organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,7,7,12,14,14-Hexa­methyl-4,11-di­aza-1,8-diazo­nia­cyclo­tetra­decane bis­­(perchlorate) monohydrate

aDepartment of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 21 March 2012; accepted 21 March 2012; online 24 March 2012)

In the title hydrated salt, C16H38N42+·2ClO4·H2O, the dication is protonated at the diagonally opposite N atoms proximate to the –C(CH3)2– groups. Within the cavity, there are two ammonium–amine N—H⋯N hydrogen bonds. Supra­molecular layers are formed in the crystal packing whereby the water mol­ecule links two perchlorate anions, and the resultant aggregates are connected to the dications via N—H⋯O hydrogen bonds. Layers, with an undulating topology, stack along the a axis being connected by C—H⋯O inter­actions.

Related literature

For background to macrocyclic complexes, see: Hazari et al. (2010[Hazari, S. K. S., Roy, T. G., Barua, K. K., Anwar, N., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Appl. Organomet. Chem. 24, 878-887.]). For related structures, see: Hazari et al. (2008[Hazari, S. K. S., Roy, T. G., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1-8.]). For the synthesis of the macrocyclic ligand, see: Busch et al. (1971[Busch, D. H., Farmery, K., Goedken, V. L., Katovic, V., Melnyk, A. C., Sperati, C. R. & Tokel, N. (1971). Advan. Chem. Ser. 100, 44-78.]).

[Scheme 1]

Experimental

Crystal data
  • C16H38N42+·2ClO4·H2O

  • Mr = 503.42

  • Monoclinic, P 21 /c

  • a = 11.0930 (1) Å

  • b = 8.7946 (1) Å

  • c = 25.3692 (3) Å

  • β = 98.435 (1)°

  • V = 2448.21 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.84 mm−1

  • T = 100 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.695, Tmax = 1.000

  • 9569 measured reflections

  • 5000 independent reflections

  • 4665 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.03

  • 5000 reflections

  • 312 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H22⋯N1 0.88 (1) 2.06 (2) 2.8300 (18) 145 (2)
N4—H42⋯N3 0.89 (1) 1.98 (2) 2.7564 (19) 145 (2)
N2—H21⋯O1w 0.88 (1) 2.05 (1) 2.8595 (19) 154 (2)
N3—H3⋯O5 0.87 (1) 2.28 (1) 3.1493 (18) 172 (2)
N4—H41⋯O6i 0.88 (1) 2.18 (1) 2.9820 (19) 151 (2)
O1w—H1w⋯O1 0.85 (1) 2.13 (1) 2.9775 (19) 173 (3)
O1w—H2w⋯O2ii 0.85 (1) 1.98 (1) 2.827 (2) 177 (4)
C8—H8B⋯O4iii 0.99 2.44 3.179 (2) 131
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a continuation of systematic studies into the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2008; Hazari et al., 2010), crystals of the title hydrated salt, (I), were isolated and characterized crystallographically.

In (I), Fig. 1, the crystallographic asymmetric unit comprises a dipositive cation with the charge balance provided by two ClO4- ions, and is completed by a water molecule of hydration. Crystallography shows that protonation has occurred at diagonally opposite N atoms that are proximate to the C atom carrying two methyl substituents. A similar pattern of protonation was observed in the octa-methyl analogues characterized as the nitrate and acetate salts, the latter as a trihydrate (Hazari et al., 2008). Within the cavity, there are two N—H···N hydrogen bonds where the donor hydrogen is bound to an ammonium centre, Table 1. Three of the remaining N—H atoms form hydrogen bonding interactions to the water molecule or perchlorate-O atoms, Table 1, leaving one N—H hydrogen atom not involved in a significant intermolecular contact. The water molecule forms two donor interactions with perchlorate-O atoms derived from different perchlorate anions. The hydrogen bonding interactions lead to the formation of supramolecular layers in the bc plane, Fig. 2. The layers have a zigzag topology and stack along the a axis with the major interactions between them being of the type C—H···O, Fig. 3 and Table 1.

Related literature top

For background to macrocyclic complexes, see:Hazari et al. (2010). For related structures, see: Hazari et al. (2008). For the synthesis of the macrocyclic ligand, see: Busch et al. (1971).

Experimental top

The compound 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetra-1,8-decadiene.2HClO4, prepared by a modified method from the reported method (Busch et al., 1971), on reduction with NaBH4, yields an isomeric mixture of saturated macrocycles, Me6[14]anes, which have been resolved into two distinct isomers namely 'tet a' and 'tet b'. During the synthesis of dihydrotrifluroacetate salt of 'tet b', by the reaction of 'tet b' with trifluoroacetic acid, crystals were formed from the mother liquor by slow evaporation. Yield 55%. M.pt: 523–525 K. Anal. Calc. for C16H40N4Cl2O9, C, 38.17; H, 8.01; N, 11.13%. Found: C, 38.15; H, 8.09; N, 10.98%. FT—IR (KBr, cm-1) 3210 ν(N—H), 2975 ν(C—H), 1372 ν(CH3), 1184 ν(C—C), 1125, 623 ν(ClO4). The same product was isolated during the attempted synthesis of the N-pendent ligand of 'tet b' by the reaction of 'tet b' with allyl chloride. The formation of the unexpected perchlorate salt of the compound may be due to presence HClO4 in trifluoroacetic acid solution as well in the allyl chloride solution, respectively.

Refinement top

The C-bound H-atoms were placed in calculated positions (C—H = 0.98–1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(N,C). The O—H and N—H atoms were located from a difference map and refined with O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, respectively, and with Uiso(H)= 1.5Uequiv(O) or 1.2Uequiv(N).

Structure description top

As a continuation of systematic studies into the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2008; Hazari et al., 2010), crystals of the title hydrated salt, (I), were isolated and characterized crystallographically.

In (I), Fig. 1, the crystallographic asymmetric unit comprises a dipositive cation with the charge balance provided by two ClO4- ions, and is completed by a water molecule of hydration. Crystallography shows that protonation has occurred at diagonally opposite N atoms that are proximate to the C atom carrying two methyl substituents. A similar pattern of protonation was observed in the octa-methyl analogues characterized as the nitrate and acetate salts, the latter as a trihydrate (Hazari et al., 2008). Within the cavity, there are two N—H···N hydrogen bonds where the donor hydrogen is bound to an ammonium centre, Table 1. Three of the remaining N—H atoms form hydrogen bonding interactions to the water molecule or perchlorate-O atoms, Table 1, leaving one N—H hydrogen atom not involved in a significant intermolecular contact. The water molecule forms two donor interactions with perchlorate-O atoms derived from different perchlorate anions. The hydrogen bonding interactions lead to the formation of supramolecular layers in the bc plane, Fig. 2. The layers have a zigzag topology and stack along the a axis with the major interactions between them being of the type C—H···O, Fig. 3 and Table 1.

For background to macrocyclic complexes, see:Hazari et al. (2010). For related structures, see: Hazari et al. (2008). For the synthesis of the macrocyclic ligand, see: Busch et al. (1971).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the constituents of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer in the bc plane in (I). The O—H···O and N—H···O hydrogen bonds are shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view of the unit-cell contents in projection down the b axis in (I). The O—H···O and N—H···O hydrogen bonds are shown as orange and blue dashed lines, respectively.
5,7,7,12,14,14-Hexamethyl-4,11-diaza-1,8-diazoniacyclotetradecane bis(perchlorate) monohydrate top
Crystal data top
C16H38N42+·2ClO4·H2OF(000) = 1080
Mr = 503.42Dx = 1.366 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 6194 reflections
a = 11.0930 (1) Åθ = 3.5–76.3°
b = 8.7946 (1) ŵ = 2.84 mm1
c = 25.3692 (3) ÅT = 100 K
β = 98.435 (1)°Block, colourless
V = 2448.21 (5) Å30.40 × 0.35 × 0.30 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5000 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4665 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 10.4041 pixels mm-1θmax = 76.5°, θmin = 3.5°
ω scanh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 106
Tmin = 0.695, Tmax = 1.000l = 2931
9569 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0609P)2 + 1.6737P]
where P = (Fo2 + 2Fc2)/3
5000 reflections(Δ/σ)max = 0.001
312 parametersΔρmax = 0.61 e Å3
8 restraintsΔρmin = 0.56 e Å3
Crystal data top
C16H38N42+·2ClO4·H2OV = 2448.21 (5) Å3
Mr = 503.42Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.0930 (1) ŵ = 2.84 mm1
b = 8.7946 (1) ÅT = 100 K
c = 25.3692 (3) Å0.40 × 0.35 × 0.30 mm
β = 98.435 (1)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5000 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4665 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 1.000Rint = 0.017
9569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0388 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.61 e Å3
5000 reflectionsΔρmin = 0.56 e Å3
312 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31093 (3)0.82773 (4)0.546168 (14)0.01665 (11)
Cl20.83060 (3)0.38578 (4)0.287184 (13)0.01370 (11)
O10.42268 (11)0.75538 (15)0.56951 (5)0.0268 (3)
O20.32605 (13)0.88170 (16)0.49335 (5)0.0298 (3)
O30.28350 (12)0.95396 (15)0.57816 (5)0.0258 (3)
O40.21214 (11)0.72094 (15)0.54079 (5)0.0261 (3)
O50.90879 (15)0.51760 (18)0.29309 (6)0.0383 (4)
O60.83712 (16)0.30970 (16)0.33756 (5)0.0382 (4)
O70.70924 (13)0.4375 (2)0.27069 (7)0.0451 (4)
O80.86602 (13)0.28549 (15)0.24776 (5)0.0279 (3)
O1w0.62426 (13)0.80297 (17)0.50563 (5)0.0276 (3)
N10.69983 (11)0.81512 (15)0.29586 (5)0.0124 (3)
N20.63078 (11)0.73862 (15)0.39559 (5)0.0127 (3)
N30.89992 (11)0.70336 (15)0.39858 (5)0.0124 (3)
N40.91280 (11)0.98528 (15)0.35226 (5)0.0125 (3)
C10.54974 (15)0.7498 (2)0.21479 (6)0.0191 (3)
H1A0.58850.82310.19350.029*
H1B0.46230.74480.20160.029*
H1C0.58630.64920.21190.029*
C20.56883 (13)0.80012 (18)0.27322 (6)0.0133 (3)
H2A0.52910.90150.27540.016*
C30.50736 (14)0.68698 (18)0.30677 (6)0.0149 (3)
H3A0.55050.58850.30640.018*
H3B0.42290.67080.28890.018*
C40.50164 (13)0.72858 (18)0.36520 (6)0.0137 (3)
C50.44573 (14)0.88612 (19)0.37008 (7)0.0176 (3)
H5A0.44330.90890.40770.026*
H5B0.36270.88770.35050.026*
H5C0.49530.96270.35510.026*
C60.42988 (15)0.6089 (2)0.39099 (7)0.0190 (3)
H6A0.42670.63710.42810.028*
H6B0.47000.50990.38990.028*
H6C0.34690.60280.37160.028*
C70.69904 (14)0.59435 (18)0.40941 (6)0.0159 (3)
H7A0.70150.53380.37670.019*
H7B0.65670.53360.43400.019*
C80.82827 (14)0.6290 (2)0.43569 (6)0.0166 (3)
H8A0.82530.69610.46680.020*
H8B0.86890.53320.44870.020*
C91.03115 (13)0.71842 (18)0.42113 (6)0.0134 (3)
H9A1.03650.76080.45800.016*
C101.09813 (15)0.5659 (2)0.42452 (7)0.0192 (3)
H10A1.05800.49490.44610.029*
H10B1.18290.58090.44100.029*
H10C1.09640.52410.38860.029*
C111.09391 (13)0.82989 (18)0.38754 (6)0.0133 (3)
H11A1.09050.78620.35140.016*
H11B1.18090.83610.40320.016*
C121.04329 (13)0.99271 (18)0.38168 (6)0.0134 (3)
C131.03266 (15)1.0660 (2)0.43525 (6)0.0190 (3)
H13A1.11381.07410.45640.028*
H13B0.98031.00330.45440.028*
H13C0.99711.16770.42940.028*
C141.12120 (14)1.09205 (19)0.35056 (7)0.0179 (3)
H14A1.20491.09550.36940.027*
H14B1.08751.19520.34740.027*
H14C1.12121.04920.31490.027*
C150.89575 (13)0.94676 (18)0.29431 (6)0.0139 (3)
H15A0.93370.84700.28920.017*
H15B0.93631.02430.27470.017*
C160.76101 (14)0.94086 (19)0.27244 (6)0.0154 (3)
H16A0.72231.03810.28020.019*
H16B0.75100.92820.23330.019*
H1w0.5629 (18)0.787 (4)0.5213 (11)0.059 (9)*
H2w0.641 (3)0.8975 (15)0.5067 (16)0.088 (13)*
H10.7341 (18)0.7279 (15)0.2895 (8)0.019 (5)*
H30.8958 (18)0.648 (2)0.3698 (6)0.018 (5)*
H220.6697 (18)0.791 (2)0.3737 (7)0.026 (6)*
H210.6276 (19)0.788 (2)0.4254 (6)0.023 (5)*
H410.8779 (18)1.0722 (15)0.3581 (8)0.021 (5)*
H420.8796 (19)0.913 (2)0.3698 (8)0.028 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01667 (19)0.0170 (2)0.01711 (19)0.00152 (13)0.00511 (13)0.00033 (13)
Cl20.01564 (18)0.01343 (19)0.01328 (18)0.00174 (12)0.00624 (13)0.00070 (12)
O10.0185 (6)0.0267 (7)0.0341 (7)0.0054 (5)0.0001 (5)0.0033 (6)
O20.0403 (8)0.0316 (7)0.0191 (6)0.0007 (6)0.0099 (5)0.0011 (5)
O30.0273 (6)0.0213 (6)0.0316 (7)0.0028 (5)0.0139 (5)0.0116 (5)
O40.0229 (6)0.0214 (6)0.0331 (7)0.0055 (5)0.0014 (5)0.0056 (5)
O50.0504 (9)0.0393 (8)0.0296 (7)0.0294 (7)0.0204 (6)0.0167 (6)
O60.0747 (11)0.0252 (7)0.0196 (7)0.0184 (7)0.0227 (7)0.0106 (5)
O70.0206 (7)0.0663 (11)0.0464 (9)0.0191 (7)0.0019 (6)0.0046 (8)
O80.0463 (8)0.0187 (6)0.0241 (6)0.0007 (6)0.0229 (6)0.0047 (5)
O1w0.0290 (7)0.0316 (7)0.0252 (7)0.0012 (6)0.0135 (5)0.0016 (6)
N10.0106 (6)0.0129 (6)0.0140 (6)0.0004 (5)0.0024 (5)0.0012 (5)
N20.0113 (6)0.0142 (6)0.0131 (6)0.0008 (5)0.0036 (5)0.0010 (5)
N30.0102 (6)0.0164 (6)0.0108 (6)0.0011 (5)0.0023 (5)0.0007 (5)
N40.0107 (6)0.0132 (6)0.0142 (6)0.0010 (5)0.0042 (5)0.0002 (5)
C10.0224 (8)0.0215 (8)0.0130 (7)0.0034 (6)0.0009 (6)0.0019 (6)
C20.0118 (7)0.0146 (7)0.0132 (7)0.0004 (5)0.0014 (5)0.0012 (6)
C30.0134 (7)0.0159 (7)0.0153 (7)0.0030 (6)0.0019 (5)0.0015 (6)
C40.0094 (6)0.0166 (8)0.0153 (7)0.0015 (6)0.0026 (5)0.0000 (6)
C50.0154 (7)0.0201 (8)0.0183 (7)0.0033 (6)0.0054 (6)0.0006 (6)
C60.0143 (7)0.0220 (8)0.0217 (8)0.0048 (6)0.0064 (6)0.0012 (6)
C70.0129 (7)0.0148 (7)0.0206 (8)0.0000 (6)0.0041 (6)0.0047 (6)
C80.0132 (7)0.0221 (8)0.0147 (7)0.0002 (6)0.0031 (6)0.0066 (6)
C90.0098 (7)0.0183 (8)0.0119 (7)0.0009 (6)0.0013 (5)0.0009 (6)
C100.0163 (7)0.0202 (8)0.0212 (8)0.0050 (6)0.0030 (6)0.0039 (6)
C110.0098 (6)0.0176 (8)0.0130 (7)0.0010 (5)0.0033 (5)0.0004 (6)
C120.0104 (6)0.0162 (7)0.0142 (7)0.0008 (6)0.0034 (5)0.0015 (6)
C130.0186 (7)0.0223 (8)0.0166 (7)0.0004 (6)0.0045 (6)0.0059 (6)
C140.0150 (7)0.0181 (8)0.0218 (8)0.0042 (6)0.0064 (6)0.0002 (6)
C150.0131 (7)0.0172 (8)0.0123 (7)0.0002 (6)0.0047 (5)0.0029 (6)
C160.0132 (7)0.0169 (8)0.0161 (7)0.0004 (6)0.0014 (5)0.0061 (6)
Geometric parameters (Å, º) top
Cl1—O31.4339 (12)C4—C51.530 (2)
Cl1—O41.4345 (13)C5—H5A0.9800
Cl1—O11.4412 (12)C5—H5B0.9800
Cl1—O21.4542 (13)C5—H5C0.9800
Cl2—O71.4245 (14)C6—H6A0.9800
Cl2—O81.4312 (12)C6—H6B0.9800
Cl2—O61.4349 (13)C6—H6C0.9800
Cl2—O51.4425 (14)C7—C81.521 (2)
O1w—H1w0.848 (10)C7—H7A0.9900
O1w—H2w0.852 (10)C7—H7B0.9900
N1—C161.4679 (19)C8—H8A0.9900
N1—C21.4881 (18)C8—H8B0.9900
N1—H10.882 (9)C9—C111.532 (2)
N2—C71.493 (2)C9—C101.530 (2)
N2—C41.5266 (18)C9—H9A1.0000
N2—H220.881 (10)C10—H10A0.9800
N2—H210.879 (9)C10—H10B0.9800
N3—C81.4713 (19)C10—H10C0.9800
N3—C91.4899 (18)C11—C121.537 (2)
N3—H30.874 (9)C11—H11A0.9900
N4—C151.4936 (19)C11—H11B0.9900
N4—C121.5296 (18)C12—C131.524 (2)
N4—H410.879 (9)C12—C141.528 (2)
N4—H420.887 (10)C13—H13A0.9800
C1—C21.532 (2)C13—H13B0.9800
C1—H1A0.9800C13—H13C0.9800
C1—H1B0.9800C14—H14A0.9800
C1—H1C0.9800C14—H14B0.9800
C2—C31.533 (2)C14—H14C0.9800
C2—H2A1.0000C15—C161.517 (2)
C3—C41.537 (2)C15—H15A0.9900
C3—H3A0.9900C15—H15B0.9900
C3—H3B0.9900C16—H16A0.9900
C4—C61.524 (2)C16—H16B0.9900
O3—Cl1—O4109.76 (8)C4—C6—H6C109.5
O3—Cl1—O1110.50 (8)H6A—C6—H6C109.5
O4—Cl1—O1110.43 (8)H6B—C6—H6C109.5
O3—Cl1—O2109.37 (8)N2—C7—C8110.22 (13)
O4—Cl1—O2108.41 (8)N2—C7—H7A109.6
O1—Cl1—O2108.32 (8)C8—C7—H7A109.6
O7—Cl2—O8109.64 (9)N2—C7—H7B109.6
O7—Cl2—O6109.43 (10)C8—C7—H7B109.6
O8—Cl2—O6110.61 (8)H7A—C7—H7B108.1
O7—Cl2—O5107.56 (11)N3—C8—C7111.81 (13)
O8—Cl2—O5110.20 (8)N3—C8—H8A109.3
O6—Cl2—O5109.35 (10)C7—C8—H8A109.3
H1w—O1w—H2w110 (3)N3—C8—H8B109.3
C16—N1—C2113.19 (12)C7—C8—H8B109.3
C16—N1—H1110.1 (14)H8A—C8—H8B107.9
C2—N1—H1105.9 (14)N3—C9—C11109.97 (12)
C7—N2—C4118.40 (12)N3—C9—C10112.50 (13)
C7—N2—H22108.3 (15)C11—C9—C10109.63 (12)
C4—N2—H22102.9 (15)N3—C9—H9A108.2
C7—N2—H21107.7 (14)C11—C9—H9A108.2
C4—N2—H21108.1 (14)C10—C9—H9A108.2
H22—N2—H21111 (2)C9—C10—H10A109.5
C8—N3—C9112.51 (12)C9—C10—H10B109.5
C8—N3—H3108.6 (14)H10A—C10—H10B109.5
C9—N3—H3107.4 (13)C9—C10—H10C109.5
C15—N4—C12117.65 (11)H10A—C10—H10C109.5
C15—N4—H41111.5 (14)H10B—C10—H10C109.5
C12—N4—H41106.9 (14)C9—C11—C12117.42 (12)
C15—N4—H42109.1 (15)C9—C11—H11A107.9
C12—N4—H42102.7 (15)C12—C11—H11A107.9
H41—N4—H42108.4 (19)C9—C11—H11B107.9
C2—C1—H1A109.5C12—C11—H11B107.9
C2—C1—H1B109.5H11A—C11—H11B107.2
H1A—C1—H1B109.5C13—C12—C14110.03 (13)
C2—C1—H1C109.5C13—C12—N4105.17 (12)
H1A—C1—H1C109.5C14—C12—N4109.81 (12)
H1B—C1—H1C109.5C13—C12—C11112.50 (13)
N1—C2—C1112.82 (13)C14—C12—C11110.87 (12)
N1—C2—C3109.39 (12)N4—C12—C11108.27 (12)
C1—C2—C3109.88 (13)C12—C13—H13A109.5
N1—C2—H2A108.2C12—C13—H13B109.5
C1—C2—H2A108.2H13A—C13—H13B109.5
C3—C2—H2A108.2C12—C13—H13C109.5
C2—C3—C4117.75 (13)H13A—C13—H13C109.5
C2—C3—H3A107.9H13B—C13—H13C109.5
C4—C3—H3A107.9C12—C14—H14A109.5
C2—C3—H3B107.9C12—C14—H14B109.5
C4—C3—H3B107.9H14A—C14—H14B109.5
H3A—C3—H3B107.2C12—C14—H14C109.5
C6—C4—N2109.49 (12)H14A—C14—H14C109.5
C6—C4—C5110.30 (13)H14B—C14—H14C109.5
N2—C4—C5105.56 (12)N4—C15—C16110.09 (12)
C6—C4—C3110.35 (13)N4—C15—H15A109.6
N2—C4—C3109.42 (12)C16—C15—H15A109.6
C5—C4—C3111.60 (13)N4—C15—H15B109.6
C4—C5—H5A109.5C16—C15—H15B109.6
C4—C5—H5B109.5H15A—C15—H15B108.2
H5A—C5—H5B109.5N1—C16—C15111.53 (12)
C4—C5—H5C109.5N1—C16—H16A109.3
H5A—C5—H5C109.5C15—C16—H16A109.3
H5B—C5—H5C109.5N1—C16—H16B109.3
C4—C6—H6A109.5C15—C16—H16B109.3
C4—C6—H6B109.5H16A—C16—H16B108.0
H6A—C6—H6B109.5
C16—N1—C2—C167.79 (17)C8—N3—C9—C11165.84 (13)
C16—N1—C2—C3169.58 (12)C8—N3—C9—C1071.65 (16)
N1—C2—C3—C463.55 (17)N3—C9—C11—C1258.64 (17)
C1—C2—C3—C4172.09 (13)C10—C9—C11—C12177.16 (13)
C7—N2—C4—C646.82 (17)C15—N4—C12—C13168.25 (13)
C7—N2—C4—C5165.54 (13)C15—N4—C12—C1449.90 (17)
C7—N2—C4—C374.24 (16)C15—N4—C12—C1171.28 (16)
C2—C3—C4—C6175.99 (13)C9—C11—C12—C1352.22 (17)
C2—C3—C4—N263.47 (17)C9—C11—C12—C14175.91 (13)
C2—C3—C4—C552.98 (17)C9—C11—C12—N463.57 (16)
C4—N2—C7—C8175.73 (12)C12—N4—C15—C16178.58 (12)
C9—N3—C8—C7171.92 (13)C2—N1—C16—C15176.80 (12)
N2—C7—C8—N366.08 (17)N4—C15—C16—N166.07 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···N10.88 (1)2.06 (2)2.8300 (18)145 (2)
N4—H42···N30.89 (1)1.98 (2)2.7564 (19)145 (2)
N2—H21···O1w0.88 (1)2.05 (1)2.8595 (19)154 (2)
N3—H3···O50.87 (1)2.28 (1)3.1493 (18)172 (2)
N4—H41···O6i0.88 (1)2.18 (1)2.9820 (19)151 (2)
O1w—H1w···O10.85 (1)2.13 (1)2.9775 (19)173 (3)
O1w—H2w···O2ii0.85 (1)1.98 (1)2.827 (2)177 (4)
C8—H8B···O4iii0.992.443.179 (2)131
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H38N42+·2ClO4·H2O
Mr503.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.0930 (1), 8.7946 (1), 25.3692 (3)
β (°) 98.435 (1)
V3)2448.21 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.84
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.695, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9569, 5000, 4665
Rint0.017
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.03
No. of reflections5000
No. of parameters312
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.56

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···N10.881 (10)2.062 (15)2.8300 (18)145 (2)
N4—H42···N30.887 (10)1.983 (15)2.7564 (19)145 (2)
N2—H21···O1w0.879 (9)2.045 (13)2.8595 (19)154 (2)
N3—H3···O50.874 (9)2.281 (10)3.1493 (18)172.4 (19)
N4—H41···O6i0.879 (9)2.184 (14)2.9820 (19)150.8 (19)
O1w—H1w···O10.848 (10)2.134 (11)2.9775 (19)173 (3)
O1w—H2w···O2ii0.852 (10)1.975 (10)2.827 (2)177 (4)
C8—H8B···O4iii0.992.443.179 (2)131
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: tapashir@yahoo.com.

Acknowledgements

The authors are grateful to the Ministry of National Science, Information & Communication Technology (NSICT), Bangladesh, for a research fellowship to BCN. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBusch, D. H., Farmery, K., Goedken, V. L., Katovic, V., Melnyk, A. C., Sperati, C. R. & Tokel, N. (1971). Advan. Chem. Ser. 100, 44–78.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHazari, S. K. S., Roy, T. G., Barua, K. K., Anwar, N., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Appl. Organomet. Chem. 24, 878–887.  Google Scholar
First citationHazari, S. K. S., Roy, T. G., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds