metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­aqua­bis­­(μ3-oxalato-κ5O1,O2:O1′:O1′,O2′)(μ2-oxalato-κ4O1,O2:O1′,O2′)dipraseodymium(III)]

aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China
*Correspondence e-mail: haochengjun2008@163.com

(Received 23 February 2012; accepted 13 March 2012; online 17 March 2012)

In the title complex, [Pr2(C2O4)3(H2O)4]n, the two independent PrIII ions are both nine-coordinated in a distorted monocapped square-anti­prismatic geometry by seven O atoms from four oxalate ligands and two water mol­ecules. The PrIII ions are bridged by the oxalate ligands, forming a layer parallel to (001). O—H⋯O hydrogen bonds connect the layers.

Related literature

For the structures and potential applications of lanthanide complexes, see: Ma et al. (2001[Ma, B.-Q., Gao, S., Su, G. & Xu, G.-X. (2001). Angew. Chem. Int. Ed. 40, 434-437.]); Shibasaki & Yoshikawa (2002[Shibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187-2209.]); Song et al. (2012[Song, W. D., Li, S. J., Miao, D. L., Ji, L. L., Ng, S. W., Tiekink, E. R. R. & Ma, D. Y. (2012). Inorg. Chem. Commun. 17, 91-94.]).

[Scheme 1]

Experimental

Crystal data
  • [Pr2(C2O4)3(H2O)4]

  • Mr = 617.94

  • Orthorhombic, P 21 21 21

  • a = 8.6358 (17) Å

  • b = 9.5356 (19) Å

  • c = 16.885 (3) Å

  • V = 1390.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.02 mm−1

  • T = 293 K

  • 0.23 × 0.22 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.295, Tmax = 0.334

  • 13654 measured reflections

  • 3181 independent reflections

  • 2826 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.072

  • S = 1.04

  • 3181 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 1.34 e Å−3

  • Δρmin = −1.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1344 Friedel pairs

  • Flack parameter: 0.49 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2i 0.85 2.02 2.852 (6) 166
O1W—H2W⋯O8ii 0.85 2.15 2.998 (6) 173
O2W—H3W⋯O4iii 0.85 2.40 2.998 (6) 128
O2W—H4W⋯O6iv 0.85 2.01 2.792 (6) 152
O3W—H5W⋯O12v 0.85 1.97 2.780 (6) 158
O3W—H6W⋯O3v 0.85 2.60 3.379 (7) 154
O4W—H7W⋯O1vi 0.85 2.16 2.865 (6) 140
O4W—H8W⋯O9v 0.85 2.04 2.882 (6) 169
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) x+1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (vi) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During the past decade, considerable efforts have been devoted to the design and construction of new lanthanide coordination polymers due to their intriguing structural diversity and potential applications in many areas (Ma et al., 2001; Shibasaki & Yoshikawa, 2002; Song et al., 2012). Oxalate owning four carboxylate O atoms is highly accessible to lanthanide ions to form novel structures.

As shown in Fig. 1, in the asymmetric unit of the title complex, there are two independent PrIII ions with a similar coordination environment. Each PrIII ion is nine-coordinated by seven O atoms from four oxalate ligands and two O atoms from two terminal water molecules. The Pr1 and Pr2 atoms are bridged by two carboxylate O atoms, forming a Pr2O2 subunit with a Pr···Pr distance of 4.2893 (7) Å. Such subunits are connected by the oxalate ligands, generating a layer parallel to (0 0 1). It is noted that the oxalate ligands exhibit two kinds of coordination modes: one adopts a bisbidentate coordination mode bridging two PrIII ions; the other adopts a chelating and bridging coordination mode connecting three PrIII ions. The adjacent layers are further linked into a three-dimensional network via intermolecular O—H···O hydrogen bonds (Table 1).

Related literature top

For the structures and potential applications of lanthanide complexes, see: Ma et al. (2001); Shibasaki & Yoshikawa (2002); Song et al. (2012).

Experimental top

A mixture of Pr(NO3)3.6H2O (0.5 mmol, 0.217 g) and oxalic acid (1 mmol, 0.09 g) in 10 ml of H2O was sealed in an autoclave equipped with a Teflon liner (30 ml) and then heated to 453 K for 4 days. After gradual cooling to room temperature, crystals were obtained and collected by filtration with a yield of 31% based on Pr.

Refinement top

H atoms of water molecules were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O). The highest residual electron density was found at 0.82 Å from Pr1 atom and the deepest hole at 0.80 Å from Pr2 atom.

Structure description top

During the past decade, considerable efforts have been devoted to the design and construction of new lanthanide coordination polymers due to their intriguing structural diversity and potential applications in many areas (Ma et al., 2001; Shibasaki & Yoshikawa, 2002; Song et al., 2012). Oxalate owning four carboxylate O atoms is highly accessible to lanthanide ions to form novel structures.

As shown in Fig. 1, in the asymmetric unit of the title complex, there are two independent PrIII ions with a similar coordination environment. Each PrIII ion is nine-coordinated by seven O atoms from four oxalate ligands and two O atoms from two terminal water molecules. The Pr1 and Pr2 atoms are bridged by two carboxylate O atoms, forming a Pr2O2 subunit with a Pr···Pr distance of 4.2893 (7) Å. Such subunits are connected by the oxalate ligands, generating a layer parallel to (0 0 1). It is noted that the oxalate ligands exhibit two kinds of coordination modes: one adopts a bisbidentate coordination mode bridging two PrIII ions; the other adopts a chelating and bridging coordination mode connecting three PrIII ions. The adjacent layers are further linked into a three-dimensional network via intermolecular O—H···O hydrogen bonds (Table 1).

For the structures and potential applications of lanthanide complexes, see: Ma et al. (2001); Shibasaki & Yoshikawa (2002); Song et al. (2012).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity. [Symmetry codes: (i) x, y+1, z; (ii) -x+1, y-1/2, -z+1/2; (iii) x-1, y-1, z; (iv) -x, y+1/2, -z+1/2.]
Poly[tetraaquabis(µ3-oxalato- κ5O1,O2:O1':O1',O2')(µ2- oxalato- κ4O1,O2:O1',O2')dipraseodymium(III)] top
Crystal data top
[Pr2(C2O4)3(H2O)4]F(000) = 1160
Mr = 617.94Dx = 2.952 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3600 reflections
a = 8.6358 (17) Åθ = 1.4–28.0°
b = 9.5356 (19) ŵ = 7.02 mm1
c = 16.885 (3) ÅT = 293 K
V = 1390.4 (5) Å3Block, green
Z = 40.23 × 0.22 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3181 independent reflections
Radiation source: fine-focus sealed tube2826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
h = 911
Tmin = 0.295, Tmax = 0.334k = 1212
13654 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0284P)2 + 3.201P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3181 reflectionsΔρmax = 1.34 e Å3
217 parametersΔρmin = 1.44 e Å3
0 restraintsAbsolute structure: Flack (1983), 1344 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.49 (3)
Crystal data top
[Pr2(C2O4)3(H2O)4]V = 1390.4 (5) Å3
Mr = 617.94Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.6358 (17) ŵ = 7.02 mm1
b = 9.5356 (19) ÅT = 293 K
c = 16.885 (3) Å0.23 × 0.22 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3181 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
2826 reflections with I > 2σ(I)
Tmin = 0.295, Tmax = 0.334Rint = 0.047
13654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.072Δρmax = 1.34 e Å3
S = 1.04Δρmin = 1.44 e Å3
3181 reflectionsAbsolute structure: Flack (1983), 1344 Friedel pairs
217 parametersAbsolute structure parameter: 0.49 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.37510 (4)0.75389 (2)0.143154 (14)0.01214 (9)
Pr20.12589 (4)0.26126 (3)0.137142 (14)0.01185 (8)
O10.3263 (5)0.4984 (4)0.1336 (3)0.0245 (10)
O20.1023 (5)0.6852 (4)0.1081 (2)0.0220 (9)
O30.1479 (5)0.3304 (5)0.1473 (3)0.0383 (12)
O40.0761 (5)0.5159 (5)0.1102 (3)0.0236 (10)
O50.5734 (5)0.8913 (4)0.0744 (2)0.0220 (9)
O60.4832 (5)0.9677 (5)0.2184 (2)0.0221 (9)
O70.6490 (5)1.1490 (4)0.2172 (2)0.0209 (9)
O80.7467 (5)1.0643 (5)0.0716 (3)0.0255 (10)
O90.0572 (5)0.0999 (5)0.0683 (2)0.0205 (9)
O100.0198 (5)0.0560 (4)0.2191 (2)0.0230 (9)
O110.1596 (4)0.1155 (4)0.2289 (2)0.0186 (9)
O120.2521 (5)0.0484 (4)0.0791 (2)0.0219 (9)
O1W0.4097 (7)0.6778 (5)0.0052 (2)0.0361 (14)
H1W0.47470.72530.02150.054*
H2W0.35610.61400.01680.054*
O2W0.6418 (6)0.6597 (5)0.1743 (3)0.0357 (11)
H3W0.70100.65990.13410.053*
H4W0.63690.59500.20880.053*
O3W0.1196 (7)0.3125 (5)0.0081 (2)0.0296 (10)
H5W0.14470.39600.02000.044*
H6W0.15670.25300.04040.044*
O4W0.3828 (6)0.3679 (5)0.0986 (2)0.0303 (10)
H7W0.44430.40930.13040.045*
H8W0.41200.38340.05130.045*
C10.1907 (7)0.4536 (6)0.1341 (4)0.0214 (13)
C20.0597 (7)0.5610 (6)0.1160 (3)0.0196 (12)
C30.6393 (7)0.9949 (6)0.1035 (3)0.0160 (12)
C40.5861 (6)1.0398 (6)0.1870 (3)0.0169 (12)
C50.1355 (7)0.0127 (5)0.1057 (3)0.0164 (11)
C60.0863 (6)0.0190 (6)0.1925 (3)0.0166 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.01379 (15)0.00894 (14)0.01370 (14)0.00143 (13)0.00092 (11)0.00098 (9)
Pr20.01324 (15)0.00861 (13)0.01371 (14)0.00137 (13)0.00076 (12)0.00112 (9)
O10.025 (2)0.013 (2)0.035 (2)0.0023 (16)0.001 (2)0.0004 (18)
O20.019 (2)0.019 (2)0.028 (2)0.0007 (18)0.0038 (19)0.0043 (16)
O30.018 (2)0.0103 (19)0.086 (4)0.0033 (18)0.005 (2)0.009 (2)
O40.022 (2)0.018 (2)0.031 (2)0.0029 (16)0.0023 (19)0.0017 (18)
O50.030 (2)0.015 (2)0.020 (2)0.0103 (17)0.0063 (18)0.0088 (17)
O60.025 (2)0.025 (2)0.0165 (18)0.0139 (18)0.0081 (18)0.0051 (18)
O70.028 (2)0.0162 (19)0.0188 (18)0.0058 (17)0.0033 (19)0.0052 (15)
O80.030 (2)0.022 (3)0.024 (2)0.0126 (19)0.010 (2)0.0098 (19)
O90.025 (2)0.020 (2)0.0162 (19)0.0110 (18)0.0016 (18)0.0036 (17)
O100.027 (2)0.024 (2)0.019 (2)0.0093 (18)0.0056 (19)0.0051 (19)
O110.021 (2)0.019 (2)0.0155 (18)0.0023 (16)0.0005 (17)0.0045 (15)
O120.027 (2)0.017 (2)0.022 (2)0.0088 (18)0.0093 (18)0.0092 (18)
O1W0.056 (4)0.027 (3)0.025 (2)0.023 (2)0.016 (2)0.0094 (17)
O2W0.030 (3)0.030 (3)0.046 (3)0.008 (2)0.003 (3)0.006 (2)
O3W0.046 (3)0.020 (2)0.024 (2)0.007 (3)0.002 (2)0.0062 (15)
O4W0.027 (2)0.038 (3)0.027 (2)0.008 (2)0.001 (2)0.0004 (17)
C10.022 (3)0.013 (3)0.029 (3)0.003 (2)0.002 (3)0.000 (3)
C20.027 (3)0.018 (3)0.014 (3)0.001 (2)0.000 (2)0.001 (2)
C30.016 (3)0.015 (3)0.017 (3)0.002 (3)0.004 (3)0.0010 (18)
C40.021 (3)0.014 (3)0.015 (3)0.001 (2)0.001 (2)0.002 (2)
C50.022 (3)0.009 (3)0.018 (3)0.000 (3)0.000 (3)0.0023 (18)
C60.020 (3)0.016 (3)0.014 (2)0.001 (2)0.002 (2)0.002 (2)
Geometric parameters (Å, º) top
Pr1—O12i2.419 (4)O4—C21.253 (7)
Pr1—O52.449 (4)O5—C31.241 (6)
Pr1—O1W2.458 (4)O6—C41.242 (7)
Pr1—O12.478 (4)O7—C41.281 (7)
Pr1—O22.516 (4)O8—C31.261 (7)
Pr1—O2W2.527 (5)O9—C51.244 (7)
Pr1—O7ii2.570 (4)O10—C61.247 (7)
Pr1—O62.578 (4)O11—C61.275 (7)
Pr1—O11i2.666 (4)O12—C51.247 (7)
Pr2—O8iii2.442 (4)O1W—H1W0.8500
Pr2—O32.460 (4)O1W—H2W0.8501
Pr2—O92.494 (4)O2W—H3W0.8500
Pr2—O3W2.501 (4)O2W—H4W0.8500
Pr2—O42.508 (4)O3W—H5W0.8500
Pr2—O4W2.526 (5)O3W—H6W0.8499
Pr2—O11iv2.565 (4)O4W—H7W0.8511
Pr2—O102.566 (4)O4W—H8W0.8513
Pr2—O7iii2.598 (4)C1—C21.556 (9)
O1—C11.247 (7)C3—C41.544 (7)
O2—C21.247 (7)C5—C61.555 (8)
O3—C11.252 (7)
O12i—Pr1—O571.23 (15)O9—Pr2—O1063.55 (13)
O12i—Pr1—O1W81.93 (16)O3W—Pr2—O10132.08 (14)
O5—Pr1—O1W67.89 (15)O4—Pr2—O10140.82 (14)
O12i—Pr1—O1131.49 (15)O4W—Pr2—O10139.42 (14)
O5—Pr1—O1127.89 (14)O11iv—Pr2—O1085.07 (13)
O1W—Pr1—O170.66 (15)O8iii—Pr2—O7iii65.29 (13)
O12i—Pr1—O271.72 (14)O3—Pr2—O7iii142.48 (15)
O5—Pr1—O2133.05 (13)O9—Pr2—O7iii117.55 (13)
O1W—Pr1—O279.30 (16)O3W—Pr2—O7iii127.34 (15)
O1—Pr1—O264.51 (14)O4—Pr2—O7iii128.43 (13)
O12i—Pr1—O2W140.37 (15)O4W—Pr2—O7iii69.05 (14)
O5—Pr1—O2W69.61 (15)O11iv—Pr2—O7iii69.21 (11)
O1W—Pr1—O2W88.94 (17)O10—Pr2—O7iii70.88 (13)
O1—Pr1—O2W79.57 (15)C1—O1—Pr1119.7 (4)
O2—Pr1—O2W144.08 (15)C2—O2—Pr1119.9 (4)
O12i—Pr1—O7ii132.68 (13)C1—O3—Pr2121.5 (4)
O5—Pr1—O7ii134.42 (14)C2—O4—Pr2118.6 (4)
O1W—Pr1—O7ii139.87 (15)C3—O5—Pr1123.9 (4)
O1—Pr1—O7ii70.32 (14)C4—O6—Pr1119.1 (3)
O2—Pr1—O7ii92.21 (13)C4—O7—Pr1v130.3 (3)
O2W—Pr1—O7ii75.20 (14)C4—O7—Pr2vi116.5 (3)
O12i—Pr1—O676.29 (15)Pr1v—O7—Pr2vi112.19 (14)
O5—Pr1—O663.73 (12)C3—O8—Pr2vi122.8 (3)
O1W—Pr1—O6131.05 (14)C5—O9—Pr2121.3 (4)
O1—Pr1—O6150.63 (14)C6—O10—Pr2120.4 (3)
O2—Pr1—O6131.37 (13)C6—O11—Pr2vii134.4 (3)
O2W—Pr1—O681.29 (14)C6—O11—Pr1viii114.9 (3)
O7ii—Pr1—O683.38 (13)Pr2vii—O11—Pr1viii110.13 (14)
O12i—Pr1—O11i64.69 (12)C5—O12—Pr1viii123.9 (3)
O5—Pr1—O11i119.72 (13)Pr1—O1W—H1W115.2
O1W—Pr1—O11i137.50 (16)Pr1—O1W—H2W124.0
O1—Pr1—O11i112.07 (13)H1W—O1W—H2W120.6
O2—Pr1—O11i66.14 (12)Pr1—O2W—H3W112.4
O2W—Pr1—O11i133.55 (12)Pr1—O2W—H4W110.8
O7ii—Pr1—O11i68.09 (12)H3W—O2W—H4W125.4
O6—Pr1—O11i67.40 (12)Pr2—O3W—H5W114.3
O8iii—Pr2—O3132.12 (15)Pr2—O3W—H6W119.4
O8iii—Pr2—O966.40 (15)H5W—O3W—H6W112.1
O3—Pr2—O965.72 (15)Pr2—O4W—H7W124.9
O8iii—Pr2—O3W73.46 (15)Pr2—O4W—H8W124.9
O3—Pr2—O3W89.72 (18)H7W—O4W—H8W109.1
O9—Pr2—O3W69.50 (14)O1—C1—O3126.9 (6)
O8iii—Pr2—O4137.69 (15)O1—C1—C2117.2 (5)
O3—Pr2—O465.69 (14)O3—C1—C2116.0 (5)
O9—Pr2—O4113.85 (14)O2—C2—O4126.4 (6)
O3W—Pr2—O468.22 (15)O2—C2—C1115.6 (5)
O8iii—Pr2—O4W78.30 (16)O4—C2—C1118.0 (5)
O3—Pr2—O4W138.94 (15)O5—C3—O8125.9 (5)
O9—Pr2—O4W133.26 (13)O5—C3—C4116.5 (5)
O3W—Pr2—O4W71.82 (15)O8—C3—C4117.6 (5)
O4—Pr2—O4W73.38 (14)O6—C4—O7125.7 (5)
O8iii—Pr2—O11iv134.49 (13)O6—C4—C3116.7 (5)
O3—Pr2—O11iv85.69 (15)O7—C4—C3117.6 (5)
O9—Pr2—O11iv139.96 (13)O9—C5—O12124.6 (5)
O3W—Pr2—O11iv141.03 (13)O9—C5—C6117.4 (5)
O4—Pr2—O11iv74.70 (14)O12—C5—C6118.0 (5)
O4W—Pr2—O11iv86.72 (13)O10—C6—O11127.2 (5)
O8iii—Pr2—O1079.57 (15)O10—C6—C5115.4 (5)
O3—Pr2—O1079.85 (14)O11—C6—C5117.3 (5)
O12i—Pr1—O1—C143.6 (5)O4W—Pr2—O9—C5146.9 (4)
O5—Pr1—O1—C1141.8 (4)O11iv—Pr2—O9—C529.4 (5)
O1W—Pr1—O1—C1103.0 (5)O10—Pr2—O9—C512.7 (4)
O2—Pr1—O1—C115.9 (4)O7iii—Pr2—O9—C560.5 (5)
O2W—Pr1—O1—C1164.5 (5)O8iii—Pr2—O10—C677.6 (4)
O7ii—Pr1—O1—C186.6 (5)O3—Pr2—O10—C658.9 (4)
O6—Pr1—O1—C1114.3 (5)O9—Pr2—O10—C68.9 (4)
O11i—Pr1—O1—C131.5 (5)O3W—Pr2—O10—C621.4 (5)
O12i—Pr1—O2—C2171.5 (4)O4—Pr2—O10—C687.1 (5)
O5—Pr1—O2—C2132.1 (4)O4W—Pr2—O10—C6135.4 (4)
O1W—Pr1—O2—C286.6 (4)O11iv—Pr2—O10—C6145.4 (4)
O1—Pr1—O2—C213.0 (4)O7iii—Pr2—O10—C6144.9 (5)
O2W—Pr1—O2—C213.6 (5)Pr1—O1—C1—O3163.0 (6)
O7ii—Pr1—O2—C253.9 (4)Pr1—O1—C1—C217.5 (7)
O6—Pr1—O2—C2137.1 (4)Pr2—O3—C1—O1176.1 (5)
O11i—Pr1—O2—C2118.8 (4)Pr2—O3—C1—C23.5 (8)
O8iii—Pr2—O3—C1132.1 (5)Pr1—O2—C2—O4170.7 (5)
O9—Pr2—O3—C1132.4 (6)Pr1—O2—C2—C19.8 (7)
O3W—Pr2—O3—C164.9 (5)Pr2—O4—C2—O2176.5 (5)
O4—Pr2—O3—C11.2 (5)Pr2—O4—C2—C14.0 (7)
O4W—Pr2—O3—C13.6 (6)O1—C1—C2—O25.0 (8)
O11iv—Pr2—O3—C176.4 (5)O3—C1—C2—O2175.4 (6)
O10—Pr2—O3—C1162.1 (5)O1—C1—C2—O4174.6 (5)
O7iii—Pr2—O3—C1123.3 (5)O3—C1—C2—O45.0 (9)
O8iii—Pr2—O4—C2128.4 (4)Pr1—O5—C3—O8176.5 (5)
O3—Pr2—O4—C21.8 (4)Pr1—O5—C3—C42.1 (7)
O9—Pr2—O4—C247.9 (5)Pr2vi—O8—C3—O5177.6 (5)
O3W—Pr2—O4—C2101.8 (5)Pr2vi—O8—C3—C41.0 (7)
O4W—Pr2—O4—C2178.4 (5)Pr1—O6—C4—O7179.3 (4)
O11iv—Pr2—O4—C290.4 (4)Pr1—O6—C4—C30.9 (6)
O10—Pr2—O4—C228.9 (5)Pr1v—O7—C4—O68.5 (9)
O7iii—Pr2—O4—C2137.0 (4)Pr2vi—O7—C4—O6175.9 (5)
O12i—Pr1—O5—C385.5 (5)Pr1v—O7—C4—C3173.1 (3)
O1W—Pr1—O5—C3174.2 (5)Pr2vi—O7—C4—C35.7 (6)
O1—Pr1—O5—C3146.1 (4)O5—C3—C4—O60.7 (8)
O2—Pr1—O5—C3125.0 (4)O8—C3—C4—O6178.0 (6)
O2W—Pr1—O5—C388.3 (5)O5—C3—C4—O7177.8 (6)
O7ii—Pr1—O5—C346.6 (5)O8—C3—C4—O73.4 (8)
O6—Pr1—O5—C31.8 (4)Pr2—O9—C5—O12163.2 (4)
O11i—Pr1—O5—C341.0 (5)Pr2—O9—C5—C615.3 (7)
O12i—Pr1—O6—C476.9 (4)Pr1viii—O12—C5—O9168.6 (4)
O5—Pr1—O6—C41.3 (4)Pr1viii—O12—C5—C612.9 (7)
O1W—Pr1—O6—C410.7 (5)Pr2—O10—C6—O11173.1 (4)
O1—Pr1—O6—C4120.0 (4)Pr2—O10—C6—C55.4 (7)
O2—Pr1—O6—C4126.7 (4)Pr2vii—O11—C6—O109.0 (9)
O2W—Pr1—O6—C470.2 (4)Pr1viii—O11—C6—O10179.4 (5)
O7ii—Pr1—O6—C4146.1 (4)Pr2vii—O11—C6—C5172.6 (3)
O11i—Pr1—O6—C4144.9 (4)Pr1viii—O11—C6—C52.2 (6)
O8iii—Pr2—O9—C5102.6 (5)O9—C5—C6—O106.3 (8)
O3—Pr2—O9—C577.7 (4)O12—C5—C6—O10172.3 (5)
O3W—Pr2—O9—C5177.1 (5)O9—C5—C6—O11175.1 (5)
O4—Pr2—O9—C5123.9 (4)O12—C5—C6—O116.4 (8)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x1, y1, z; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x+1, y+1, z; (vii) x, y1/2, z+1/2; (viii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2ix0.852.022.852 (6)166
O1W—H2W···O8x0.852.152.998 (6)173
O2W—H3W···O4xi0.852.402.998 (6)128
O2W—H4W···O6ii0.852.012.792 (6)152
O3W—H5W···O12xii0.851.972.780 (6)158
O3W—H6W···O3xii0.852.603.379 (7)154
O4W—H7W···O1xiii0.852.162.865 (6)140
O4W—H8W···O9xii0.852.042.882 (6)169
Symmetry codes: (ii) x+1, y1/2, z+1/2; (ix) x+1/2, y+3/2, z; (x) x1/2, y+3/2, z; (xi) x+1, y, z; (xii) x1/2, y+1/2, z; (xiii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Pr2(C2O4)3(H2O)4]
Mr617.94
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.6358 (17), 9.5356 (19), 16.885 (3)
V3)1390.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)7.02
Crystal size (mm)0.23 × 0.22 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.295, 0.334
No. of measured, independent and
observed [I > 2σ(I)] reflections
13654, 3181, 2826
Rint0.047
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.072, 1.04
No. of reflections3181
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.34, 1.44
Absolute structureFlack (1983), 1344 Friedel pairs
Absolute structure parameter0.49 (3)

Computer programs: CrystalClear (Rigaku, 2002), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.852.022.852 (6)166
O1W—H2W···O8ii0.852.152.998 (6)173
O2W—H3W···O4iii0.852.402.998 (6)128
O2W—H4W···O6iv0.852.012.792 (6)152
O3W—H5W···O12v0.851.972.780 (6)158
O3W—H6W···O3v0.852.603.379 (7)154
O4W—H7W···O1vi0.852.162.865 (6)140
O4W—H8W···O9v0.852.042.882 (6)169
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+3/2, z; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2; (v) x1/2, y+1/2, z; (vi) x1, y, z.
 

Acknowledgements

The authors acknowledge Pingdingshan University for supporting this work.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMa, B.-Q., Gao, S., Su, G. & Xu, G.-X. (2001). Angew. Chem. Int. Ed. 40, 434–437.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187–2209.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSong, W. D., Li, S. J., Miao, D. L., Ji, L. L., Ng, S. W., Tiekink, E. R. R. & Ma, D. Y. (2012). Inorg. Chem. Commun. 17, 91–94.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds