 0.80012 (18) | 0.27322 (6) | 0.0133 (3) | |
H2A | 0.5291 | 0.9015 | 0.2754 | 0.016* | |
C3 | 0.50736 (14) | 0.68698 (18) | 0.30677 (6) | 0.0149 (3) | |
H3A | 0.5505 | 0.5885 | 0.3064 | 0.018* | |
H3B | 0.4229 | 0.6708 | 0.2889 | 0.018* | |
C4 | 0.50164 (13) | 0.72858 (18) | 0.36520 (6) | 0.0137 (3) | |
C5 | 0.44573 (14) | 0.88612 (19) | 0.37008 (7) | 0.0176 (3) | |
H5A | 0.4433 | 0.9089 | 0.4077 | 0.026* | |
H5B | 0.3627 | 0.8877 | 0.3505 | 0.026* | |
H5C | 0.4953 | 0.9627 | 0.3551 | 0.026* | |
C6 | 0.42988 (15) | 0.6089 (2) | 0.39099 (7) | 0.0190 (3) | |
H6A | 0.4267 | 0.6371 | 0.4281 | 0.028* | |
H6B | 0.4700 | 0.5099 | 0.3899 | 0.028* | |
H6C | 0.3469 | 0.6028 | 0.3716 | 0.028* | |
C7 | 0.69904 (14) | 0.59435 (18) | 0.40941 (6) | 0.0159 (3) | |
H7A | 0.7015 | 0.5338 | 0.3767 | 0.019* | |
H7B | 0.6567 | 0.5336 | 0.4340 | 0.019* | |
C8 | 0.82827 (14) | 0.6290 (2) | 0.43569 (6) | 0.0166 (3) | |
H8A | 0.8253 | 0.6961 | 0.4668 | 0.020* | |
H8B | 0.8689 | 0.5332 | 0.4487 | 0.020* | |
C9 | 1.03115 (13) | 0.71842 (18) | 0.42113 (6) | 0.0134 (3) | |
H9A | 1.0365 | 0.7608 | 0.4580 | 0.016* | |
C10 | 1.09813 (15) | 0.5659 (2) | 0.42452 (7) | 0.0192 (3) | |
H10A | 1.0580 | 0.4949 | 0.4461 | 0.029* | |
H10B | 1.1829 | 0.5809 | 0.4410 | 0.029* | |
H10C | 1.0964 | 0.5241 | 0.3886 | 0.029* | |
C11 | 1.09391 (13) | 0.82989 (18) | 0.38754 (6) | 0.0133 (3) | |
H11A | 1.0905 | 0.7862 | 0.3514 | 0.016* | |
H11B | 1.1809 | 0.8361 | 0.4032 | 0.016* | |
C12 | 1.04329 (13) | 0.99271 (18) | 0.38168 (6) | 0.0134 (3) | |
C13 | 1.03266 (15) | 1.0660 (2) | 0.43525 (6) | 0.0190 (3) | |
H13A | 1.1138 | 1.0741 | 0.4564 | 0.028* | |
H13B | 0.9803 | 1.0033 | 0.4544 | 0.028* | |
H13C | 0.9971 | 1.1677 | 0.4294 | 0.028* | |
C14 | 1.12120 (14) | 1.09205 (19) | 0.35056 (7) | 0.0179 (3) | |
H14A | 1.2049 | 1.0955 | 0.3694 | 0.027* | |
H14B | 1.0875 | 1.1952 | 0.3474 | 0.027* | |
H14C | 1.1212 | 1.0492 | 0.3149 | 0.027* | |
C15 | 0.89575 (13) | 0.94676 (18) | 0.29431 (6) | 0.0139 (3) | |
H15A | 0.9337 | 0.8470 | 0.2892 | 0.017* | |
H15B | 0.9363 | 1.0243 | 0.2747 | 0.017* | |
C16 | 0.76101 (14) | 0.94086 (19) | 0.27244 (6) | 0.0154 (3) | |
H16A | 0.7223 | 1.0381 | 0.2802 | 0.019* | |
H16B | 0.7510 | 0.9282 | 0.2333 | 0.019* | |
H1w | 0.5629 (18) | 0.787 (4) | 0.5213 (11) | 0.059 (9)* | |
H2w | 0.641 (3) | 0.8975 (15) | 0.5067 (16) | 0.088 (13)* | |
H1 | 0.7341 (18) | 0.7279 (15) | 0.2895 (8) | 0.019 (5)* | |
H3 | 0.8958 (18) | 0.648 (2) | 0.3698 (6) | 0.018 (5)* | |
H22 | 0.6697 (18) | 0.791 (2) | 0.3737 (7) | 0.026 (6)* | |
H21 | 0.6276 (19) | 0.788 (2) | 0.4254 (6) | 0.023 (5)* | |
H41 | 0.8779 (18) | 1.0722 (15) | 0.3581 (8) | 0.021 (5)* | |
H42 | 0.8796 (19) | 0.913 (2) | 0.3698 (8) | 0.028 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01667 (19) | 0.0170 (2) | 0.01711 (19) | 0.00152 (13) | 0.00511 (13) | −0.00033 (13) |
Cl2 | 0.01564 (18) | 0.01343 (19) | 0.01328 (18) | 0.00174 (12) | 0.00624 (13) | 0.00070 (12) |
O1 | 0.0185 (6) | 0.0267 (7) | 0.0341 (7) | 0.0054 (5) | −0.0001 (5) | 0.0033 (6) |
O2 | 0.0403 (8) | 0.0316 (7) | 0.0191 (6) | −0.0007 (6) | 0.0099 (5) | 0.0011 (5) |
O3 | 0.0273 (6) | 0.0213 (6) | 0.0316 (7) | −0.0028 (5) | 0.0139 (5) | −0.0116 (5) |
O4 | 0.0229 (6) | 0.0214 (6) | 0.0331 (7) | −0.0055 (5) | 0.0014 (5) | −0.0056 (5) |
O5 | 0.0504 (9) | 0.0393 (8) | 0.0296 (7) | −0.0294 (7) | 0.0204 (6) | −0.0167 (6) |
O6 | 0.0747 (11) | 0.0252 (7) | 0.0196 (7) | 0.0184 (7) | 0.0227 (7) | 0.0106 (5) |
O7 | 0.0206 (7) | 0.0663 (11) | 0.0464 (9) | 0.0191 (7) | −0.0019 (6) | −0.0046 (8) |
O8 | 0.0463 (8) | 0.0187 (6) | 0.0241 (6) | 0.0007 (6) | 0.0229 (6) | −0.0047 (5) |
O1w | 0.0290 (7) | 0.0316 (7) | 0.0252 (7) | −0.0012 (6) | 0.0135 (5) | −0.0016 (6) |
N1 | 0.0106 (6) | 0.0129 (6) | 0.0140 (6) | 0.0004 (5) | 0.0024 (5) | 0.0012 (5) |
N2 | 0.0113 (6) | 0.0142 (6) | 0.0131 (6) | −0.0008 (5) | 0.0036 (5) | −0.0010 (5) |
N3 | 0.0102 (6) | 0.0164 (6) | 0.0108 (6) | −0.0011 (5) | 0.0023 (5) | 0.0007 (5) |
N4 | 0.0107 (6) | 0.0132 (6) | 0.0142 (6) | 0.0010 (5) | 0.0042 (5) | 0.0002 (5) |
C1 | 0.0224 (8) | 0.0215 (8) | 0.0130 (7) | −0.0034 (6) | 0.0009 (6) | −0.0019 (6) |
C2 | 0.0118 (7) | 0.0146 (7) | 0.0132 (7) | −0.0004 (5) | 0.0014 (5) | −0.0012 (6) |
C3 | 0.0134 (7) | 0.0159 (7) | 0.0153 (7) | −0.0030 (6) | 0.0019 (5) | −0.0015 (6) |
C4 | 0.0094 (6) | 0.0166 (8) | 0.0153 (7) | −0.0015 (6) | 0.0026 (5) | 0.0000 (6) |
C5 | 0.0154 (7) | 0.0201 (8) | 0.0183 (7) | 0.0033 (6) | 0.0054 (6) | −0.0006 (6) |
C6 | 0.0143 (7) | 0.0220 (8) | 0.0217 (8) | −0.0048 (6) | 0.0064 (6) | 0.0012 (6) |
C7 | 0.0129 (7) | 0.0148 (7) | 0.0206 (8) | 0.0000 (6) | 0.0041 (6) | 0.0047 (6) |
C8 | 0.0132 (7) | 0.0221 (8) | 0.0147 (7) | −0.0002 (6) | 0.0031 (6) | 0.0066 (6) |
C9 | 0.0098 (7) | 0.0183 (8) | 0.0119 (7) | 0.0009 (6) | 0.0013 (5) | 0.0009 (6) |
C10 | 0.0163 (7) | 0.0202 (8) | 0.0212 (8) | 0.0050 (6) | 0.0030 (6) | 0.0039 (6) |
C11 | 0.0098 (6) | 0.0176 (8) | 0.0130 (7) | 0.0010 (5) | 0.0033 (5) | −0.0004 (6) |
C12 | 0.0104 (6) | 0.0162 (7) | 0.0142 (7) | −0.0008 (6) | 0.0034 (5) | −0.0015 (6) |
C13 | 0.0186 (7) | 0.0223 (8) | 0.0166 (7) | −0.0004 (6) | 0.0045 (6) | −0.0059 (6) |
C14 | 0.0150 (7) | 0.0181 (8) | 0.0218 (8) | −0.0042 (6) | 0.0064 (6) | 0.0002 (6) |
C15 | 0.0131 (7) | 0.0172 (8) | 0.0123 (7) | −0.0002 (6) | 0.0047 (5) | 0.0029 (6) |
C16 | 0.0132 (7) | 0.0169 (8) | 0.0161 (7) | −0.0004 (6) | 0.0014 (5) | 0.0061 (6) |
Cl1—O3 | 1.4339 (12) | C4—C5 | 1.530 (2) |
Cl1—O4 | 1.4345 (13) | C5—H5A | 0.9800 |
Cl1—O1 | 1.4412 (12) | C5—H5B | 0.9800 |
Cl1—O2 | 1.4542 (13) | C5—H5C | 0.9800 |
Cl2—O7 | 1.4245 (14) | C6—H6A | 0.9800 |
Cl2—O8 | 1.4312 (12) | C6—H6B | 0.9800 |
Cl2—O6 | 1.4349 (13) | C6—H6C | 0.9800 |
Cl2—O5 | 1.4425 (14) | C7—C8 | 1.521 (2) |
O1w—H1w | 0.848 (10) | C7—H7A | 0.9900 |
O1w—H2w | 0.852 (10) | C7—H7B | 0.9900 |
N1—C16 | 1.4679 (19) | C8—H8A | 0.9900 |
N1—C2 | 1.4881 (18) | C8—H8B | 0.9900 |
N1—H1 | 0.882 (9) | C9—C11 | 1.532 (2) |
N2—C7 | 1.493 (2) | C9—C10 | 1.530 (2) |
N2—C4 | 1.5266 (18) | C9—H9A | 1.0000 |
N2—H22 | 0.881 (10) | C10—H10A | 0.9800 |
N2—H21 | 0.879 (9) | C10—H10B | 0.9800 |
N3—C8 | 1.4713 (19) | C10—H10C | 0.9800 |
N3—C9 | 1.4899 (18) | C11—C12 | 1.537 (2) |
N3—H3 | 0.874 (9) | C11—H11A | 0.9900 |
N4—C15 | 1.4936 (19) | C11—H11B | 0.9900 |
N4—C12 | 1.5296 (18) | C12—C13 | 1.524 (2) |
N4—H41 | 0.879 (9) | C12—C14 | 1.528 (2) |
N4—H42 | 0.887 (10) | C13—H13A | 0.9800 |
C1—C2 | 1.532 (2) | C13—H13B | 0.9800 |
C1—H1A | 0.9800 | C13—H13C | 0.9800 |
C1—H1B | 0.9800 | C14—H14A | 0.9800 |
C1—H1C | 0.9800 | C14—H14B | 0.9800 |
C2—C3 | 1.533 (2) | C14—H14C | 0.9800 |
C2—H2A | 1.0000 | C15—C16 | 1.517 (2) |
C3—C4 | 1.537 (2) | C15—H15A | 0.9900 |
C3—H3A | 0.9900 | C15—H15B | 0.9900 |
C3—H3B | 0.9900 | C16—H16A | 0.9900 |
C4—C6 | 1.524 (2) | C16—H16B | 0.9900 |
O3—Cl1—O4 | 109.76 (8) | C4—C6—H6C | 109.5 |
O3—Cl1—O1 | 110.50 (8) | H6A—C6—H6C | 109.5 |
O4—Cl1—O1 | 110.43 (8) | H6B—C6—H6C | 109.5 |
O3—Cl1—O2 | 109.37 (8) | N2—C7—C8 | 110.22 (13) |
O4—Cl1—O2 | 108.41 (8) | N2—C7—H7A | 109.6 |
O1—Cl1—O2 | 108.32 (8) | C8—C7—H7A | 109.6 |
O7—Cl2—O8 | 109.64 (9) | N2—C7—H7B | 109.6 |
O7—Cl2—O6 | 109.43 (10) | C8—C7—H7B | 109.6 |
O8—Cl2—O6 | 110.61 (8) | H7A—C7—H7B | 108.1 |
O7—Cl2—O5 | 107.56 (11) | N3—C8—C7 | 111.81 (13) |
O8—Cl2—O5 | 110.20 (8) | N3—C8—H8A | 109.3 |
O6—Cl2—O5 | 109.35 (10) | C7—C8—H8A | 109.3 |
H1w—O1w—H2w | 110 (3) | N3—C8—H8B | 109.3 |
C16—N1—C2 | 113.19 (12) | C7—C8—H8B | 109.3 |
C16—N1—H1 | 110.1 (14) | H8A—C8—H8B | 107.9 |
C2—N1—H1 | 105.9 (14) | N3—C9—C11 | 109.97 (12) |
C7—N2—C4 | 118.40 (12) | N3—C9—C10 | 112.50 (13) |
C7—N2—H22 | 108.3 (15) | C11—C9—C10 | 109.63 (12) |
C4—N2—H22 | 102.9 (15) | N3—C9—H9A | 108.2 |
C7—N2—H21 | 107.7 (14) | C11—C9—H9A | 108.2 |
C4—N2—H21 | 108.1 (14) | C10—C9—H9A | 108.2 |
H22—N2—H21 | 111 (2) | C9—C10—H10A | 109.5 |
C8—N3—C9 | 112.51 (12) | C9—C10—H10B | 109.5 |
C8—N3—H3 | 108.6 (14) | H10A—C10—H10B | 109.5 |
C9—N3—H3 | 107.4 (13) | C9—C10—H10C | 109.5 |
C15—N4—C12 | 117.65 (11) | H10A—C10—H10C | 109.5 |
C15—N4—H41 | 111.5 (14) | H10B—C10—H10C | 109.5 |
C12—N4—H41 | 106.9 (14) | C9—C11—C12 | 117.42 (12) |
C15—N4—H42 | 109.1 (15) | C9—C11—H11A | 107.9 |
C12—N4—H42 | 102.7 (15) | C12—C11—H11A | 107.9 |
H41—N4—H42 | 108.4 (19) | C9—C11—H11B | 107.9 |
C2—C1—H1A | 109.5 | C12—C11—H11B | 107.9 |
C2—C1—H1B | 109.5 | H11A—C11—H11B | 107.2 |
H1A—C1—H1B | 109.5 | C13—C12—C14 | 110.03 (13) |
C2—C1—H1C | 109.5 | C13—C12—N4 | 105.17 (12) |
H1A—C1—H1C | 109.5 | C14—C12—N4 | 109.81 (12) |
H1B—C1—H1C | 109.5 | C13—C12—C11 | 112.50 (13) |
N1—C2—C1 | 112.82 (13) | C14—C12—C11 | 110.87 (12) |
N1—C2—C3 | 109.39 (12) | N4—C12—C11 | 108.27 (12) |
C1—C2—C3 | 109.88 (13) | C12—C13—H13A | 109.5 |
N1—C2—H2A | 108.2 | C12—C13—H13B | 109.5 |
C1—C2—H2A | 108.2 | H13A—C13—H13B | 109.5 |
C3—C2—H2A | 108.2 | C12—C13—H13C | 109.5 |
C2—C3—C4 | 117.75 (13) | H13A—C13—H13C | 109.5 |
C2—C3—H3A | 107.9 | H13B—C13—H13C | 109.5 |
C4—C3—H3A | 107.9 | C12—C14—H14A | 109.5 |
C2—C3—H3B | 107.9 | C12—C14—H14B | 109.5 |
C4—C3—H3B | 107.9 | H14A—C14—H14B | 109.5 |
H3A—C3—H3B | 107.2 | C12—C14—H14C | 109.5 |
C6—C4—N2 | 109.49 (12) | H14A—C14—H14C | 109.5 |
C6—C4—C5 | 110.30 (13) | H14B—C14—H14C | 109.5 |
N2—C4—C5 | 105.56 (12) | N4—C15—C16 | 110.09 (12) |
C6—C4—C3 | 110.35 (13) | N4—C15—H15A | 109.6 |
N2—C4—C3 | 109.42 (12) | C16—C15—H15A | 109.6 |
C5—C4—C3 | 111.60 (13) | N4—C15—H15B | 109.6 |
C4—C5—H5A | 109.5 | C16—C15—H15B | 109.6 |
C4—C5—H5B | 109.5 | H15A—C15—H15B | 108.2 |
H5A—C5—H5B | 109.5 | N1—C16—C15 | 111.53 (12) |
C4—C5—H5C | 109.5 | N1—C16—H16A | 109.3 |
H5A—C5—H5C | 109.5 | C15—C16—H16A | 109.3 |
H5B—C5—H5C | 109.5 | N1—C16—H16B | 109.3 |
C4—C6—H6A | 109.5 | C15—C16—H16B | 109.3 |
C4—C6—H6B | 109.5 | H16A—C16—H16B | 108.0 |
H6A—C6—H6B | 109.5 | ||
C16—N1—C2—C1 | 67.79 (17) | C8—N3—C9—C11 | −165.84 (13) |
C16—N1—C2—C3 | −169.58 (12) | C8—N3—C9—C10 | 71.65 (16) |
N1—C2—C3—C4 | 63.55 (17) | N3—C9—C11—C12 | 58.64 (17) |
C1—C2—C3—C4 | −172.09 (13) | C10—C9—C11—C12 | −177.16 (13) |
C7—N2—C4—C6 | 46.82 (17) | C15—N4—C12—C13 | 168.25 (13) |
C7—N2—C4—C5 | 165.54 (13) | C15—N4—C12—C14 | 49.90 (17) |
C7—N2—C4—C3 | −74.24 (16) | C15—N4—C12—C11 | −71.28 (16) |
C2—C3—C4—C6 | 175.99 (13) | C9—C11—C12—C13 | 52.22 (17) |
C2—C3—C4—N2 | −63.47 (17) | C9—C11—C12—C14 | 175.91 (13) |
C2—C3—C4—C5 | 52.98 (17) | C9—C11—C12—N4 | −63.57 (16) |
C4—N2—C7—C8 | 175.73 (12) | C12—N4—C15—C16 | 178.58 (12) |
C9—N3—C8—C7 | −171.92 (13) | C2—N1—C16—C15 | −176.80 (12) |
N2—C7—C8—N3 | −66.08 (17) | N4—C15—C16—N1 | −66.07 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H22···N1 | 0.88 (1) | 2.06 (2) | 2.8300 (18) | 145 (2) |
N4—H42···N3 | 0.89 (1) | 1.98 (2) | 2.7564 (19) | 145 (2) |
N2—H21···O1w | 0.88 (1) | 2.05 (1) | 2.8595 (19) | 154 (2) |
N3—H3···O5 | 0.87 (1) | 2.28 (1) | 3.1493 (18) | 172 (2) |
N4—H41···O6i | 0.88 (1) | 2.18 (1) | 2.9820 (19) | 151 (2) |
O1w—H1w···O1 | 0.85 (1) | 2.13 (1) | 2.9775 (19) | 173 (3) |
O1w—H2w···O2ii | 0.85 (1) | 1.98 (1) | 2.827 (2) | 177 (4) |
C8—H8B···O4iii | 0.99 | 2.44 | 3.179 (2) | 131 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H38N42+·2ClO4−·H2O |
Mr | 503.42 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 11.0930 (1), 8.7946 (1), 25.3692 (3) |
β (°) | 98.435 (1) |
V (Å3) | 2448.21 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.84 |
Crystal size (mm) | 0.40 × 0.35 × 0.30 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.695, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9569, 5000, 4665 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.631 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.105, 1.03 |
No. of reflections | 5000 |
No. of parameters | 312 |
No. of restraints | 8 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.61, −0.56 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H22···N1 | 0.881 (10) | 2.062 (15) | 2.8300 (18) | 145 (2) |
N4—H42···N3 | 0.887 (10) | 1.983 (15) | 2.7564 (19) | 145 (2) |
N2—H21···O1w | 0.879 (9) | 2.045 (13) | 2.8595 (19) | 154 (2) |
N3—H3···O5 | 0.874 (9) | 2.281 (10) | 3.1493 (18) | 172.4 (19) |
N4—H41···O6i | 0.879 (9) | 2.184 (14) | 2.9820 (19) | 150.8 (19) |
O1w—H1w···O1 | 0.848 (10) | 2.134 (11) | 2.9775 (19) | 173 (3) |
O1w—H2w···O2ii | 0.852 (10) | 1.975 (10) | 2.827 (2) | 177 (4) |
C8—H8B···O4iii | 0.99 | 2.44 | 3.179 (2) | 131 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1. |
Footnotes
‡Additional correspondence author, e-mail: tapashir@yahoo.com.
Acknowledgements
The authors are grateful to the Ministry of National Science, Information & Communication Technology (NSICT), Bangladesh, for a research fellowship to BCN. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/12).
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Busch, D. H., Farmery, K., Goedken, V. L., Katovic, V., Melnyk, A. C., Sperati, C. R. & Tokel, N. (1971). Advan. Chem. Ser. 100, 44–78. CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hazari, S. K. S., Roy, T. G., Barua, K. K., Anwar, N., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Appl. Organomet. Chem. 24, 878–887. Google Scholar
Hazari, S. K. S., Roy, T. G., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1–8. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a continuation of systematic studies into the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2008; Hazari et al., 2010), crystals of the title hydrated salt, (I), were isolated and characterized crystallographically.
In (I), Fig. 1, the crystallographic asymmetric unit comprises a dipositive cation with the charge balance provided by two ClO4- ions, and is completed by a water molecule of hydration. Crystallography shows that protonation has occurred at diagonally opposite N atoms that are proximate to the C atom carrying two methyl substituents. A similar pattern of protonation was observed in the octa-methyl analogues characterized as the nitrate and acetate salts, the latter as a trihydrate (Hazari et al., 2008). Within the cavity, there are two N—H···N hydrogen bonds where the donor hydrogen is bound to an ammonium centre, Table 1. Three of the remaining N—H atoms form hydrogen bonding interactions to the water molecule or perchlorate-O atoms, Table 1, leaving one N—H hydrogen atom not involved in a significant intermolecular contact. The water molecule forms two donor interactions with perchlorate-O atoms derived from different perchlorate anions. The hydrogen bonding interactions lead to the formation of supramolecular layers in the bc plane, Fig. 2. The layers have a zigzag topology and stack along the a axis with the major interactions between them being of the type C—H···O, Fig. 3 and Table 1.