organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1222-o1223

2-(4-Iso­butyl­phen­yl)-N′-[(3Z)-2-oxoindolin-3-yl­­idene]propano­hydrazide

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, University of Leicester, Leicester, England, and dSchool of Research, Enterprise & Innovation, Manchester Metropolitan University, Manchester M1 5GD, England
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 21 March 2012; accepted 23 March 2012; online 28 March 2012)

In the title compound, C21H23N3O2, the indolin-2-one group is essentially planar, with a maximum deviation of 0.016 (2) Å for the N atom, and makes a dihedral angle of 84.38 (14)° with the benzene ring. The =N—N(H)—C(=O)—C– torsion angle is 0.9 (3)°. In the crystal, mol­ecules are linked into a three-dimensional network via N—H⋯O and C—H⋯O hydrogen bonds. In addition, a C—H⋯π inter­action was observed.

Related literature

For the pharmaceutical applications of hydrazones, see: Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Rollas et al. (2002[Rollas, S., Gulerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.]). For the pharmaceutical applications of ibuprofen, see: Palaska et al. (2002[Palaska, E., Sahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101-107.]). For the synthesis of hydrazones, see: Rollas & Küçükgüzel (2007[Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910-1939.]). For some of our studies on the synthesis of biologically active compounds, see: Mohamed et al. (2012a[Mohamed, S. K., Abdelhamid, A. A., Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Allahverdiyev, M. A. (2012a). J. Chem. Pharm. Res. 4, 955-965.],b[Mohamed, S. K., Abdelhamid, A. A., Maharramov, A. M., Khalilov, A. N., Nagiyev, F. N. & Allahverdiyev, M. A. (2012b). J. Chem. Pharm. Res. 4, 966-971.]); Soliman et al. (2012[Soliman, A. M., Mohamed, S. M., Elremaily, A. A. M. & Abdel-Ghany, H. (2012). Eur. J. Med. Chem. 47, 138-142.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23N3O2

  • Mr = 349.42

  • Monoclinic, C 2/c

  • a = 30.366 (14) Å

  • b = 7.383 (3) Å

  • c = 21.904 (10) Å

  • β = 130.311 (8)°

  • V = 3745 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.35 × 0.21 × 0.10 mm

Data collection
  • Bruker APEX 2000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.992

  • 15933 measured reflections

  • 4494 independent reflections

  • 2050 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.182

  • S = 0.89

  • 4494 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1/C6–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.91 2.740 (4) 163
N3—H3A⋯O2ii 0.86 2.16 2.965 (4) 155
C5—H5⋯O2ii 0.93 2.30 3.218 (3) 172
C11—H11BCg1iii 0.96 2.77 3.703 (4) 164
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Hydrazide-hydrazone compounds are found to be associated with various biological activities such as antimicrobial, anticonvulsant, analgesic, anti-inflammatory, antiplatelet, antitubercular and antitumor properties (Bedia et al., 2006; Rollas et al., 2002; Palaska et al., 2002; Rollas & Küçükgüzel, 2007). Further to our strategy on synthesis of biologically active compounds (Mohamed et al., 2012a,b; Soliman et al. 2012) we get interested to study the functionalization of ibuprofen moiety with the aim of synthesis of potential biologically active compounds based on the core structure of ibuprofen. The title compound (I) was synthesized on condensation of the corresponding hydrazidic acid of ibuprofen with isatin under microwave irradiation and free solvent conditions.

In the title molecule, (Fig. 1), the 1,3-dihydro-2H-indol-2-one group (O1/N1/C1—C8) which is essentially planar with a maximum deviation of -0.016 (2) Å for N1 atom, makes a dihedral angle of 84.38 (14)° with the benzene ring (C12—C17). All bond lengths and angles are within normal ranges (Allen et al., 1987). The torsion angles N2—N3—C9—C10, O2—C9—C10—C11, C15—C18—C19—C20 and C15—C18—C19—C21 are 0.9 (3), 21.8 (3), -173.2 (3) and 63.4 (4) °, respectively.

In the crystal structure, the molecules are linked by N—H···O and C—H···O intermolecular hydrogen bonds, forming a three dimensional network (Table 1 and Fig. 2). Furthermore, C—H···π interactions also play an important role in stabilizing the structure (Table 1).

Related literature top

For the pharmaceutical applications of hydrazones, see: Bedia et al. (2006); Rollas et al. (2002). For the pharmaceutical applications of ibuprofen, see: Palaska et al. (2002). For the synthesis of hydrazones, see: Rollas & Küçükgüzel (2007). For some of our studies on the synthesis of biologically active compounds, see: Mohamed et al. (2012a,b); Soliman et al. (2012). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of an equimolar ratio of 2-(4-isobutylphenyl)propanehydrazide (220 mg) and 1H-indole-2,3-dione (147 mg) was ground in a mortar and well mixed with few drops of acetic acid as catalytic agent. The mixture powder has been transferred in a dry conical flask then irradiated under 600 w microwave for 2–3 minutes with intervals every 30 s. The yelow solid product was collected and crystallized from ethanol to afford plate bright yellow crystals in 96% yield with m.p. at 439 - 441 K. A suitable crystals for X-ray diffraction was prepared by slow evaporation of an ethanolic solution of product over two days at room temperature.

Refinement top

All hydrogen atom were located geometrically and refined using a riding model with N—H = 0.86 Å, C—H = 0.93–0.98 Å, and with Uiso =1.2–1.5Ueq(C,N).

Structure description top

Hydrazide-hydrazone compounds are found to be associated with various biological activities such as antimicrobial, anticonvulsant, analgesic, anti-inflammatory, antiplatelet, antitubercular and antitumor properties (Bedia et al., 2006; Rollas et al., 2002; Palaska et al., 2002; Rollas & Küçükgüzel, 2007). Further to our strategy on synthesis of biologically active compounds (Mohamed et al., 2012a,b; Soliman et al. 2012) we get interested to study the functionalization of ibuprofen moiety with the aim of synthesis of potential biologically active compounds based on the core structure of ibuprofen. The title compound (I) was synthesized on condensation of the corresponding hydrazidic acid of ibuprofen with isatin under microwave irradiation and free solvent conditions.

In the title molecule, (Fig. 1), the 1,3-dihydro-2H-indol-2-one group (O1/N1/C1—C8) which is essentially planar with a maximum deviation of -0.016 (2) Å for N1 atom, makes a dihedral angle of 84.38 (14)° with the benzene ring (C12—C17). All bond lengths and angles are within normal ranges (Allen et al., 1987). The torsion angles N2—N3—C9—C10, O2—C9—C10—C11, C15—C18—C19—C20 and C15—C18—C19—C21 are 0.9 (3), 21.8 (3), -173.2 (3) and 63.4 (4) °, respectively.

In the crystal structure, the molecules are linked by N—H···O and C—H···O intermolecular hydrogen bonds, forming a three dimensional network (Table 1 and Fig. 2). Furthermore, C—H···π interactions also play an important role in stabilizing the structure (Table 1).

For the pharmaceutical applications of hydrazones, see: Bedia et al. (2006); Rollas et al. (2002). For the pharmaceutical applications of ibuprofen, see: Palaska et al. (2002). For the synthesis of hydrazones, see: Rollas & Küçükgüzel (2007). For some of our studies on the synthesis of biologically active compounds, see: Mohamed et al. (2012a,b); Soliman et al. (2012). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the crystal packing and hydrogen bonding of (I) down the b axis. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-(4-Isobutylphenyl)-N'-[(3Z)-2-oxoindolin-3- ylidene]propanohydrazide top
Crystal data top
C21H23N3O2F(000) = 1488
Mr = 349.42Dx = 1.240 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 654 reflections
a = 30.366 (14) Åθ = 2.9–23.4°
b = 7.383 (3) ŵ = 0.08 mm1
c = 21.904 (10) ÅT = 150 K
β = 130.311 (8)°Plate, yellow
V = 3745 (3) Å30.35 × 0.21 × 0.10 mm
Z = 8
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
4494 independent reflections
Radiation source: fine-focus sealed tube2050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
phi and ω scansθmax = 28.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4039
Tmin = 0.972, Tmax = 0.992k = 99
15933 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0771P)2]
where P = (Fo2 + 2Fc2)/3
4494 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C21H23N3O2V = 3745 (3) Å3
Mr = 349.42Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.366 (14) ŵ = 0.08 mm1
b = 7.383 (3) ÅT = 150 K
c = 21.904 (10) Å0.35 × 0.21 × 0.10 mm
β = 130.311 (8)°
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
4494 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2050 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.992Rint = 0.096
15933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 0.89Δρmax = 0.60 e Å3
4494 reflectionsΔρmin = 0.39 e Å3
223 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27378 (8)0.1979 (3)0.28135 (11)0.0610 (8)
O20.30262 (7)0.3536 (2)0.51498 (11)0.0551 (7)
N10.21763 (9)0.3981 (3)0.28414 (12)0.0513 (8)
N20.26682 (8)0.0134 (3)0.38256 (12)0.0441 (7)
N30.26590 (8)0.1154 (3)0.43261 (12)0.0438 (7)
C10.19248 (10)0.4090 (3)0.31931 (14)0.0449 (9)
C20.16039 (11)0.5488 (4)0.31409 (15)0.0536 (9)
C30.13834 (11)0.5291 (4)0.35241 (16)0.0552 (10)
C40.14805 (11)0.3748 (4)0.39497 (16)0.0518 (10)
C50.18120 (10)0.2344 (3)0.40110 (14)0.0462 (8)
C60.20363 (9)0.2513 (3)0.36274 (13)0.0406 (8)
C70.23936 (10)0.1382 (3)0.35482 (14)0.0426 (8)
C80.24645 (11)0.2419 (4)0.30246 (15)0.0480 (9)
C90.30217 (10)0.2603 (3)0.46825 (15)0.0445 (8)
C100.34176 (10)0.2953 (3)0.45024 (15)0.0469 (9)
C110.36252 (12)0.4915 (4)0.47037 (18)0.0631 (11)
C120.39149 (10)0.1604 (3)0.49514 (16)0.0445 (9)
C130.43620 (11)0.1733 (4)0.57647 (16)0.0511 (10)
C140.48254 (11)0.0548 (4)0.61611 (17)0.0571 (10)
C150.48610 (12)0.0796 (4)0.57581 (19)0.0556 (10)
C160.44102 (12)0.0942 (4)0.49473 (19)0.0583 (11)
C170.39438 (12)0.0220 (4)0.45516 (17)0.0533 (10)
C180.53791 (12)0.2047 (4)0.6173 (2)0.0705 (13)
C190.52905 (13)0.3956 (4)0.63358 (19)0.0679 (7)
C200.58104 (12)0.5126 (4)0.66581 (18)0.0679 (7)
C210.51718 (12)0.3939 (4)0.68999 (18)0.0679 (7)
H10.215000.481100.254400.0620*
H20.153700.653500.285600.0640*
H30.116400.622200.349500.0660*
H3A0.243000.089900.441800.0530*
H40.132300.364500.419800.0620*
H50.188200.130900.430400.0550*
H100.319600.277400.392700.0560*
H11A0.387400.513600.458400.0950*
H11B0.329800.571300.439100.0950*
H11C0.383400.512900.526300.0950*
H130.435300.263300.605300.0610*
H140.511900.066200.671200.0690*
H160.442000.184300.466000.0700*
H170.364300.007100.400500.0640*
H18A0.549000.212700.584700.0850*
H18B0.569900.150200.667900.0850*
H190.495400.447800.582700.0810*
H20A0.587500.513400.628300.1020*
H20B0.614400.464600.716100.1020*
H20C0.574100.634000.673500.1020*
H21A0.483900.320300.668200.1020*
H21B0.510100.515300.697500.1020*
H21C0.549900.345000.740600.1020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0792 (14)0.0562 (13)0.0671 (13)0.0042 (10)0.0561 (12)0.0018 (10)
O20.0503 (11)0.0447 (11)0.0692 (13)0.0100 (8)0.0381 (10)0.0125 (10)
N10.0603 (14)0.0449 (14)0.0494 (13)0.0086 (11)0.0358 (12)0.0091 (11)
N20.0440 (12)0.0377 (13)0.0491 (12)0.0025 (10)0.0294 (11)0.0028 (10)
N30.0415 (12)0.0376 (12)0.0540 (13)0.0078 (9)0.0316 (11)0.0026 (10)
C10.0454 (15)0.0418 (16)0.0387 (14)0.0060 (12)0.0232 (13)0.0001 (12)
C20.0568 (16)0.0387 (16)0.0482 (16)0.0117 (13)0.0263 (14)0.0041 (13)
C30.0562 (17)0.0466 (17)0.0532 (16)0.0140 (13)0.0311 (15)0.0016 (14)
C40.0547 (16)0.0478 (17)0.0545 (17)0.0088 (13)0.0360 (14)0.0005 (14)
C50.0448 (14)0.0406 (15)0.0456 (14)0.0058 (12)0.0258 (13)0.0013 (12)
C60.0394 (13)0.0342 (14)0.0396 (13)0.0044 (11)0.0217 (12)0.0016 (11)
C70.0417 (14)0.0358 (14)0.0417 (14)0.0020 (11)0.0231 (12)0.0029 (11)
C80.0532 (16)0.0434 (16)0.0435 (14)0.0009 (13)0.0295 (14)0.0058 (13)
C90.0387 (14)0.0336 (14)0.0517 (15)0.0017 (11)0.0250 (13)0.0039 (13)
C100.0461 (15)0.0420 (16)0.0503 (15)0.0079 (12)0.0302 (13)0.0044 (12)
C110.0606 (18)0.0435 (18)0.081 (2)0.0089 (14)0.0439 (17)0.0083 (15)
C120.0421 (14)0.0431 (16)0.0563 (16)0.0105 (12)0.0354 (14)0.0026 (13)
C130.0471 (15)0.0458 (17)0.0614 (18)0.0061 (13)0.0356 (15)0.0005 (14)
C140.0444 (16)0.0588 (19)0.0588 (17)0.0081 (14)0.0292 (15)0.0030 (15)
C150.0484 (16)0.0472 (18)0.079 (2)0.0078 (13)0.0447 (17)0.0033 (15)
C160.0610 (18)0.0468 (18)0.081 (2)0.0095 (14)0.0522 (18)0.0074 (16)
C170.0545 (17)0.0521 (18)0.0603 (17)0.0114 (14)0.0403 (15)0.0012 (15)
C180.0526 (17)0.058 (2)0.104 (3)0.0077 (15)0.0520 (19)0.0014 (18)
C190.0653 (11)0.0599 (12)0.0753 (12)0.0005 (9)0.0441 (10)0.0013 (10)
C200.0653 (11)0.0599 (12)0.0753 (12)0.0005 (9)0.0441 (10)0.0013 (10)
C210.0653 (11)0.0599 (12)0.0753 (12)0.0005 (9)0.0441 (10)0.0013 (10)
Geometric parameters (Å, º) top
O1—C81.227 (5)C16—C171.380 (5)
O2—C91.227 (4)C18—C191.520 (5)
N1—C11.394 (5)C19—C211.494 (6)
N1—C81.343 (4)C19—C201.515 (6)
N2—N31.345 (3)C2—H20.9300
N2—C71.289 (3)C3—H30.9300
N3—C91.362 (4)C4—H40.9300
N1—H10.8600C5—H50.9300
N3—H3A0.8600C10—H100.9800
C1—C61.399 (3)C11—H11A0.9600
C1—C21.373 (5)C11—H11B0.9600
C2—C31.379 (5)C11—H11C0.9600
C3—C41.378 (4)C13—H130.9300
C4—C51.390 (5)C14—H140.9300
C5—C61.388 (5)C16—H160.9300
C6—C71.466 (4)C17—H170.9300
C7—C81.506 (4)C18—H18A0.9700
C9—C101.510 (5)C18—H18B0.9700
C10—C121.523 (4)C19—H190.9800
C10—C111.527 (4)C20—H20A0.9600
C12—C131.377 (4)C20—H20B0.9600
C12—C171.385 (4)C20—H20C0.9600
C13—C141.385 (5)C21—H21A0.9600
C14—C151.378 (5)C21—H21B0.9600
C15—C181.518 (5)C21—H21C0.9600
C15—C161.376 (5)
C1—N1—C8111.6 (2)C3—C2—H2121.00
N3—N2—C7121.5 (3)C2—C3—H3119.00
N2—N3—C9118.1 (3)C4—C3—H3119.00
C8—N1—H1124.00C3—C4—H4120.00
C1—N1—H1124.00C5—C4—H4120.00
C9—N3—H3A121.00C4—C5—H5121.00
N2—N3—H3A121.00C6—C5—H5121.00
N1—C1—C2127.6 (2)C9—C10—H10108.00
C2—C1—C6121.9 (3)C11—C10—H10108.00
N1—C1—C6110.5 (2)C12—C10—H10108.00
C1—C2—C3117.9 (3)C10—C11—H11A109.00
C2—C3—C4121.6 (3)C10—C11—H11B109.00
C3—C4—C5120.5 (3)C10—C11—H11C109.00
C4—C5—C6118.9 (2)H11A—C11—H11B110.00
C1—C6—C7105.4 (3)H11A—C11—H11C109.00
C5—C6—C7135.3 (2)H11B—C11—H11C109.00
C1—C6—C5119.3 (3)C12—C13—H13119.00
N2—C7—C8115.7 (3)C14—C13—H13119.00
C6—C7—C8106.4 (2)C13—C14—H14119.00
N2—C7—C6137.9 (3)C15—C14—H14119.00
O1—C8—N1125.7 (3)C15—C16—H16119.00
O1—C8—C7128.1 (3)C17—C16—H16119.00
N1—C8—C7106.1 (3)C12—C17—H17119.00
O2—C9—N3119.2 (3)C16—C17—H17119.00
N3—C9—C10118.0 (2)C15—C18—H18A108.00
O2—C9—C10122.7 (2)C15—C18—H18B108.00
C9—C10—C11109.7 (3)C19—C18—H18A108.00
C9—C10—C12110.1 (2)C19—C18—H18B108.00
C11—C10—C12112.5 (3)H18A—C18—H18B107.00
C13—C12—C17117.2 (3)C18—C19—H19108.00
C10—C12—C13121.8 (3)C20—C19—H19108.00
C10—C12—C17121.1 (2)C21—C19—H19108.00
C12—C13—C14121.3 (3)C19—C20—H20A109.00
C13—C14—C15121.5 (3)C19—C20—H20B109.00
C14—C15—C16117.3 (3)C19—C20—H20C109.00
C14—C15—C18122.4 (3)H20A—C20—H20B110.00
C16—C15—C18120.4 (3)H20A—C20—H20C110.00
C15—C16—C17121.4 (3)H20B—C20—H20C109.00
C12—C17—C16121.4 (3)C19—C21—H21A109.00
C15—C18—C19115.6 (4)C19—C21—H21B110.00
C18—C19—C21111.1 (3)C19—C21—H21C110.00
C20—C19—C21110.8 (3)H21A—C21—H21B109.00
C18—C19—C20110.4 (4)H21A—C21—H21C109.00
C1—C2—H2121.00H21B—C21—H21C109.00
C1—N1—C8—C70.3 (3)C6—C7—C8—O1179.0 (3)
C8—N1—C1—C2179.5 (3)C6—C7—C8—N10.5 (3)
C8—N1—C1—C61.1 (3)N2—C7—C8—O12.1 (4)
C1—N1—C8—O1178.2 (3)O2—C9—C10—C1121.8 (3)
N3—N2—C7—C8177.3 (2)O2—C9—C10—C12102.5 (3)
C7—N2—N3—C9171.0 (2)N3—C9—C10—C11160.3 (2)
N3—N2—C7—C61.7 (5)N3—C9—C10—C1275.4 (3)
N2—N3—C9—C100.9 (3)C9—C10—C12—C1373.9 (4)
N2—N3—C9—O2179.0 (2)C9—C10—C12—C17108.0 (3)
N1—C1—C6—C71.4 (3)C11—C10—C12—C1348.8 (4)
C2—C1—C6—C50.7 (4)C11—C10—C12—C17129.4 (3)
C2—C1—C6—C7179.2 (2)C10—C12—C13—C14177.0 (3)
N1—C1—C6—C5178.8 (2)C17—C12—C13—C141.2 (5)
C6—C1—C2—C30.9 (4)C10—C12—C17—C16176.1 (3)
N1—C1—C2—C3178.5 (3)C13—C12—C17—C162.1 (5)
C1—C2—C3—C40.2 (4)C12—C13—C14—C150.6 (6)
C2—C3—C4—C50.7 (5)C13—C14—C15—C161.5 (6)
C3—C4—C5—C60.9 (4)C13—C14—C15—C18176.8 (4)
C4—C5—C6—C7180.0 (3)C14—C15—C16—C170.6 (6)
C4—C5—C6—C10.2 (4)C18—C15—C16—C17177.7 (4)
C1—C6—C7—C81.2 (3)C14—C15—C18—C19104.2 (4)
C5—C6—C7—C8179.1 (3)C16—C15—C18—C1977.6 (5)
C5—C6—C7—N25.1 (6)C15—C16—C17—C121.2 (6)
C1—C6—C7—N2174.7 (3)C15—C18—C19—C20173.2 (3)
N2—C7—C8—N1176.4 (2)C15—C18—C19—C2163.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1/C6–C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.912.740 (4)163
N3—H3A···O2ii0.862.162.965 (4)155
C5—H5···O2ii0.932.303.218 (3)172
C11—H11B···Cg1iii0.962.773.703 (4)164
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC21H23N3O2
Mr349.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)30.366 (14), 7.383 (3), 21.904 (10)
β (°) 130.311 (8)
V3)3745 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.21 × 0.10
Data collection
DiffractometerBruker APEX 2000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
15933, 4494, 2050
Rint0.096
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.182, 0.89
No. of reflections4494
No. of parameters223
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.39

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1/C6–C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.912.740 (4)163
N3—H3A···O2ii0.862.162.965 (4)155
C5—H5···O2ii0.932.303.218 (3)172
C11—H11B···Cg1iii0.962.773.703 (4)164
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1; (iii) x, y1, z.
 

Acknowledgements

MRA gratefully thanks the Iraqi Goverment for the financial support to perform this study. Manchester Metropolitan University is acknowledged for facilitating this collaboration.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Abdelhamid, A. A., Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Allahverdiyev, M. A. (2012a). J. Chem. Pharm. Res. 4, 955–965.  CAS Google Scholar
First citationMohamed, S. K., Abdelhamid, A. A., Maharramov, A. M., Khalilov, A. N., Nagiyev, F. N. & Allahverdiyev, M. A. (2012b). J. Chem. Pharm. Res. 4, 966–971.  CAS Google Scholar
First citationPalaska, E., Sahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRollas, S., Gulerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoliman, A. M., Mohamed, S. M., Elremaily, A. A. M. & Abdel-Ghany, H. (2012). Eur. J. Med. Chem. 47, 138–142.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1222-o1223
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds