metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m396-m397

Tris(ethyl­enedi­amine-κ2N,N′)cadmium hexa­fluoridogermanate

aTeachers College, College of Chemistry, Chemical Engineering and Environment, Qingdao University, Shandong 266071, People's Republic of China, bTeachers College, Qingdao University, Shandong 266071, People's Republic of China, and cCollege of Chemistry, Chemical Engineering and Environment, Qingdao University, Shandong 266071, People's Republic of China
*Correspondence e-mail: gmwang_pub@163.com

(Received 22 February 2012; accepted 6 March 2012; online 10 March 2012)

In the title compound, [Cd(C2H8N2)3](GeF6), the CdII atom, lying on a 32 symmetry site, is coordinated by six N atoms from three ethyl­enediamine (en) ligands in a distorted octa­hedral geometry. The Ge atom also lies on a 32 symmetry site and is coordinated by six F atoms. The en ligand has a twofold rotation axis passing through the mid-point of the C—C bond. The F atom is disordered over two sites with equal occupancy factors. In the crystal, the [Cd(en)3]2+ cations and [GeF6]2− anions are connected through N—H⋯F hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For background to the structures and applications of microporous materials, see: Cheetham et al. (1999[Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]); Jiang et al. (2010[Jiang, J. X., Yu, J. H. & Corma, A. (2010). Angew. Chem. Int. Ed. 49, 3120-3145.]); Liang et al. (2006[Liang, J., Li, Y. F., Yu, J. H., Chen, P., Fang, Q. R., Sun, F. X. & Xu, R. R. (2006). Angew. Chem. Int. Ed. 45, 2546-2548.]); Yu & Xu (2003[Yu, J. H. & Xu, R. R. (2003). Acc. Chem. Res. 36, 481-490.]); Zou et al. (2005[Zou, X. D., Conradsson, T., Klingsteddt, M., Dadachov, M. S. & O'Keeffe, M. (2005). Nature (London), 437, 716-719.]). For related fluorides, see: Brauer et al. (1980[Brauer, D. J., Burger, H. & Eujen, R. (1980). Angew. Chem. Int. Ed. Engl. 19, 836-837.], 1986[Brauer, D. J., Wilke, J. & Eujen, R. (1986). J. Organomet. Chem. 316, 261-269.]); Dadachov et al. (2001[Dadachov, M. S., Tang, L. Q. & Zou, X. D. (2001). Z. Kristallogr. New Cryst. Struct. 216, 141-142.]); Lukevics et al. (1997[Lukevics, E., Belyakov, S., Arsenyan, P. & Popelis, J. (1997). J. Organomet. Chem. 549, 163-165.]); Tang et al. (2001a[Tang, L. Q., Dadachov, M. S. & Zou, X. D. (2001a). Z. Kristallogr. New Cryst. Struct. 216, 257-258.],b[Tang, L. Q., Dadachov, M. S. & Zou, X. D. (2001b). Z. Kristallogr. New Cryst. Struct. 216, 259-260.],c[Tang, L. Q., Dadachov, M. S. & Zou, X. D. (2001c). Z. Kristallogr. New Cryst. Struct. 216, 385-386.],d[Tang, L. Q., Dadachov, M. S. & Zou, X. D. (2001d). Z. Kristallogr. New Cryst. Struct. 216, 387-388.],e[Tang, L. Q., Dadachov, M. S. & Zou, X. D. (2001e). Z. Kristallogr. New Cryst. Struct. 216, 389-390.],f[Tang, L. Q., Dadachov, M. S. & Zou, X. D. (2001f). Z. Kristallogr. New Cryst. Struct. 216, 391-392.]); Wang et al. (2004[Wang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). Acta Cryst. E60, m705-m707.]); Wang & Wang (2011[Wang, G.-M. & Wang, P. (2011). Acta Cryst. E67, m1278-m1279.]); Zhang et al. (2003[Zhang, H.-X., Yang, G.-Y. & Sun, Y.-Q. (2003). Acta Cryst. E59, m185-m187.]). For related structures containing chiral metal complexes, see: Stalder & Wilkinson (1997[Stalder, S. M. & Wilkinson, A. P. (1997). Chem. Mater. 9, 2168-2173.]); Wang et al. (2003[Wang, Y., Yu, J. H., Guo, M. & Xu, R. R. (2003). Angew. Chem. Int. Ed. 42, 4089-4092.]); Yu et al. (2001[Yu, J. H., Wang, Y., Shi, Z. & Xu, R. R. (2001). Chem. Mater. 13, 2972-2978.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2H8N2)3](GeF6)

  • Mr = 479.33

  • Trigonal, [P \overline 31c ]

  • a = 9.5422 (3) Å

  • c = 9.9977 (5) Å

  • V = 788.37 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.557, Tmax = 0.692

  • 7348 measured reflections

  • 549 independent reflections

  • 496 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.038

  • S = 1.16

  • 549 reflections

  • 42 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯F1i 0.90 2.28 3.135 (11) 158
N1—H1C⋯F1′i 0.90 2.06 2.959 (11) 173
N1—H1D⋯F1 0.90 1.94 2.831 (11) 172
N1—H1D⋯F1′ 0.90 2.16 3.005 (11) 156
Symmetry code: (i) x-y, x, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, there has been much interest in the design and synthesis of crystalline microporous materials because of their rich structural chemistry and potential applications in catalysis, ion-exchange and separation (Cheetham et al., 1999; Jiang et al., 2010; Liang et al., 2006; Yu & Xu, 2003; Zou et al., 2005). In addition to the most notable zeolites, many non-aluminosilicate-based microporous systems, such as metal phosphates, germanates, borates, etc. have been extensively investigated. In contrast, the progress in the field of fluorides has been limited, though some fluoroaluminates (Tang et al., 2001c,e), fluorosilicate (Tang et al., 2001f), fluorotitanates (Dadachov et al., 2001; Tang et al., 2001a,b,d) and fluorogermanates (Brauer et al., 1980,1986; Lukevics et al., 1997; Wang et al., 2004; Wang & Wang, 2011; Zhang et al., 2003) have been reported. The main purpose of our work is to prepare microporous germanates templated by transition-metal complexes. Unexpectedly, the title compound, (I), was obtained, which is a new fluorogermanate templated by [Cd(en)3]2+ cations (en = ethylenediamine).

The crystal structure of (I) consists of discrete [Cd(en)3]2+ cations and [GeF6]2- anions (Fig. 1). Both of the cation and anion lie on 32 symmetry sites. In the [GeF6]2- anion, the Ge atom is six-coordinated in a distorted octahedral geometry by six symmetry-related F atoms. The Ge—F bond distances are 1.812 (9) and 1.746 (9) Å, similar to the distances observed in inorganic complex K2GeF6 (Ge—F 1.77 Å) and in other fluorogermanates. In the [Cd(en)3]2+ cation, the CdII atom is bonded to six amine N aoms from three symmetry-related en ligands. The Cd—N bond distance is 2.370 (2) Å, comparable with those found in other related compounds. Interestingly, the [Cd(en)3]2+ complex generated in situ is chiral, and the enantiomers are alternately arranged along the a axis (Fig. 2). It is worthy to note that the rigid octahedrally coordinated metal amine complex with chiral features is particularly rare and usually characterized as Co and Ir complexes, such as [Co(en)3]3+, [Co(tn)3]3+ (tn = 1,3-diaminopropane), [Co(dien)2]3+ (dien = diethylenetriamine), [Ir(en)3]3+, etc (Stalder & Wilkinson, 1997; Wang et al., 2003; Yu et al., 2001). Each [Cd(en)3]2+ cation is linked to three neighboring [GeF6]2- anions through N1—H1D···F1 hydrogen bonds (Table 1), generating a hydrogen-bonded layer along [001] (Fig. 3). Adjacent layers are further connected with each other through N1—H1C···F1 hydrogen bonds (Fig. 4), giving rise to a three-dimensional supramolecular network .

Related literature top

For background to the structures and applications of microporous materials, see: Cheetham et al. (1999); Jiang et al. (2010); Liang et al. (2006); Yu & Xu (2003); Zou et al. (2005). For related fluorides, see: Brauer et al. (1980, 1986); Dadachov et al. (2001); Lukevics et al. (1997); Tang et al. (2001a,b,c,d,e,f); Wang et al. (2004); Wang & Wang (2011); Zhang et al. (2003). For related structures containing chiral metal complexes, see: Stalder & Wilkinson (1997); Wang et al. (2003); Yu et al. (2001).

Experimental top

The title compound was obtained by hydrothermal methods. Typically, a mixture of GeO2 (0.104 g, 1 mmol), CdCO3 (0.174 g, 1 mmol), en (1.34 ml), pyridine (2.50 ml), hydrofluoric acid (40%, 0.20 ml) and H2O (1.00 ml) in a molar ratio of 1:1:20:31:10:56 was sealed in a 25 ml Teflon-lined steel autoclave and heated under autogenous pressure at 443 K for 7 days. The block crystals obtained were recovered by filtration, washed with distilled water and dried in air.

Refinement top

Atom F1 was refined as disordered over two positions, each with 50% site occupancy. All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 and N—H = 0.90 Å and with Uiso(H) = 1.2Ueq(C, N).

Structure description top

In recent years, there has been much interest in the design and synthesis of crystalline microporous materials because of their rich structural chemistry and potential applications in catalysis, ion-exchange and separation (Cheetham et al., 1999; Jiang et al., 2010; Liang et al., 2006; Yu & Xu, 2003; Zou et al., 2005). In addition to the most notable zeolites, many non-aluminosilicate-based microporous systems, such as metal phosphates, germanates, borates, etc. have been extensively investigated. In contrast, the progress in the field of fluorides has been limited, though some fluoroaluminates (Tang et al., 2001c,e), fluorosilicate (Tang et al., 2001f), fluorotitanates (Dadachov et al., 2001; Tang et al., 2001a,b,d) and fluorogermanates (Brauer et al., 1980,1986; Lukevics et al., 1997; Wang et al., 2004; Wang & Wang, 2011; Zhang et al., 2003) have been reported. The main purpose of our work is to prepare microporous germanates templated by transition-metal complexes. Unexpectedly, the title compound, (I), was obtained, which is a new fluorogermanate templated by [Cd(en)3]2+ cations (en = ethylenediamine).

The crystal structure of (I) consists of discrete [Cd(en)3]2+ cations and [GeF6]2- anions (Fig. 1). Both of the cation and anion lie on 32 symmetry sites. In the [GeF6]2- anion, the Ge atom is six-coordinated in a distorted octahedral geometry by six symmetry-related F atoms. The Ge—F bond distances are 1.812 (9) and 1.746 (9) Å, similar to the distances observed in inorganic complex K2GeF6 (Ge—F 1.77 Å) and in other fluorogermanates. In the [Cd(en)3]2+ cation, the CdII atom is bonded to six amine N aoms from three symmetry-related en ligands. The Cd—N bond distance is 2.370 (2) Å, comparable with those found in other related compounds. Interestingly, the [Cd(en)3]2+ complex generated in situ is chiral, and the enantiomers are alternately arranged along the a axis (Fig. 2). It is worthy to note that the rigid octahedrally coordinated metal amine complex with chiral features is particularly rare and usually characterized as Co and Ir complexes, such as [Co(en)3]3+, [Co(tn)3]3+ (tn = 1,3-diaminopropane), [Co(dien)2]3+ (dien = diethylenetriamine), [Ir(en)3]3+, etc (Stalder & Wilkinson, 1997; Wang et al., 2003; Yu et al., 2001). Each [Cd(en)3]2+ cation is linked to three neighboring [GeF6]2- anions through N1—H1D···F1 hydrogen bonds (Table 1), generating a hydrogen-bonded layer along [001] (Fig. 3). Adjacent layers are further connected with each other through N1—H1C···F1 hydrogen bonds (Fig. 4), giving rise to a three-dimensional supramolecular network .

For background to the structures and applications of microporous materials, see: Cheetham et al. (1999); Jiang et al. (2010); Liang et al. (2006); Yu & Xu (2003); Zou et al. (2005). For related fluorides, see: Brauer et al. (1980, 1986); Dadachov et al. (2001); Lukevics et al. (1997); Tang et al. (2001a,b,c,d,e,f); Wang et al. (2004); Wang & Wang (2011); Zhang et al. (2003). For related structures containing chiral metal complexes, see: Stalder & Wilkinson (1997); Wang et al. (2003); Yu et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + y, y, 1/2 - z; (ii) x, 1 + x - y, 1/2 - z; (iii) -x + y, 1 - x, z; (iv) 1 - y, 1 + x - y, z; (v) 1 - y, 1 - x, 1/2 - z.]
[Figure 2] Fig. 2. The arrangement of the chiral [Cd(en)3]2+ complexes along the a axis.
[Figure 3] Fig. 3. View of the hydrogen-bonded layer from the [Cd(en)3]2+ and [GeF6]2- ions.
[Figure 4] Fig. 4. The expansion of adjacent layers into a three-dimensional hydrogen-bonded network.
Tris(ethylenediamine-κ2N,N')cadmium hexafluoridogermanate top
Crystal data top
[Cd(C2H8N2)3](GeF6)Dx = 2.019 Mg m3
Mr = 479.33Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 549 reflections
Hall symbol: -P 3 2cθ = 4.1–26.5°
a = 9.5422 (3) ŵ = 3.32 mm1
c = 9.9977 (5) ÅT = 293 K
V = 788.37 (7) Å3Block, colorless
Z = 20.20 × 0.18 × 0.12 mm
F(000) = 472
Data collection top
Bruker APEX CCD
diffractometer
549 independent reflections
Radiation source: fine-focus sealed tube496 reflections with I > 2σa(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 26.5°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.557, Tmax = 0.692k = 1111
7348 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0048P)2 + 0.9629P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
549 reflectionsΔρmax = 0.23 e Å3
42 parametersΔρmin = 0.23 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (3)
Crystal data top
[Cd(C2H8N2)3](GeF6)Z = 2
Mr = 479.33Mo Kα radiation
Trigonal, P31cµ = 3.32 mm1
a = 9.5422 (3) ÅT = 293 K
c = 9.9977 (5) Å0.20 × 0.18 × 0.12 mm
V = 788.37 (7) Å3
Data collection top
Bruker APEX CCD
diffractometer
549 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
496 reflections with I > 2σa(I)
Tmin = 0.557, Tmax = 0.692Rint = 0.038
7348 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02412 restraints
wR(F2) = 0.038H-atom parameters constrained
S = 1.16Δρmax = 0.23 e Å3
549 reflectionsΔρmin = 0.23 e Å3
42 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.33330.66670.25000.03249 (17)
Ge10.66670.33330.25000.02960 (19)
N10.2829 (3)0.4387 (3)0.1196 (2)0.0444 (6)
H1C0.26370.45380.03410.053*
H1D0.36980.42540.12120.053*
C10.1425 (4)0.2956 (4)0.1743 (3)0.0504 (8)
H1A0.13810.19890.13880.060*
H1B0.04430.29490.14790.060*
F10.5391 (11)0.3708 (8)0.1387 (10)0.065 (2)0.50
F1'0.5004 (11)0.2974 (8)0.1521 (10)0.064 (2)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0326 (2)0.0326 (2)0.0323 (3)0.01630 (10)0.0000.000
Ge10.0312 (3)0.0312 (3)0.0264 (4)0.01559 (13)0.0000.000
N10.0559 (17)0.0475 (16)0.0364 (13)0.0309 (14)0.0008 (12)0.0037 (12)
C10.056 (2)0.0397 (18)0.0518 (18)0.0214 (16)0.0092 (16)0.0112 (14)
F10.074 (5)0.092 (5)0.051 (3)0.058 (4)0.012 (3)0.001 (4)
F1'0.049 (4)0.098 (5)0.049 (3)0.040 (4)0.021 (3)0.010 (4)
Geometric parameters (Å, º) top
Cd1—N1i2.370 (2)Ge1—F1vi1.812 (9)
Cd1—N1ii2.370 (2)Ge1—F1viii1.812 (9)
Cd1—N1iii2.370 (2)Ge1—F1ix1.812 (9)
Cd1—N12.370 (2)Ge1—F1v1.812 (9)
Cd1—N1iv2.370 (2)Ge1—F11.812 (9)
Cd1—N1v2.370 (2)N1—C11.459 (4)
Ge1—F1'vi1.746 (9)N1—H1C0.9000
Ge1—F1'vii1.746 (9)N1—H1D0.9000
Ge1—F1'viii1.746 (9)C1—C1iii1.518 (6)
Ge1—F1'v1.746 (9)C1—H1A0.9700
Ge1—F1'ix1.746 (9)C1—H1B0.9700
Ge1—F1'1.746 (9)F1—F1'0.621 (10)
Ge1—F1vii1.812 (9)
N1i—Cd1—N1ii74.72 (12)F1'ix—Ge1—F1viii176.1 (7)
N1i—Cd1—N1iii92.62 (8)F1'—Ge1—F1viii91.4 (3)
N1ii—Cd1—N1iii103.54 (12)F1vii—Ge1—F1viii86.2 (5)
N1i—Cd1—N1159.72 (12)F1vi—Ge1—F1viii82.4 (6)
N1ii—Cd1—N192.62 (8)F1'vi—Ge1—F1ix73.7 (3)
N1iii—Cd1—N174.72 (12)F1'vii—Ge1—F1ix90.6 (2)
N1i—Cd1—N1iv103.54 (12)F1'viii—Ge1—F1ix176.1 (7)
N1ii—Cd1—N1iv92.62 (8)F1'v—Ge1—F1ix91.4 (3)
N1iii—Cd1—N1iv159.72 (12)F1'—Ge1—F1ix100.8 (2)
N1—Cd1—N1iv92.62 (8)F1vii—Ge1—F1ix82.4 (6)
N1i—Cd1—N1v92.62 (8)F1vi—Ge1—F1ix86.2 (5)
N1ii—Cd1—N1v159.72 (12)F1viii—Ge1—F1ix160.3 (5)
N1iii—Cd1—N1v92.62 (8)F1'vi—Ge1—F1v176.1 (7)
N1—Cd1—N1v103.54 (12)F1'vii—Ge1—F1v100.8 (2)
N1iv—Cd1—N1v74.72 (12)F1'viii—Ge1—F1v73.7 (3)
F1'vi—Ge1—F1'vii76.2 (6)F1'ix—Ge1—F1v91.4 (3)
F1'vi—Ge1—F1'viii103.8 (6)F1'—Ge1—F1v90.6 (2)
F1'vii—Ge1—F1'viii91.7 (5)F1vii—Ge1—F1v86.2 (5)
F1'vi—Ge1—F1'v160.4 (5)F1vi—Ge1—F1v160.3 (5)
F1'vii—Ge1—F1'v91.7 (5)F1viii—Ge1—F1v86.2 (5)
F1'viii—Ge1—F1'v91.7 (5)F1ix—Ge1—F1v108.8 (5)
F1'vi—Ge1—F1'ix91.7 (5)F1'vi—Ge1—F1100.8 (2)
F1'vii—Ge1—F1'ix103.8 (6)F1'vii—Ge1—F1176.1 (7)
F1'viii—Ge1—F1'ix160.4 (5)F1'viii—Ge1—F191.4 (3)
F1'v—Ge1—F1'ix76.2 (6)F1'v—Ge1—F190.6 (2)
F1'vi—Ge1—F1'91.7 (5)F1'ix—Ge1—F173.7 (3)
F1'vii—Ge1—F1'160.4 (5)F1vii—Ge1—F1160.3 (5)
F1'viii—Ge1—F1'76.2 (6)F1vi—Ge1—F186.2 (5)
F1'v—Ge1—F1'103.8 (6)F1viii—Ge1—F1108.8 (5)
F1'ix—Ge1—F1'91.7 (5)F1ix—Ge1—F186.2 (5)
F1'vi—Ge1—F1vii91.4 (3)F1v—Ge1—F182.4 (6)
F1'viii—Ge1—F1vii100.8 (2)C1—N1—Cd1108.83 (17)
F1'v—Ge1—F1vii73.7 (3)C1—N1—H1C109.9
F1'ix—Ge1—F1vii90.6 (2)Cd1—N1—H1C109.9
F1'—Ge1—F1vii176.1 (7)C1—N1—H1D109.9
F1'vii—Ge1—F1vi91.4 (3)Cd1—N1—H1D109.9
F1'viii—Ge1—F1vi90.6 (2)H1C—N1—H1D108.3
F1'v—Ge1—F1vi176.1 (7)N1—C1—C1iii110.1 (2)
F1'ix—Ge1—F1vi100.8 (2)N1—C1—H1A109.6
F1'—Ge1—F1vi73.7 (3)C1iii—C1—H1A109.6
F1vii—Ge1—F1vi108.8 (5)N1—C1—H1B109.6
F1'vi—Ge1—F1viii90.6 (2)C1iii—C1—H1B109.6
F1'vii—Ge1—F1viii73.7 (3)H1A—C1—H1B108.2
F1'v—Ge1—F1viii100.8 (2)
Symmetry codes: (i) x, xy+1, z+1/2; (ii) x+y, x+1, z; (iii) x+y, y, z+1/2; (iv) y+1, xy+1, z; (v) y+1, x+1, z+1/2; (vi) y+1, xy, z; (vii) x+y+1, y, z+1/2; (viii) x, xy, z+1/2; (ix) x+y+1, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···F1x0.902.283.135 (11)158
N1—H1C···F1x0.902.062.959 (11)173
N1—H1D···F10.901.942.831 (11)172
N1—H1D···F10.902.163.005 (11)156
Symmetry code: (x) xy, x, z.

Experimental details

Crystal data
Chemical formula[Cd(C2H8N2)3](GeF6)
Mr479.33
Crystal system, space groupTrigonal, P31c
Temperature (K)293
a, c (Å)9.5422 (3), 9.9977 (5)
V3)788.37 (7)
Z2
Radiation typeMo Kα
µ (mm1)3.32
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.557, 0.692
No. of measured, independent and
observed [I > 2σa(I)] reflections
7348, 549, 496
Rint0.038
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.038, 1.16
No. of reflections549
No. of parameters42
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···F1i0.902.283.135 (11)158
N1—H1C···F1'i0.902.062.959 (11)173
N1—H1D···F10.901.942.831 (11)172
N1—H1D···F1'0.902.163.005 (11)156
Symmetry code: (i) xy, x, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20901043), the Young Scientist Foundation of Shandong Province (No. BS2009CL041) and the Qingdao University Research Fund (No. 063–06300522).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrauer, D. J., Burger, H. & Eujen, R. (1980). Angew. Chem. Int. Ed. Engl. 19, 836–837.  CSD CrossRef Web of Science Google Scholar
First citationBrauer, D. J., Wilke, J. & Eujen, R. (1986). J. Organomet. Chem. 316, 261–269.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationDadachov, M. S., Tang, L. Q. & Zou, X. D. (2001). Z. Kristallogr. New Cryst. Struct. 216, 141–142.  CAS Google Scholar
First citationJiang, J. X., Yu, J. H. & Corma, A. (2010). Angew. Chem. Int. Ed. 49, 3120–3145.  Web of Science CrossRef CAS Google Scholar
First citationLiang, J., Li, Y. F., Yu, J. H., Chen, P., Fang, Q. R., Sun, F. X. & Xu, R. R. (2006). Angew. Chem. Int. Ed. 45, 2546–2548.  Web of Science CSD CrossRef CAS Google Scholar
First citationLukevics, E., Belyakov, S., Arsenyan, P. & Popelis, J. (1997). J. Organomet. Chem. 549, 163–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStalder, S. M. & Wilkinson, A. P. (1997). Chem. Mater. 9, 2168–2173.  CSD CrossRef CAS Web of Science Google Scholar
First citationTang, L. Q., Dadachov, M. S. & Zou, X. D. (2001a). Z. Kristallogr. New Cryst. Struct. 216, 257–258.  CAS Google Scholar
First citationTang, L. Q., Dadachov, M. S. & Zou, X. D. (2001b). Z. Kristallogr. New Cryst. Struct. 216, 259–260.  CAS Google Scholar
First citationTang, L. Q., Dadachov, M. S. & Zou, X. D. (2001c). Z. Kristallogr. New Cryst. Struct. 216, 385–386.  CAS Google Scholar
First citationTang, L. Q., Dadachov, M. S. & Zou, X. D. (2001d). Z. Kristallogr. New Cryst. Struct. 216, 387–388.  CAS Google Scholar
First citationTang, L. Q., Dadachov, M. S. & Zou, X. D. (2001e). Z. Kristallogr. New Cryst. Struct. 216, 389–390.  CAS Google Scholar
First citationTang, L. Q., Dadachov, M. S. & Zou, X. D. (2001f). Z. Kristallogr. New Cryst. Struct. 216, 391–392.  CAS Google Scholar
First citationWang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). Acta Cryst. E60, m705–m707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, G.-M. & Wang, P. (2011). Acta Cryst. E67, m1278–m1279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y., Yu, J. H., Guo, M. & Xu, R. R. (2003). Angew. Chem. Int. Ed. 42, 4089–4092.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, J. H., Wang, Y., Shi, Z. & Xu, R. R. (2001). Chem. Mater. 13, 2972–2978.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, J. H. & Xu, R. R. (2003). Acc. Chem. Res. 36, 481–490.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, H.-X., Yang, G.-Y. & Sun, Y.-Q. (2003). Acta Cryst. E59, m185–m187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZou, X. D., Conradsson, T., Klingsteddt, M., Dadachov, M. S. & O'Keeffe, M. (2005). Nature (London), 437, 716–719.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m396-m397
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds