metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis[(2-bromo­phen­yl)di­phenyl­phosphane-κP]carbonyl­chlorido­rhodium(I)

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 9 March 2012; accepted 22 March 2012; online 31 March 2012)

The title compound, trans-[RhCl(C18H14BrP)2(CO)], has a slightly disordered square-planar geometry with the Rh ionI situated on an inversion the centre and carbon­yl–chloride disorder observed as a result of the crystallographic inversion symmetry. Selected geometric parameters include: Rh—P = 2.3430 (8) Å, Rh—Cl = 2.434 (3) Å, Rh—C = 1.722 (8) Å, P—Rh—P = 180.00 (3)°, P—Rh—Cl = 95.40 (7)°, 84.60 (7)° and Rh—C—O = 177.9 (8)°.

Related literature

For background to Vaska-type complexes, see: Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.]); Lamb et al. (2009[Lamb, G. W., Law, D. S., Slawin, A. M. Z. & Clarke, M. L. (2009). Inorg. Chim. Acta, 362, 4263-4267.]); Vaska & Di Luzio (1961[Vaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc. 83, 2784-2785.]). For related complexes, see: Burgoyne et al. (2010[Burgoyne, A. R., Meijboom, R., Muller, A. & Omondi, B. O. (2010). Acta Cryst. E66, m1380-m1381.]); Makhoba et al. (2011[Makhoba, S., Muller, A., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m1286-m1287.]); Meijboom (2011[Meijboom, R. (2011). Acta Cryst. E67, m1438.]); Meijboom et al. (2004[Meijboom, R., Muller, A. & Roodt, A. (2004). Acta Cryst. E60, m1071-m1073.]); Otto et al. (2000[Otto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295-299.]); Otto & Roodt (2004[Otto, S. & Roodt, A. (2004). Inorg. Chim. Acta, 357, 1-10.]); Chen et al. (1991[Chen, Y.-J., Wang, J.-C. & Wang, Yu (1991). Acta Cryst. C47, 2441-2442.]); Kemp et al. (1995[Kemp, G., Roodt, A. & Purcell, W. (1995). Rhodium Express, pp. 21-26]).

[Scheme 1]

Experimental

Crystal data
  • [RhCl(C18H14BrP)2(CO)]

  • Mr = 848.71

  • Monoclinic, P 21 /n

  • a = 9.3250 (5) Å

  • b = 17.041 (1) Å

  • c = 10.8880 (6) Å

  • β = 111.229 (1)°

  • V = 1612.77 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.22 mm−1

  • T = 100 K

  • 0.23 × 0.13 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.618, Tmax = 0.697

  • 15235 measured reflections

  • 4032 independent reflections

  • 3531 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.063

  • S = 1.11

  • 4032 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.81 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Putz (2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. ]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A vast range of different Vaska-type complexes have been synthesized, reported and spectroscopically studied (Roodt et al., 2003; Lamb et al.; 2009) since the synthesis and correct formulation of the original Vaska complex, trans-[Ir(CO)Cl(C18H15P)2], by Vaska & Di Luzio (1961). This class of symmetrical square-planar complexes (including Rh, Ir, Pd and Pt) usually crystallizes with the metal atom on a crystallographic inversion centre, resulting in a disordered packing arrangement (Chen et al., 1991; Otto et al., 2000; Otto & Roodt, 2004; Meijboom et al., 2004). The title compound serves as yet another complex to add to the Vaska's complex range with varying Group 5 ligand systems possessing different stereoelectronic properties.

In the title compound, the Rh atom lies at the centre of a slightly distorted square-planar geometric arrangement. The Rh atom crystallizes on a centre of symmetry, a crystallographic inversion centre, and has the carbonyl and chloro- ligands disordered at a 0.5:0.5 ratio. The stereoelectronic property of the phosphane with the bromo-functionality is indicated by the smaller O1—Rh1—P1 angle (85.39 (19)°), which is translated through symmetry to the inverted side of the molecule.

Selected spectroscopic data of the current compound is comparable to other similar complexes reported previously by Roodt et al. (2003) and Otto & Roodt (2004). However, the interesting difference in the magnitude of v(CO) for the solid and solution (in DCM) states of the title compound is ascribed to the packing of the molecules, which slightly distorts the Rh C—O angle. This effect was previously observed and reported for a polymorph of trans-[Rh(CO)Cl{PPh3}2] (Kemp et al., 1995).

Related literature top

For background to Vaska-type complexes, see: Roodt et al. (2003); Lamb et al. (2009); Vaska & Di Luzio (1961). For related complexes, see: Burgoyne et al. (2010); Makhoba et al. (2011); Meijboom (2011); Meijboom et al. (2004); Otto et al. (2000); Otto & Roodt (2004); Chen et al. (1991); Kemp et al. (1995). [This section ok as edited?]

Experimental top

A solution of dichlorotetracarbonyldirhodium (0.050 g, 0.13 mmol) in acetone (3 cm3) was slowly added to a solution of the phosphane, C18H14BrP (0.176 g, 0.51 mmol) in acetone (3 cm3) at room temperature,after which the mixture was left to crystallize. Slow evaporation of the solvent afforded the title compound as yellow crystals. Spectroscopic analysis: 31P{H} NMR (CDCl3, 162.0 MHz, p.p.m.): 33.1[d, 1J(Rh—P) = 132.8 Hz, 2P]; IR ν(CO): 1950.8 cm-1; (CD2Cl2) ν(CO): 1973.2 cm-1.

Refinement top

The aromatic H atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms. The highest calculated residual electron density is 0.66 e.Å-3 at 1.597 Å from C15, which bears no physical meaning.

Structure description top

A vast range of different Vaska-type complexes have been synthesized, reported and spectroscopically studied (Roodt et al., 2003; Lamb et al.; 2009) since the synthesis and correct formulation of the original Vaska complex, trans-[Ir(CO)Cl(C18H15P)2], by Vaska & Di Luzio (1961). This class of symmetrical square-planar complexes (including Rh, Ir, Pd and Pt) usually crystallizes with the metal atom on a crystallographic inversion centre, resulting in a disordered packing arrangement (Chen et al., 1991; Otto et al., 2000; Otto & Roodt, 2004; Meijboom et al., 2004). The title compound serves as yet another complex to add to the Vaska's complex range with varying Group 5 ligand systems possessing different stereoelectronic properties.

In the title compound, the Rh atom lies at the centre of a slightly distorted square-planar geometric arrangement. The Rh atom crystallizes on a centre of symmetry, a crystallographic inversion centre, and has the carbonyl and chloro- ligands disordered at a 0.5:0.5 ratio. The stereoelectronic property of the phosphane with the bromo-functionality is indicated by the smaller O1—Rh1—P1 angle (85.39 (19)°), which is translated through symmetry to the inverted side of the molecule.

Selected spectroscopic data of the current compound is comparable to other similar complexes reported previously by Roodt et al. (2003) and Otto & Roodt (2004). However, the interesting difference in the magnitude of v(CO) for the solid and solution (in DCM) states of the title compound is ascribed to the packing of the molecules, which slightly distorts the Rh C—O angle. This effect was previously observed and reported for a polymorph of trans-[Rh(CO)Cl{PPh3}2] (Kemp et al., 1995).

For background to Vaska-type complexes, see: Roodt et al. (2003); Lamb et al. (2009); Vaska & Di Luzio (1961). For related complexes, see: Burgoyne et al. (2010); Makhoba et al. (2011); Meijboom (2011); Meijboom et al. (2004); Otto et al. (2000); Otto & Roodt (2004); Chen et al. (1991); Kemp et al. (1995). [This section ok as edited?]

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. All rings have been numbered in the same, systematic manner. H atoms are depicted by arbitrary size spheres. Hashed atoms are generated by symmetry (-x + 1, -y, -z + 2).
trans-Bis[(2-bromophenyl)diphenylphosphane- κP]carbonylchloridorhodium(I) top
Crystal data top
[RhCl(C18H14BrP)2(CO)]F(000) = 840
Mr = 848.71Dx = 1.748 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 6197 reflections
a = 9.3250 (5) Åθ = 2.4–28.3°
b = 17.041 (1) ŵ = 3.22 mm1
c = 10.8880 (6) ÅT = 100 K
β = 111.229 (1)°Rectangular, yellow
V = 1612.77 (16) Å30.23 × 0.13 × 0.11 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3531 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.618, Tmax = 0.697k = 2222
15235 measured reflectionsl = 1414
4032 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0246P)2 + 1.6443P]
where P = (Fo2 + 2Fc2)/3
4032 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
[RhCl(C18H14BrP)2(CO)]V = 1612.77 (16) Å3
Mr = 848.71Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.3250 (5) ŵ = 3.22 mm1
b = 17.041 (1) ÅT = 100 K
c = 10.8880 (6) Å0.23 × 0.13 × 0.11 mm
β = 111.229 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4032 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3531 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.697Rint = 0.026
15235 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.11Δρmax = 0.67 e Å3
4032 reflectionsΔρmin = 0.81 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.5010.01378 (7)
C10.5773 (7)0.0478 (4)0.8993 (6)0.0178 (11)0.5
O10.6340 (10)0.0800 (5)0.8343 (9)0.0236 (17)0.5
Cl10.6037 (3)0.06666 (16)0.8527 (3)0.0174 (4)0.5
P10.50550 (6)0.11189 (4)0.87674 (5)0.01442 (12)
Br10.13942 (3)0.061590 (16)0.75242 (2)0.02135 (7)
C70.4960 (3)0.09681 (15)0.6146 (2)0.0189 (5)
H70.60060.10830.64840.023*
C20.4152 (3)0.09234 (14)0.7000 (2)0.0156 (4)
C80.4165 (3)0.20586 (14)0.8906 (2)0.0164 (5)
C120.3697 (3)0.30670 (16)1.0277 (3)0.0269 (6)
H120.3790.32481.11080.032*
C140.7017 (3)0.14283 (14)0.9010 (2)0.0174 (5)
C190.8252 (3)0.09824 (16)0.9810 (2)0.0237 (5)
H190.80690.05271.020.028*
C150.7317 (3)0.21089 (16)0.8434 (3)0.0255 (5)
H150.65040.24180.79080.031*
C180.9756 (3)0.12109 (19)1.0032 (3)0.0314 (6)
H181.05740.09141.05820.038*
C110.2947 (3)0.35167 (16)0.9183 (3)0.0263 (6)
H110.25290.39990.92750.032*
C40.1846 (3)0.06291 (15)0.5096 (2)0.0215 (5)
H40.07970.05230.4750.026*
C60.4238 (3)0.08449 (16)0.4807 (2)0.0231 (5)
H60.48030.08690.42590.028*
C171.0033 (3)0.18774 (18)0.9436 (3)0.0326 (7)
H171.10390.20250.9570.039*
C90.3404 (3)0.25267 (16)0.7805 (2)0.0233 (5)
H90.32920.23480.69680.028*
C30.2589 (3)0.07322 (14)0.6440 (2)0.0169 (5)
C50.2675 (3)0.06855 (15)0.4277 (2)0.0234 (5)
H50.21870.06170.33740.028*
C130.4314 (3)0.23448 (15)1.0149 (2)0.0220 (5)
H130.48310.20491.08970.026*
C100.2816 (3)0.32529 (16)0.7949 (3)0.0274 (6)
H100.23320.35630.72130.033*
C160.8815 (3)0.23287 (17)0.8639 (3)0.0306 (6)
H160.90050.2780.82410.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01221 (11)0.01690 (13)0.01105 (11)0.00151 (9)0.00278 (9)0.00207 (10)
C10.021 (3)0.017 (3)0.015 (3)0.000 (2)0.007 (2)0.004 (2)
O10.024 (4)0.027 (4)0.026 (3)0.008 (2)0.017 (2)0.001 (2)
Cl10.0204 (12)0.0177 (11)0.0171 (11)0.0033 (8)0.0105 (7)0.0011 (8)
P10.0130 (3)0.0175 (3)0.0124 (3)0.0011 (2)0.0041 (2)0.0022 (2)
Br10.01558 (11)0.03052 (15)0.01759 (12)0.00259 (9)0.00558 (9)0.00252 (10)
C70.0188 (11)0.0208 (12)0.0185 (11)0.0022 (9)0.0085 (9)0.0024 (9)
C20.0193 (11)0.0150 (11)0.0129 (10)0.0016 (9)0.0063 (9)0.0014 (9)
C80.0139 (10)0.0191 (12)0.0164 (11)0.0030 (9)0.0059 (9)0.0013 (9)
C120.0326 (14)0.0271 (14)0.0274 (13)0.0124 (11)0.0187 (12)0.0121 (11)
C140.0161 (10)0.0194 (12)0.0178 (11)0.0036 (9)0.0074 (9)0.0034 (9)
C190.0190 (11)0.0281 (14)0.0228 (12)0.0024 (10)0.0062 (10)0.0010 (11)
C150.0279 (13)0.0192 (13)0.0335 (14)0.0036 (10)0.0160 (11)0.0032 (11)
C180.0156 (12)0.0410 (17)0.0350 (15)0.0016 (11)0.0059 (11)0.0044 (13)
C110.0250 (13)0.0190 (13)0.0393 (15)0.0041 (10)0.0171 (12)0.0081 (11)
C40.0219 (12)0.0214 (13)0.0171 (11)0.0012 (10)0.0022 (9)0.0012 (10)
C60.0304 (13)0.0250 (14)0.0176 (12)0.0037 (11)0.0132 (10)0.0024 (10)
C170.0219 (13)0.0383 (17)0.0443 (17)0.0140 (12)0.0201 (12)0.0196 (14)
C90.0255 (12)0.0235 (13)0.0178 (11)0.0023 (10)0.0041 (10)0.0032 (10)
C30.0195 (11)0.0169 (12)0.0151 (11)0.0016 (9)0.0070 (9)0.0023 (9)
C50.0320 (14)0.0247 (14)0.0122 (11)0.0004 (11)0.0064 (10)0.0012 (10)
C130.0243 (12)0.0239 (13)0.0171 (11)0.0075 (10)0.0067 (10)0.0039 (10)
C100.0265 (13)0.0207 (13)0.0294 (14)0.0011 (11)0.0033 (11)0.0015 (11)
C160.0345 (14)0.0236 (14)0.0440 (17)0.0130 (12)0.0266 (13)0.0107 (12)
Geometric parameters (Å, º) top
Rh1—C1i1.720 (7)C19—C181.390 (3)
Rh1—C11.720 (7)C19—H190.93
Rh1—P12.3429 (6)C15—C161.384 (4)
Rh1—P1i2.3429 (6)C15—H150.93
Rh1—Cl1i2.433 (3)C18—C171.378 (4)
Rh1—Cl12.433 (3)C18—H180.93
C1—O11.163 (7)C11—C101.379 (4)
P1—C141.829 (2)C11—H110.93
P1—C21.831 (2)C4—C51.379 (4)
P1—C81.835 (2)C4—C31.385 (3)
Br1—C31.904 (2)C4—H40.93
C7—C61.383 (3)C6—C51.386 (4)
C7—C21.394 (3)C6—H60.93
C7—H70.93C17—C161.386 (4)
C2—C31.399 (3)C17—H170.93
C8—C131.397 (3)C9—C101.385 (4)
C8—C91.400 (3)C9—H90.93
C12—C111.375 (4)C5—H50.93
C12—C131.387 (4)C13—H130.93
C12—H120.93C10—H100.93
C14—C191.391 (3)C16—H160.93
C14—C151.394 (4)
C1i—Rh1—C1180.0000 (10)C18—C19—H19119.7
C1i—Rh1—P194.63 (19)C14—C19—H19119.7
C1—Rh1—P185.37 (19)C16—C15—C14120.5 (3)
C1i—Rh1—P1i85.37 (19)C16—C15—H15119.7
C1—Rh1—P1i94.63 (19)C14—C15—H15119.7
P1—Rh1—P1i180C17—C18—C19119.9 (3)
C1i—Rh1—Cl1i1.46 (18)C17—C18—H18120.1
C1—Rh1—Cl1i178.54 (19)C19—C18—H18120.1
P1—Rh1—Cl1i95.39 (7)C12—C11—C10120.0 (2)
P1i—Rh1—Cl1i84.61 (7)C12—C11—H11120
C1i—Rh1—Cl1178.54 (18)C10—C11—H11120
C1—Rh1—Cl11.46 (19)C5—C4—C3119.4 (2)
P1—Rh1—Cl184.61 (7)C5—C4—H4120.3
P1i—Rh1—Cl195.39 (7)C3—C4—H4120.3
Cl1i—Rh1—Cl1180.0000 (10)C7—C6—C5120.4 (2)
O1—C1—Rh1177.9 (8)C7—C6—H6119.8
C14—P1—C2105.04 (11)C5—C6—H6119.8
C14—P1—C8101.26 (11)C18—C17—C16120.1 (2)
C2—P1—C8101.29 (10)C18—C17—H17120
C14—P1—Rh1112.34 (8)C16—C17—H17120
C2—P1—Rh1110.92 (8)C10—C9—C8120.7 (2)
C8—P1—Rh1123.96 (8)C10—C9—H9119.7
C6—C7—C2121.3 (2)C8—C9—H9119.7
C6—C7—H7119.3C4—C3—C2122.2 (2)
C2—C7—H7119.3C4—C3—Br1117.41 (18)
C7—C2—C3116.8 (2)C2—C3—Br1120.34 (17)
C7—C2—P1122.46 (18)C4—C5—C6119.7 (2)
C3—C2—P1120.68 (17)C4—C5—H5120.1
C13—C8—C9118.2 (2)C6—C5—H5120.1
C13—C8—P1119.67 (19)C12—C13—C8120.5 (2)
C9—C8—P1122.05 (18)C12—C13—H13119.8
C11—C12—C13120.5 (2)C8—C13—H13119.8
C11—C12—H12119.8C11—C10—C9120.2 (3)
C13—C12—H12119.8C11—C10—H10119.9
C19—C14—C15118.7 (2)C9—C10—H10119.9
C19—C14—P1119.39 (19)C15—C16—C17120.1 (3)
C15—C14—P1121.86 (19)C15—C16—H16120
C18—C19—C14120.7 (3)C17—C16—H16120
C1i—Rh1—C1—O19E1 (10)Rh1—P1—C8—C9141.23 (18)
P1—Rh1—C1—O110E1 (2)C2—P1—C14—C19117.8 (2)
P1i—Rh1—C1—O18E1 (2)C8—P1—C14—C19137.1 (2)
Cl1i—Rh1—C1—O12E1 (3)Rh1—P1—C14—C192.8 (2)
Cl1—Rh1—C1—O116E1 (3)C2—P1—C14—C1563.4 (2)
C1i—Rh1—P1—C14113.6 (2)C8—P1—C14—C1541.7 (2)
C1—Rh1—P1—C1466.4 (2)Rh1—P1—C14—C15175.97 (18)
P1i—Rh1—P1—C1493.80 (10)C15—C14—C19—C180.1 (4)
Cl1i—Rh1—P1—C14112.34 (10)P1—C14—C19—C18178.8 (2)
Cl1—Rh1—P1—C1467.66 (10)C19—C14—C15—C161.0 (4)
C1i—Rh1—P1—C2129.2 (2)P1—C14—C15—C16179.8 (2)
C1—Rh1—P1—C250.8 (2)C14—C19—C18—C171.3 (4)
P1i—Rh1—P1—C223.42 (13)C13—C12—C11—C100.5 (4)
Cl1i—Rh1—P1—C2130.44 (10)C2—C7—C6—C51.1 (4)
Cl1—Rh1—P1—C249.56 (10)C19—C18—C17—C161.4 (4)
C1i—Rh1—P1—C88.5 (2)C13—C8—C9—C100.0 (4)
C1—Rh1—P1—C8171.5 (2)P1—C8—C9—C10176.5 (2)
P1i—Rh1—P1—C8144.10 (13)C5—C4—C3—C22.6 (4)
Cl1i—Rh1—P1—C89.76 (11)C5—C4—C3—Br1178.16 (19)
Cl1—Rh1—P1—C8170.24 (11)C7—C2—C3—C43.1 (4)
C6—C7—C2—C31.3 (4)P1—C2—C3—C4175.85 (19)
C6—C7—C2—P1177.7 (2)C7—C2—C3—Br1177.59 (18)
C14—P1—C2—C74.1 (2)P1—C2—C3—Br13.4 (3)
C8—P1—C2—C7109.2 (2)C3—C4—C5—C60.1 (4)
Rh1—P1—C2—C7117.49 (19)C7—C6—C5—C41.7 (4)
C14—P1—C2—C3174.83 (19)C11—C12—C13—C80.9 (4)
C8—P1—C2—C369.8 (2)C9—C8—C13—C121.2 (4)
Rh1—P1—C2—C363.6 (2)P1—C8—C13—C12177.67 (19)
C14—P1—C8—C1384.6 (2)C12—C11—C10—C91.6 (4)
C2—P1—C8—C13167.38 (19)C8—C9—C10—C111.3 (4)
Rh1—P1—C8—C1342.4 (2)C14—C15—C16—C170.9 (4)
C14—P1—C8—C991.8 (2)C18—C17—C16—C150.3 (4)
C2—P1—C8—C916.2 (2)
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[RhCl(C18H14BrP)2(CO)]
Mr848.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.3250 (5), 17.041 (1), 10.8880 (6)
β (°) 111.229 (1)
V3)1612.77 (16)
Z2
Radiation typeMo Kα
µ (mm1)3.22
Crystal size (mm)0.23 × 0.13 × 0.11
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.618, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
15235, 4032, 3531
Rint0.026
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.063, 1.11
No. of reflections4032
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.81

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the Next Generation Scholarship (NGS) in partnership with the University of Johannesburg (UJ), the Research Fund of the University of Johannesburg, TESP and SASOL is gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurgoyne, A. R., Meijboom, R., Muller, A. & Omondi, B. O. (2010). Acta Cryst. E66, m1380–m1381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, Y.-J., Wang, J.-C. & Wang, Yu (1991). Acta Cryst. C47, 2441–2442.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKemp, G., Roodt, A. & Purcell, W. (1995). Rhodium Express, pp. 21–26  Google Scholar
First citationLamb, G. W., Law, D. S., Slawin, A. M. Z. & Clarke, M. L. (2009). Inorg. Chim. Acta, 362, 4263–4267.  Web of Science CSD CrossRef CAS Google Scholar
First citationMakhoba, S., Muller, A., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m1286–m1287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeijboom, R. (2011). Acta Cryst. E67, m1438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeijboom, R., Muller, A. & Roodt, A. (2004). Acta Cryst. E60, m1071–m1073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtto, S. & Roodt, A. (2004). Inorg. Chim. Acta, 357, 1–10.  Web of Science CrossRef CAS Google Scholar
First citationOtto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295–299.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc. 83, 2784–2785.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds