metal-organic compounds
trans-Bis[(2-bromophenyl)diphenylphosphane-κP]carbonylchloridorhodium(I)
aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za
The title compound, trans-[RhCl(C18H14BrP)2(CO)], has a slightly disordered square-planar geometry with the Rh ionI situated on an inversion the centre and carbonyl–chloride disorder observed as a result of the crystallographic inversion symmetry. Selected geometric parameters include: Rh—P = 2.3430 (8) Å, Rh—Cl = 2.434 (3) Å, Rh—C = 1.722 (8) Å, P—Rh—P = 180.00 (3)°, P—Rh—Cl = 95.40 (7)°, 84.60 (7)° and Rh—C—O = 177.9 (8)°.
Related literature
For background to Vaska-type complexes, see: Roodt et al. (2003); Lamb et al. (2009); Vaska & Di Luzio (1961). For related complexes, see: Burgoyne et al. (2010); Makhoba et al. (2011); Meijboom (2011); Meijboom et al. (2004); Otto et al. (2000); Otto & Roodt (2004); Chen et al. (1991); Kemp et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz (2005); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812012421/hp2033sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812012421/hp2033Isup2.hkl
A solution of dichlorotetracarbonyldirhodium (0.050 g, 0.13 mmol) in acetone (3 cm3) was slowly added to a solution of the phosphane, C18H14BrP (0.176 g, 0.51 mmol) in acetone (3 cm3) at room temperature,after which the mixture was left to crystallize. Slow evaporation of the solvent afforded the title compound as yellow crystals. Spectroscopic analysis: 31P{H} NMR (CDCl3, 162.0 MHz, p.p.m.): 33.1[d, 1J(Rh—P) = 132.8 Hz, 2P]; IR ν(CO): 1950.8 cm-1; (CD2Cl2) ν(CO): 1973.2 cm-1.
The aromatic H atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms. The highest calculated residual electron density is 0.66 e.Å-3 at 1.597 Å from C15, which bears no physical meaning.
A vast range of different Vaska-type complexes have been synthesized, reported and spectroscopically studied (Roodt et al., 2003; Lamb et al.; 2009) since the synthesis and correct formulation of the original Vaska complex, trans-[Ir(CO)Cl(C18H15P)2], by Vaska & Di Luzio (1961). This class of symmetrical square-planar complexes (including Rh, Ir, Pd and Pt) usually crystallizes with the metal atom on a crystallographic inversion centre, resulting in a disordered packing arrangement (Chen et al., 1991; Otto et al., 2000; Otto & Roodt, 2004; Meijboom et al., 2004). The title compound serves as yet another complex to add to the Vaska's complex range with varying Group 5 ligand systems possessing different stereoelectronic properties.
In the title compound, the Rh atom lies at the centre of a slightly distorted square-planar geometric arrangement. The Rh atom crystallizes on a centre of symmetry, a crystallographic inversion centre, and has the carbonyl and chloro- ligands disordered at a 0.5:0.5 ratio. The stereoelectronic property of the phosphane with the bromo-functionality is indicated by the smaller O1—Rh1—P1 angle (85.39 (19)°), which is translated through symmetry to the inverted side of the molecule.
Selected spectroscopic data of the current compound is comparable to other similar complexes reported previously by Roodt et al. (2003) and Otto & Roodt (2004). However, the interesting difference in the magnitude of v(CO) for the solid and solution (in DCM) states of the title compound is ascribed to the packing of the molecules, which slightly distorts the Rh C—O angle. This effect was previously observed and reported for a polymorph of trans-[Rh(CO)Cl{PPh3}2] (Kemp et al., 1995).
For background to Vaska-type complexes, see: Roodt et al. (2003); Lamb et al. (2009); Vaska & Di Luzio (1961). For related complexes, see: Burgoyne et al. (2010); Makhoba et al. (2011); Meijboom (2011); Meijboom et al. (2004); Otto et al. (2000); Otto & Roodt (2004); Chen et al. (1991); Kemp et al. (1995). [This section ok as edited?]
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[RhCl(C18H14BrP)2(CO)] | F(000) = 840 |
Mr = 848.71 | Dx = 1.748 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2yn | Cell parameters from 6197 reflections |
a = 9.3250 (5) Å | θ = 2.4–28.3° |
b = 17.041 (1) Å | µ = 3.22 mm−1 |
c = 10.8880 (6) Å | T = 100 K |
β = 111.229 (1)° | Rectangular, yellow |
V = 1612.77 (16) Å3 | 0.23 × 0.13 × 0.11 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 3531 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
φ and ω scans | θmax = 28.4°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −12→12 |
Tmin = 0.618, Tmax = 0.697 | k = −22→22 |
15235 measured reflections | l = −14→14 |
4032 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0246P)2 + 1.6443P] where P = (Fo2 + 2Fc2)/3 |
4032 reflections | (Δ/σ)max = 0.001 |
214 parameters | Δρmax = 0.67 e Å−3 |
0 restraints | Δρmin = −0.81 e Å−3 |
[RhCl(C18H14BrP)2(CO)] | V = 1612.77 (16) Å3 |
Mr = 848.71 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.3250 (5) Å | µ = 3.22 mm−1 |
b = 17.041 (1) Å | T = 100 K |
c = 10.8880 (6) Å | 0.23 × 0.13 × 0.11 mm |
β = 111.229 (1)° |
Bruker APEXII CCD diffractometer | 4032 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3531 reflections with I > 2σ(I) |
Tmin = 0.618, Tmax = 0.697 | Rint = 0.026 |
15235 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.67 e Å−3 |
4032 reflections | Δρmin = −0.81 e Å−3 |
214 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Rh1 | 0.5 | 0 | 1 | 0.01378 (7) | |
C1 | 0.5773 (7) | −0.0478 (4) | 0.8993 (6) | 0.0178 (11) | 0.5 |
O1 | 0.6340 (10) | −0.0800 (5) | 0.8343 (9) | 0.0236 (17) | 0.5 |
Cl1 | 0.6037 (3) | −0.06666 (16) | 0.8527 (3) | 0.0174 (4) | 0.5 |
P1 | 0.50550 (6) | 0.11189 (4) | 0.87674 (5) | 0.01442 (12) | |
Br1 | 0.13942 (3) | 0.061590 (16) | 0.75242 (2) | 0.02135 (7) | |
C7 | 0.4960 (3) | 0.09681 (15) | 0.6146 (2) | 0.0189 (5) | |
H7 | 0.6006 | 0.1083 | 0.6484 | 0.023* | |
C2 | 0.4152 (3) | 0.09234 (14) | 0.7000 (2) | 0.0156 (4) | |
C8 | 0.4165 (3) | 0.20586 (14) | 0.8906 (2) | 0.0164 (5) | |
C12 | 0.3697 (3) | 0.30670 (16) | 1.0277 (3) | 0.0269 (6) | |
H12 | 0.379 | 0.3248 | 1.1108 | 0.032* | |
C14 | 0.7017 (3) | 0.14283 (14) | 0.9010 (2) | 0.0174 (5) | |
C19 | 0.8252 (3) | 0.09824 (16) | 0.9810 (2) | 0.0237 (5) | |
H19 | 0.8069 | 0.0527 | 1.02 | 0.028* | |
C15 | 0.7317 (3) | 0.21089 (16) | 0.8434 (3) | 0.0255 (5) | |
H15 | 0.6504 | 0.2418 | 0.7908 | 0.031* | |
C18 | 0.9756 (3) | 0.12109 (19) | 1.0032 (3) | 0.0314 (6) | |
H18 | 1.0574 | 0.0914 | 1.0582 | 0.038* | |
C11 | 0.2947 (3) | 0.35167 (16) | 0.9183 (3) | 0.0263 (6) | |
H11 | 0.2529 | 0.3999 | 0.9275 | 0.032* | |
C4 | 0.1846 (3) | 0.06291 (15) | 0.5096 (2) | 0.0215 (5) | |
H4 | 0.0797 | 0.0523 | 0.475 | 0.026* | |
C6 | 0.4238 (3) | 0.08449 (16) | 0.4807 (2) | 0.0231 (5) | |
H6 | 0.4803 | 0.0869 | 0.4259 | 0.028* | |
C17 | 1.0033 (3) | 0.18774 (18) | 0.9436 (3) | 0.0326 (7) | |
H17 | 1.1039 | 0.2025 | 0.957 | 0.039* | |
C9 | 0.3404 (3) | 0.25267 (16) | 0.7805 (2) | 0.0233 (5) | |
H9 | 0.3292 | 0.2348 | 0.6968 | 0.028* | |
C3 | 0.2589 (3) | 0.07322 (14) | 0.6440 (2) | 0.0169 (5) | |
C5 | 0.2675 (3) | 0.06855 (15) | 0.4277 (2) | 0.0234 (5) | |
H5 | 0.2187 | 0.0617 | 0.3374 | 0.028* | |
C13 | 0.4314 (3) | 0.23448 (15) | 1.0149 (2) | 0.0220 (5) | |
H13 | 0.4831 | 0.2049 | 1.0897 | 0.026* | |
C10 | 0.2816 (3) | 0.32529 (16) | 0.7949 (3) | 0.0274 (6) | |
H10 | 0.2332 | 0.3563 | 0.7213 | 0.033* | |
C16 | 0.8815 (3) | 0.23287 (17) | 0.8639 (3) | 0.0306 (6) | |
H16 | 0.9005 | 0.278 | 0.8241 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1 | 0.01221 (11) | 0.01690 (13) | 0.01105 (11) | −0.00151 (9) | 0.00278 (9) | 0.00207 (10) |
C1 | 0.021 (3) | 0.017 (3) | 0.015 (3) | 0.000 (2) | 0.007 (2) | 0.004 (2) |
O1 | 0.024 (4) | 0.027 (4) | 0.026 (3) | 0.008 (2) | 0.017 (2) | 0.001 (2) |
Cl1 | 0.0204 (12) | 0.0177 (11) | 0.0171 (11) | 0.0033 (8) | 0.0105 (7) | 0.0011 (8) |
P1 | 0.0130 (3) | 0.0175 (3) | 0.0124 (3) | −0.0011 (2) | 0.0041 (2) | 0.0022 (2) |
Br1 | 0.01558 (11) | 0.03052 (15) | 0.01759 (12) | −0.00259 (9) | 0.00558 (9) | 0.00252 (10) |
C7 | 0.0188 (11) | 0.0208 (12) | 0.0185 (11) | 0.0022 (9) | 0.0085 (9) | 0.0024 (9) |
C2 | 0.0193 (11) | 0.0150 (11) | 0.0129 (10) | 0.0016 (9) | 0.0063 (9) | 0.0014 (9) |
C8 | 0.0139 (10) | 0.0191 (12) | 0.0164 (11) | −0.0030 (9) | 0.0059 (9) | −0.0013 (9) |
C12 | 0.0326 (14) | 0.0271 (14) | 0.0274 (13) | −0.0124 (11) | 0.0187 (12) | −0.0121 (11) |
C14 | 0.0161 (10) | 0.0194 (12) | 0.0178 (11) | −0.0036 (9) | 0.0074 (9) | −0.0034 (9) |
C19 | 0.0190 (11) | 0.0281 (14) | 0.0228 (12) | −0.0024 (10) | 0.0062 (10) | 0.0010 (11) |
C15 | 0.0279 (13) | 0.0192 (13) | 0.0335 (14) | −0.0036 (10) | 0.0160 (11) | −0.0032 (11) |
C18 | 0.0156 (12) | 0.0410 (17) | 0.0350 (15) | −0.0016 (11) | 0.0059 (11) | −0.0044 (13) |
C11 | 0.0250 (13) | 0.0190 (13) | 0.0393 (15) | −0.0041 (10) | 0.0171 (12) | −0.0081 (11) |
C4 | 0.0219 (12) | 0.0214 (13) | 0.0171 (11) | −0.0012 (10) | 0.0022 (9) | 0.0012 (10) |
C6 | 0.0304 (13) | 0.0250 (14) | 0.0176 (12) | 0.0037 (11) | 0.0132 (10) | 0.0024 (10) |
C17 | 0.0219 (13) | 0.0383 (17) | 0.0443 (17) | −0.0140 (12) | 0.0201 (12) | −0.0196 (14) |
C9 | 0.0255 (12) | 0.0235 (13) | 0.0178 (11) | 0.0023 (10) | 0.0041 (10) | −0.0032 (10) |
C3 | 0.0195 (11) | 0.0169 (12) | 0.0151 (11) | 0.0016 (9) | 0.0070 (9) | 0.0023 (9) |
C5 | 0.0320 (14) | 0.0247 (14) | 0.0122 (11) | 0.0004 (11) | 0.0064 (10) | −0.0012 (10) |
C13 | 0.0243 (12) | 0.0239 (13) | 0.0171 (11) | −0.0075 (10) | 0.0067 (10) | −0.0039 (10) |
C10 | 0.0265 (13) | 0.0207 (13) | 0.0294 (14) | 0.0011 (11) | 0.0033 (11) | −0.0015 (11) |
C16 | 0.0345 (14) | 0.0236 (14) | 0.0440 (17) | −0.0130 (12) | 0.0266 (13) | −0.0107 (12) |
Rh1—C1i | 1.720 (7) | C19—C18 | 1.390 (3) |
Rh1—C1 | 1.720 (7) | C19—H19 | 0.93 |
Rh1—P1 | 2.3429 (6) | C15—C16 | 1.384 (4) |
Rh1—P1i | 2.3429 (6) | C15—H15 | 0.93 |
Rh1—Cl1i | 2.433 (3) | C18—C17 | 1.378 (4) |
Rh1—Cl1 | 2.433 (3) | C18—H18 | 0.93 |
C1—O1 | 1.163 (7) | C11—C10 | 1.379 (4) |
P1—C14 | 1.829 (2) | C11—H11 | 0.93 |
P1—C2 | 1.831 (2) | C4—C5 | 1.379 (4) |
P1—C8 | 1.835 (2) | C4—C3 | 1.385 (3) |
Br1—C3 | 1.904 (2) | C4—H4 | 0.93 |
C7—C6 | 1.383 (3) | C6—C5 | 1.386 (4) |
C7—C2 | 1.394 (3) | C6—H6 | 0.93 |
C7—H7 | 0.93 | C17—C16 | 1.386 (4) |
C2—C3 | 1.399 (3) | C17—H17 | 0.93 |
C8—C13 | 1.397 (3) | C9—C10 | 1.385 (4) |
C8—C9 | 1.400 (3) | C9—H9 | 0.93 |
C12—C11 | 1.375 (4) | C5—H5 | 0.93 |
C12—C13 | 1.387 (4) | C13—H13 | 0.93 |
C12—H12 | 0.93 | C10—H10 | 0.93 |
C14—C19 | 1.391 (3) | C16—H16 | 0.93 |
C14—C15 | 1.394 (4) | ||
C1i—Rh1—C1 | 180.0000 (10) | C18—C19—H19 | 119.7 |
C1i—Rh1—P1 | 94.63 (19) | C14—C19—H19 | 119.7 |
C1—Rh1—P1 | 85.37 (19) | C16—C15—C14 | 120.5 (3) |
C1i—Rh1—P1i | 85.37 (19) | C16—C15—H15 | 119.7 |
C1—Rh1—P1i | 94.63 (19) | C14—C15—H15 | 119.7 |
P1—Rh1—P1i | 180 | C17—C18—C19 | 119.9 (3) |
C1i—Rh1—Cl1i | 1.46 (18) | C17—C18—H18 | 120.1 |
C1—Rh1—Cl1i | 178.54 (19) | C19—C18—H18 | 120.1 |
P1—Rh1—Cl1i | 95.39 (7) | C12—C11—C10 | 120.0 (2) |
P1i—Rh1—Cl1i | 84.61 (7) | C12—C11—H11 | 120 |
C1i—Rh1—Cl1 | 178.54 (18) | C10—C11—H11 | 120 |
C1—Rh1—Cl1 | 1.46 (19) | C5—C4—C3 | 119.4 (2) |
P1—Rh1—Cl1 | 84.61 (7) | C5—C4—H4 | 120.3 |
P1i—Rh1—Cl1 | 95.39 (7) | C3—C4—H4 | 120.3 |
Cl1i—Rh1—Cl1 | 180.0000 (10) | C7—C6—C5 | 120.4 (2) |
O1—C1—Rh1 | 177.9 (8) | C7—C6—H6 | 119.8 |
C14—P1—C2 | 105.04 (11) | C5—C6—H6 | 119.8 |
C14—P1—C8 | 101.26 (11) | C18—C17—C16 | 120.1 (2) |
C2—P1—C8 | 101.29 (10) | C18—C17—H17 | 120 |
C14—P1—Rh1 | 112.34 (8) | C16—C17—H17 | 120 |
C2—P1—Rh1 | 110.92 (8) | C10—C9—C8 | 120.7 (2) |
C8—P1—Rh1 | 123.96 (8) | C10—C9—H9 | 119.7 |
C6—C7—C2 | 121.3 (2) | C8—C9—H9 | 119.7 |
C6—C7—H7 | 119.3 | C4—C3—C2 | 122.2 (2) |
C2—C7—H7 | 119.3 | C4—C3—Br1 | 117.41 (18) |
C7—C2—C3 | 116.8 (2) | C2—C3—Br1 | 120.34 (17) |
C7—C2—P1 | 122.46 (18) | C4—C5—C6 | 119.7 (2) |
C3—C2—P1 | 120.68 (17) | C4—C5—H5 | 120.1 |
C13—C8—C9 | 118.2 (2) | C6—C5—H5 | 120.1 |
C13—C8—P1 | 119.67 (19) | C12—C13—C8 | 120.5 (2) |
C9—C8—P1 | 122.05 (18) | C12—C13—H13 | 119.8 |
C11—C12—C13 | 120.5 (2) | C8—C13—H13 | 119.8 |
C11—C12—H12 | 119.8 | C11—C10—C9 | 120.2 (3) |
C13—C12—H12 | 119.8 | C11—C10—H10 | 119.9 |
C19—C14—C15 | 118.7 (2) | C9—C10—H10 | 119.9 |
C19—C14—P1 | 119.39 (19) | C15—C16—C17 | 120.1 (3) |
C15—C14—P1 | 121.86 (19) | C15—C16—H16 | 120 |
C18—C19—C14 | 120.7 (3) | C17—C16—H16 | 120 |
C1i—Rh1—C1—O1 | 9E1 (10) | Rh1—P1—C8—C9 | −141.23 (18) |
P1—Rh1—C1—O1 | 10E1 (2) | C2—P1—C14—C19 | −117.8 (2) |
P1i—Rh1—C1—O1 | −8E1 (2) | C8—P1—C14—C19 | 137.1 (2) |
Cl1i—Rh1—C1—O1 | −2E1 (3) | Rh1—P1—C14—C19 | 2.8 (2) |
Cl1—Rh1—C1—O1 | 16E1 (3) | C2—P1—C14—C15 | 63.4 (2) |
C1i—Rh1—P1—C14 | 113.6 (2) | C8—P1—C14—C15 | −41.7 (2) |
C1—Rh1—P1—C14 | −66.4 (2) | Rh1—P1—C14—C15 | −175.97 (18) |
P1i—Rh1—P1—C14 | −93.80 (10) | C15—C14—C19—C18 | 0.1 (4) |
Cl1i—Rh1—P1—C14 | 112.34 (10) | P1—C14—C19—C18 | −178.8 (2) |
Cl1—Rh1—P1—C14 | −67.66 (10) | C19—C14—C15—C16 | 1.0 (4) |
C1i—Rh1—P1—C2 | −129.2 (2) | P1—C14—C15—C16 | 179.8 (2) |
C1—Rh1—P1—C2 | 50.8 (2) | C14—C19—C18—C17 | −1.3 (4) |
P1i—Rh1—P1—C2 | 23.42 (13) | C13—C12—C11—C10 | −0.5 (4) |
Cl1i—Rh1—P1—C2 | −130.44 (10) | C2—C7—C6—C5 | 1.1 (4) |
Cl1—Rh1—P1—C2 | 49.56 (10) | C19—C18—C17—C16 | 1.4 (4) |
C1i—Rh1—P1—C8 | −8.5 (2) | C13—C8—C9—C10 | 0.0 (4) |
C1—Rh1—P1—C8 | 171.5 (2) | P1—C8—C9—C10 | −176.5 (2) |
P1i—Rh1—P1—C8 | 144.10 (13) | C5—C4—C3—C2 | 2.6 (4) |
Cl1i—Rh1—P1—C8 | −9.76 (11) | C5—C4—C3—Br1 | −178.16 (19) |
Cl1—Rh1—P1—C8 | 170.24 (11) | C7—C2—C3—C4 | −3.1 (4) |
C6—C7—C2—C3 | 1.3 (4) | P1—C2—C3—C4 | 175.85 (19) |
C6—C7—C2—P1 | −177.7 (2) | C7—C2—C3—Br1 | 177.59 (18) |
C14—P1—C2—C7 | 4.1 (2) | P1—C2—C3—Br1 | −3.4 (3) |
C8—P1—C2—C7 | 109.2 (2) | C3—C4—C5—C6 | −0.1 (4) |
Rh1—P1—C2—C7 | −117.49 (19) | C7—C6—C5—C4 | −1.7 (4) |
C14—P1—C2—C3 | −174.83 (19) | C11—C12—C13—C8 | −0.9 (4) |
C8—P1—C2—C3 | −69.8 (2) | C9—C8—C13—C12 | 1.2 (4) |
Rh1—P1—C2—C3 | 63.6 (2) | P1—C8—C13—C12 | 177.67 (19) |
C14—P1—C8—C13 | −84.6 (2) | C12—C11—C10—C9 | 1.6 (4) |
C2—P1—C8—C13 | 167.38 (19) | C8—C9—C10—C11 | −1.3 (4) |
Rh1—P1—C8—C13 | 42.4 (2) | C14—C15—C16—C17 | −0.9 (4) |
C14—P1—C8—C9 | 91.8 (2) | C18—C17—C16—C15 | −0.3 (4) |
C2—P1—C8—C9 | −16.2 (2) |
Symmetry code: (i) −x+1, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [RhCl(C18H14BrP)2(CO)] |
Mr | 848.71 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 9.3250 (5), 17.041 (1), 10.8880 (6) |
β (°) | 111.229 (1) |
V (Å3) | 1612.77 (16) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.22 |
Crystal size (mm) | 0.23 × 0.13 × 0.11 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.618, 0.697 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15235, 4032, 3531 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.063, 1.11 |
No. of reflections | 4032 |
No. of parameters | 214 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.67, −0.81 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005), SHELXTL (Sheldrick, 2008).
Acknowledgements
Financial assistance from the South African National Research Foundation (SA NRF), the Next Generation Scholarship (NGS) in partnership with the University of Johannesburg (UJ), the Research Fund of the University of Johannesburg, TESP and SASOL is gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burgoyne, A. R., Meijboom, R., Muller, A. & Omondi, B. O. (2010). Acta Cryst. E66, m1380–m1381. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chen, Y.-J., Wang, J.-C. & Wang, Yu (1991). Acta Cryst. C47, 2441–2442. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kemp, G., Roodt, A. & Purcell, W. (1995). Rhodium Express, pp. 21–26 Google Scholar
Lamb, G. W., Law, D. S., Slawin, A. M. Z. & Clarke, M. L. (2009). Inorg. Chim. Acta, 362, 4263–4267. Web of Science CSD CrossRef CAS Google Scholar
Makhoba, S., Muller, A., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m1286–m1287. Web of Science CSD CrossRef IUCr Journals Google Scholar
Meijboom, R. (2011). Acta Cryst. E67, m1438. Web of Science CSD CrossRef IUCr Journals Google Scholar
Meijboom, R., Muller, A. & Roodt, A. (2004). Acta Cryst. E60, m1071–m1073. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otto, S. & Roodt, A. (2004). Inorg. Chim. Acta, 357, 1–10. Web of Science CrossRef CAS Google Scholar
Otto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295–299. Web of Science CSD CrossRef CAS Google Scholar
Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc. 83, 2784–2785. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A vast range of different Vaska-type complexes have been synthesized, reported and spectroscopically studied (Roodt et al., 2003; Lamb et al.; 2009) since the synthesis and correct formulation of the original Vaska complex, trans-[Ir(CO)Cl(C18H15P)2], by Vaska & Di Luzio (1961). This class of symmetrical square-planar complexes (including Rh, Ir, Pd and Pt) usually crystallizes with the metal atom on a crystallographic inversion centre, resulting in a disordered packing arrangement (Chen et al., 1991; Otto et al., 2000; Otto & Roodt, 2004; Meijboom et al., 2004). The title compound serves as yet another complex to add to the Vaska's complex range with varying Group 5 ligand systems possessing different stereoelectronic properties.
In the title compound, the Rh atom lies at the centre of a slightly distorted square-planar geometric arrangement. The Rh atom crystallizes on a centre of symmetry, a crystallographic inversion centre, and has the carbonyl and chloro- ligands disordered at a 0.5:0.5 ratio. The stereoelectronic property of the phosphane with the bromo-functionality is indicated by the smaller O1—Rh1—P1 angle (85.39 (19)°), which is translated through symmetry to the inverted side of the molecule.
Selected spectroscopic data of the current compound is comparable to other similar complexes reported previously by Roodt et al. (2003) and Otto & Roodt (2004). However, the interesting difference in the magnitude of v(CO) for the solid and solution (in DCM) states of the title compound is ascribed to the packing of the molecules, which slightly distorts the Rh C—O angle. This effect was previously observed and reported for a polymorph of trans-[Rh(CO)Cl{PPh3}2] (Kemp et al., 1995).